Theory Algebra5
theory Algebra5 imports Algebra4 begin
section "Operation of ideals"
lemma (in Ring) ideal_sumTr1:"⟦ideal R A; ideal R B⟧ ⟹
A ∓ B = ⋂ {J. ideal R J ∧ (A ∪ B) ⊆ J}"
apply (frule sum_ideals[of "A" "B"], assumption,
frule sum_ideals_la1[of "A" "B"], assumption,
frule sum_ideals_la2[of "A" "B"], assumption)
apply (rule equalityI)
apply (rule_tac A = "{J. ideal R J ∧ (A ∪ B) ⊆ J}" and C = "A ∓ B" in
Inter_greatest)
apply (simp, (erule conjE)+)
apply (rule_tac A = A and B = B and I = X in sum_ideals_cont,
simp add:ideal_subset1, simp add:ideal_subset1, assumption+)
apply (rule_tac B = "A ∓ B" and A = "{J. ideal R J ∧ (A ∪ B) ⊆ J}" in
Inter_lower)
apply simp
done
lemma (in Ring) sum_ideals_commute:"⟦ideal R A; ideal R B⟧ ⟹
A ∓ B = B ∓ A"
apply (frule ideal_sumTr1 [of "B"], assumption+,
frule ideal_sumTr1 [of "A" "B"], assumption+)
apply (simp add:Un_commute[of "B" "A"])
done
lemma (in Ring) ideal_prod_mono1:"⟦ideal R A; ideal R B; ideal R C;
A ⊆ B ⟧ ⟹ A ♢⇩r C ⊆ B ♢⇩r C"
apply (frule ideal_prod_ideal[of "B" "C"], assumption+)
apply (rule ideal_prod_subTr[of "A" "C" "B ♢⇩r C"], assumption+)
apply (rule ballI)+
apply (frule_tac c = i in subsetD[of "A" "B"], assumption+)
apply (rule_tac i = i and j = j in prod_mem_prod_ideals[of "B" "C"],
assumption+)
done
lemma (in Ring) ideal_prod_mono2:"⟦ideal R A; ideal R B; ideal R C;
A ⊆ B ⟧ ⟹ C ♢⇩r A ⊆ C ♢⇩r B"
apply (frule ideal_prod_mono1[of "A" "B" "C"], assumption+)
apply (simp add:ideal_prod_commute)
done
lemma (in Ring) cont_ideal_prod:"⟦ideal R A; ideal R B; ideal R C;
A ⊆ C; B ⊆ C ⟧ ⟹ A ♢⇩r B ⊆ C"
apply (simp add:ideal_prod_def)
apply (rule subsetI, simp)
apply (frule ideal_prod_ideal[of "A" "B"], assumption,
frule_tac a = "A ♢⇩r B" in forall_spec,
thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈A. ∃j∈B. x = i ⋅⇩r j} ⊆ xa ⟶ x ∈ xa",
simp)
apply (rule subsetI, simp, (erule bexE)+, simp add:prod_mem_prod_ideals)
apply (frule ideal_prod_la1[of "A" "B"], assumption,
frule_tac c = x in subsetD[of "A ♢⇩r B" "A"], assumption+,
simp add:subsetD)
done
lemma (in Ring) ideal_distrib:"⟦ideal R A; ideal R B; ideal R C⟧ ⟹
A ♢⇩r (B ∓ C) = A ♢⇩r B ∓ A ♢⇩r C"
apply (frule sum_ideals[of "B" "C"], assumption,
frule ideal_prod_ideal[of "A" "B ∓ C"], assumption+,
frule ideal_prod_ideal[of "A" "B"], assumption+,
frule ideal_prod_ideal[of "A" "C"], assumption+,
frule sum_ideals[of "A ♢⇩r B" "A ♢⇩r C"], assumption)
apply (rule equalityI)
apply (rule ideal_prod_subTr[of "A" "B ∓ C" "A ♢⇩r B ∓ A ♢⇩r C"], assumption+)
apply (rule ballI)+
apply (frule_tac x = j in ideals_set_sum[of B C], assumption+,
(erule bexE)+, simp) apply (
thin_tac "j = h ± k",
frule_tac h = i in ideal_subset[of "A"], assumption+,
frule_tac h = h in ideal_subset[of "B"], assumption+,
frule_tac h = k in ideal_subset[of "C"], assumption+)
apply (simp add:ring_distrib1)
apply (frule_tac i = i and j = h in prod_mem_prod_ideals[of "A" "B"],
assumption+,
frule_tac i = i and j = k in prod_mem_prod_ideals[of "A" "C"],
assumption+)
apply (frule sum_ideals_la1[of "A ♢⇩r B" "A ♢⇩r C"], assumption+,
frule sum_ideals_la2[of "A ♢⇩r B" "A ♢⇩r C"], assumption+)
apply (frule_tac c = "i ⋅⇩r h" in subsetD[of "A ♢⇩r B" "A ♢⇩r B ∓ A ♢⇩r C"],
assumption+,
frule_tac c = "i ⋅⇩r k" in subsetD[of "A ♢⇩r C" "A ♢⇩r B ∓ A ♢⇩r C"],
assumption+)
apply (simp add:ideal_pOp_closed)
apply (rule sum_ideals_cont[of "A ♢⇩r (B ∓ C)" "A ♢⇩r B" "A ♢⇩r C" ],
assumption+)
apply (rule ideal_prod_subTr[of "A" "B" "A ♢⇩r (B ∓ C)"], assumption+)
apply (rule ballI)+
apply (frule sum_ideals_la1[of "B" "C"], assumption+,
frule_tac c = j in subsetD[of "B" "B ∓ C"], assumption+,
rule_tac i = i and j = j in prod_mem_prod_ideals[of "A" "B ∓ C"],
assumption+)
apply (rule ideal_prod_subTr[of "A" "C" "A ♢⇩r (B ∓ C)"], assumption+)
apply (rule ballI)+
apply (frule sum_ideals_la2[of "B" "C"], assumption+,
frule_tac c = j in subsetD[of "C" "B ∓ C"], assumption+,
rule_tac i = i and j = j in prod_mem_prod_ideals[of "A" "B ∓ C"],
assumption+)
done
definition
coprime_ideals::"[_, 'a set, 'a set] ⇒ bool" where
"coprime_ideals R A B ⟷ A ∓⇘R⇙ B = carrier R"
lemma (in Ring) coprimeTr:"⟦ideal R A; ideal R B⟧ ⟹
coprime_ideals R A B = (∃a ∈ A. ∃b ∈ B. a ± b = 1⇩r)"
apply (rule iffI)
apply (simp add:coprime_ideals_def)
apply (cut_tac ring_one, frule sym, thin_tac "A ∓ B = carrier R", simp,
thin_tac "carrier R = A ∓ B", frule ideals_set_sum[of A B],
assumption+, (erule bexE)+, frule sym, blast)
apply (erule bexE)+
apply (frule ideal_subset1[of A], frule ideal_subset1[of B])
apply (frule_tac a = a and b = b in set_sum_mem[of _ A _ B], assumption+)
apply (simp add:coprime_ideals_def)
apply (frule sum_ideals[of "A" "B"], assumption+,
frule ideal_inc_one[of "A ∓ B"], assumption)
apply (simp add:coprime_ideals_def)
done
lemma (in Ring) coprime_int_prod:"⟦ideal R A; ideal R B; coprime_ideals R A B⟧
⟹ A ∩ B = A ♢⇩r B"
apply (frule ideal_prod_la1[of "A" "B"], assumption+,
frule ideal_prod_la2[of "A" "B"], assumption+)
apply (rule equalityI)
defer
apply simp
apply (simp add:coprime_ideals_def)
apply (frule int_ideal[of "A" "B"], assumption)
apply (frule idealprod_whole_r[of "A ∩ B"])
apply (frule sym, thin_tac "A ∓ B = carrier R", simp)
apply (simp add:ideal_distrib)
apply (simp add:ideal_prod_commute[of "A ∩ B" "A"])
apply (cut_tac Int_lower1[of "A" "B"], cut_tac Int_lower2[of "A" "B"])
apply (frule ideal_prod_mono2[of "A ∩ B" "B" "A"], assumption+,
frule ideal_prod_mono1[of "A ∩ B" "A" "B"], assumption+)
apply (frule ideal_prod_ideal[of "A ∩ B" "B"], assumption+,
frule ideal_prod_ideal[of "A" "A ∩ B"], assumption+,
frule ideal_subset1[of "A ♢⇩r (A ∩ B)"],
frule ideal_subset1[of "(A ∩ B) ♢⇩r B"])
apply (frule ideal_prod_ideal[of A B], assumption+,
frule sum_ideals_cont[of "A ♢⇩r B" "A ♢⇩r (A ∩ B)" "(A ∩ B) ♢⇩r B"],
assumption+)
apply simp
done
lemma (in Ring) coprime_elems:"⟦ideal R A; ideal R B; coprime_ideals R A B⟧ ⟹
∃a∈A. ∃b∈B. a ± b = 1⇩r"
by (simp add:coprimeTr)
lemma (in Ring) coprime_elemsTr:"⟦ideal R A; ideal R B; a∈A; b∈B; a ± b = 1⇩r⟧
⟹ pj R A b = 1⇩r⇘(qring R A)⇙ ∧ pj R B a = 1⇩r⇘(qring R B)⇙"
apply (frule pj_Hom [OF Ring, of "A"],
frule pj_Hom [OF Ring, of "B"])
apply (frule qring_ring[of "A"], frule qring_ring[of "B"])
apply (cut_tac ring_is_ag,
frule Ring.ring_is_ag[of "R /⇩r A"],
frule Ring.ring_is_ag[of "R /⇩r B"])
apply (frule_tac a = a and b = b in aHom_add[of "R" "R /⇩r A" "pj R A"],
assumption+,
simp add:rHom_def, simp add:ideal_subset,
simp add:ideal_subset, simp)
apply (frule ideal_subset[of "A" "a"], assumption,
frule ideal_subset[of "B" "b"], assumption+)
apply (simp only:pj_zero[OF Ring, THEN sym, of "A" "a"],
frule rHom_mem[of "pj R A" "R" "qring R A" "b"], assumption+,
simp add:aGroup.l_zero[of "R /⇩r A"])
apply (simp add:rHom_one[OF Ring, of "qring R A"])
apply (frule_tac a = a and b = b in aHom_add[of "R" "R /⇩r B" "pj R B"],
assumption+,
simp add:rHom_def, simp add:ideal_subset,
simp add:ideal_subset, simp)
apply (simp only:pj_zero[OF Ring, THEN sym, of "B" "b"],
frule rHom_mem[of "pj R B" "R" "qring R B" "a"], assumption+,
simp add:aGroup.ag_r_zero[of "R /⇩r B"])
apply (simp add:rHom_one[OF Ring, of "qring R B"])
done
lemma (in Ring) partition_of_unity:"⟦ideal R A; a ∈ A; b ∈ carrier R;
a ± b = 1⇩r; u ∈ carrier R; v ∈ carrier R⟧ ⟹
pj R A (a ⋅⇩r v ± b ⋅⇩r u ) = pj R A u"
apply (frule pj_Hom [OF Ring, of "A"],
frule ideal_subset [of "A" "a"], assumption+,
frule ring_tOp_closed[of "a" "v"], assumption+,
frule ring_tOp_closed[of "b" "u"], assumption+,
frule qring_ring[of "A"])
apply (simp add:ringhom1[OF Ring, of "qring R A" "a ⋅⇩r v" "b ⋅⇩r u" "pj R A"])
apply (frule ideal_ring_multiple1[of "A" "a" "v"], assumption+,
simp add:pj_zero[OF Ring, THEN sym, of "A" "a ⋅⇩r v"],
frule rHom_mem[of "pj R A" "R" "qring R A" "b ⋅⇩r u"], assumption+,
simp add:Ring.l_zero, simp add:rHom_tOp[OF Ring])
apply (frule ringhom1[OF Ring, of "qring R A" "a" "b" "pj R A"], assumption+,
simp,
simp add:pj_zero[OF Ring, THEN sym, of "A" "a"],
frule rHom_mem[of "pj R A" "R" "qring R A" "b"], assumption+,
simp add:Ring.l_zero)
apply (simp add:rHom_one[OF Ring, of "qring R A" "pj R A"],
rotate_tac -2, frule sym, thin_tac "1⇩r⇘R /⇩r A⇙ = pj R A b",
simp,
rule Ring.ring_l_one[of "qring R A" "pj R A u"], assumption)
apply (simp add:rHom_mem)
done
lemma (in Ring) coprimes_commute:"⟦ideal R A; ideal R B; coprime_ideals R A B ⟧
⟹ coprime_ideals R B A"
apply (simp add:coprime_ideals_def)
apply (simp add:sum_ideals_commute)
done
lemma (in Ring) coprime_surjTr:"⟦ideal R A; ideal R B; coprime_ideals R A B;
X ∈ carrier (qring R A); Y ∈ carrier (qring R B) ⟧ ⟹
∃r∈carrier R. pj R A r = X ∧ pj R B r = Y"
apply (frule qring_ring [of "A"],
frule qring_ring [of "B"],
frule coprime_elems [of "A" "B"], assumption+,
frule pj_Hom [OF Ring, of "A"],
frule pj_Hom [OF Ring, of "B"])
apply (erule bexE)+
apply (simp add:qring_carrier[of "A"],
simp add:qring_carrier[of "B"], (erule bexE)+,
rename_tac a b u v)
apply (rotate_tac -1, frule sym, thin_tac "v ⊎⇘R⇙ B = Y",
rotate_tac -3, frule sym, thin_tac "u ⊎⇘R⇙ A = X", simp)
apply (frule_tac h = a in ideal_subset[of "A"], assumption+,
frule_tac h = b in ideal_subset[of "B"], assumption+,
frule_tac x = a and y = v in ring_tOp_closed, assumption+,
frule_tac x = b and y = u in ring_tOp_closed, assumption+,
cut_tac ring_is_ag,
frule_tac x = "a ⋅⇩r v" and y = "b ⋅⇩r u" in aGroup.ag_pOp_closed[of "R"],
assumption+)
apply (frule_tac a = a and b = b and u = u and v = v in
partition_of_unity[of "A"], assumption+,
simp add:pj_mem[OF Ring, of "A"])
apply (frule_tac a = b and b = a and u = v and v = u in
partition_of_unity[of "B"], assumption+,
subst aGroup.ag_pOp_commute[of "R"], assumption+,
simp add:pj_mem[OF Ring, of "B"])
apply (frule_tac x = "b ⋅⇩r u" and y = "a ⋅⇩r v" in
aGroup.ag_pOp_commute[of "R"], assumption+, simp)
apply (simp add:pj_mem[OF Ring], blast)
done
lemma (in Ring) coprime_n_idealsTr0:"⟦ideal R A; ideal R B; ideal R C;
coprime_ideals R A C; coprime_ideals R B C ⟧ ⟹
coprime_ideals R (A ♢⇩r B) C"
apply (simp add:coprimeTr[of "A" "C"],
simp add:coprimeTr[of "B" "C"], (erule bexE)+)
apply (cut_tac ring_is_ag,
frule_tac h = a in ideal_subset[of "A"], assumption+,
frule_tac h = aa in ideal_subset[of "B"], assumption+,
frule_tac h = b in ideal_subset[of "C"], assumption+,
frule_tac h = ba in ideal_subset[of "C"], assumption+,
frule_tac x = a and y = b in aGroup.ag_pOp_closed, assumption+)
apply (frule_tac x = "a ± b" and y = aa and z = ba in ring_distrib1,
assumption+) apply (
rotate_tac 6, frule sym, thin_tac "a ± b = 1⇩r",
frule sym, thin_tac "aa ± ba = 1⇩r")
apply (simp only:ring_distrib2)
apply (rotate_tac -1, frule sym, thin_tac "1⇩r = a ± b", simp,
thin_tac "aa ± ba = 1⇩r")
apply (simp add:ring_r_one,
thin_tac "a ⋅⇩r aa ± b ⋅⇩r aa ± (a ⋅⇩r ba ± b ⋅⇩r ba) ∈ carrier R",
thin_tac "a ± b = a ⋅⇩r aa ± b ⋅⇩r aa ± (a ⋅⇩r ba ± b ⋅⇩r ba)")
apply (frule_tac x = a and y = aa in ring_tOp_closed, assumption+,
frule_tac x = b and y = aa in ring_tOp_closed, assumption+,
frule_tac x = a and y = ba in ring_tOp_closed, assumption+,
frule_tac x = b and y = ba in ring_tOp_closed, assumption+,
frule_tac x = "a ⋅⇩r ba" and y = "b ⋅⇩r ba" in aGroup.ag_pOp_closed,
assumption+)
apply (simp add:aGroup.ag_pOp_assoc,
frule sym, thin_tac "1⇩r = a ⋅⇩r aa ± (b ⋅⇩r aa ± (a ⋅⇩r ba ± b ⋅⇩r ba))")
apply (frule_tac i = a and j = aa in prod_mem_prod_ideals[of "A" "B"],
assumption+)
apply (frule_tac x = ba and r = a in ideal_ring_multiple[of "C"],
assumption+,
frule_tac x = ba and r = b in ideal_ring_multiple[of "C"],
assumption+,
frule_tac x = b and r = aa in ideal_ring_multiple1[of "C"],
assumption+)
apply (frule_tac I = C and x = "a ⋅⇩r ba" and y = "b ⋅⇩r ba" in
ideal_pOp_closed, assumption+,
frule_tac I = C and x = "b ⋅⇩r aa" and y = "a ⋅⇩r ba ± b ⋅⇩r ba" in
ideal_pOp_closed, assumption+)
apply (frule ideal_prod_ideal[of "A" "B"], assumption)
apply (subst coprimeTr, assumption+, blast)
done
lemma (in Ring) coprime_n_idealsTr1:"ideal R C ⟹
(∀k ≤ n. ideal R (J k)) ∧ (∀i ≤ n. coprime_ideals R (J i) C) ⟶
coprime_ideals R (iΠ⇘R,n⇙ J) C"
apply (induct_tac n)
apply (rule impI)
apply (erule conjE)
apply simp
apply (rule impI)
apply (erule conjE)
apply (cut_tac n = "Suc n" in n_in_Nsetn)
apply (cut_tac n = n in Nset_Suc) apply simp
apply (cut_tac n = n and J = J in n_prod_ideal,
rule allI, simp)
apply (rule_tac A = "iΠ⇘R,n⇙ J" and B = "J (Suc n)" in
coprime_n_idealsTr0[of _ _ "C"], simp+)
done
lemma (in Ring) coprime_n_idealsTr2:"⟦ideal R C; (∀k ≤ n. ideal R (J k));
(∀i ≤ n. coprime_ideals R (J i) C) ⟧ ⟹
coprime_ideals R (iΠ⇘R,n⇙ J) C"
by (simp add:coprime_n_idealsTr1)
lemma (in Ring) coprime_n_idealsTr3:"(∀k ≤ (Suc n). ideal R (J k)) ∧
(∀i ≤ (Suc n). ∀j ≤ (Suc n). i ≠ j ⟶
coprime_ideals R (J i) (J j)) ⟶ coprime_ideals R (iΠ⇘R,n⇙ J) (J (Suc n))"
apply (rule impI, erule conjE)
apply (case_tac "n = 0", simp)
apply (simp add:Nset_1)
apply (cut_tac nat_eq_le[of "Suc n" "Suc n"],
frule_tac a = "Suc n" in forall_spec, assumption)
apply (rotate_tac 1, frule_tac a = "Suc n" in forall_spec, assumption,
thin_tac "∀j≤Suc n. Suc n ≠ j ⟶ coprime_ideals R (J (Suc n)) (J j)")
apply (rule_tac C = "J (Suc n)" and n = n and J = J in coprime_n_idealsTr2,
assumption, rule allI, simp)
apply (rule allI, rule impI)
apply (frule_tac a = i in forall_spec, simp,
thin_tac "∀i≤Suc n. ∀j≤Suc n. i ≠ j ⟶ coprime_ideals R (J i) (J j)",
rotate_tac -1,
frule_tac a = "Suc n" in forall_spec, assumption+)
apply simp+
done
lemma (in Ring) coprime_n_idealsTr4:"⟦(∀k ≤ (Suc n). ideal R (J k)) ∧
(∀i ≤ (Suc n). ∀j ≤ (Suc n). i ≠ j ⟶
coprime_ideals R (J i) (J j))⟧ ⟹ coprime_ideals R (iΠ⇘R,n⇙ J) (J (Suc n))"
apply (simp add:coprime_n_idealsTr3)
done
section "Direct product1, general case"
definition
prod_tOp :: "['i set, 'i ⇒ ('a, 'm) Ring_scheme] ⇒
('i ⇒ 'a) ⇒ ('i ⇒ 'a) ⇒ ('i ⇒ 'a)" where
"prod_tOp I A = (λf∈carr_prodag I A. λg∈carr_prodag I A.
λx∈I. (f x) ⋅⇩r⇘(A x)⇙ (g x))"
definition
prod_one::"['i set, 'i ⇒ ('a, 'm) Ring_scheme] ⇒ ('i ⇒ 'a)" where
"prod_one I A == λx∈I. 1⇩r⇘(A x)⇙"
definition
prodrg :: "['i set, 'i ⇒ ('a, 'more) Ring_scheme] ⇒ ('i ⇒ 'a) Ring" where
"prodrg I A = ⦇carrier = carr_prodag I A, pop = prod_pOp I A, mop =
prod_mOp I A, zero = prod_zero I A, tp = prod_tOp I A,
un = prod_one I A ⦈"
abbreviation
PRODRING (‹(rΠ⇘_⇙/ _)› [72,73]72) where
"rΠ⇘I⇙ A == prodrg I A"
definition
augm_func :: "[nat, nat ⇒ 'a,'a set, nat, nat ⇒ 'a, 'a set] ⇒ nat ⇒ 'a" where
"augm_func n f A m g B = (λi∈{j. j ≤ (n + m)}. if i ≤ n then f i else
if (Suc n) ≤ i ∧ i ≤ n + m then g ((sliden (Suc n)) i) else undefined)"
definition
ag_setfunc :: "[nat, nat ⇒ ('a, 'more) Ring_scheme, nat,
nat ⇒ ('a, 'more) Ring_scheme] ⇒ (nat ⇒ 'a) set ⇒ (nat ⇒ 'a) set
⇒ (nat ⇒ 'a) set" where
"ag_setfunc n B1 m B2 X Y =
{f. ∃g. ∃h. (g∈X) ∧(h∈Y) ∧(f = (augm_func n g (Un_carrier {j. j ≤ n} B1)
m h (Un_carrier {j. j ≤ (m - 1)} B2)))}"
primrec
ac_fProd_Rg :: "[nat, nat ⇒ ('a, 'more) Ring_scheme] ⇒
(nat ⇒ 'a) set"
where
fprod_0: "ac_fProd_Rg 0 B = carr_prodag {0::nat} B"
| frpod_n: "ac_fProd_Rg (Suc n) B = ag_setfunc n B (Suc 0) (compose {0::nat}
B (slide (Suc n))) (carr_prodag {j. j ≤ n} B) (carr_prodag {0} (compose {0} B (slide (Suc n))))"
definition
prodB1 :: "[('a, 'm) Ring_scheme, ('a, 'm) Ring_scheme] ⇒
(nat ⇒ ('a, 'm) Ring_scheme)" where
"prodB1 R S = (λk. if k=0 then R else if k=Suc 0 then S else
undefined)"
definition
Prod2Rg :: "[('a, 'm) Ring_scheme, ('a, 'm) Ring_scheme]
⇒ (nat ⇒ 'a) Ring" (infixl ‹⨁⇩r› 80) where
"A1 ⨁⇩r A2 = prodrg {0, Suc 0} (prodB1 A1 A2)"
text ‹Don't try ‹(Prod_ring (Nset n) B) ⨁⇩r (B (Suc n))››
lemma carr_prodrg_mem_eq:"⟦f ∈ carrier (rΠ⇘I⇙ A); g ∈ carrier (rΠ⇘I⇙ A);
∀i∈I. f i = g i ⟧ ⟹ f = g"
by (simp add:prodrg_def carr_prodag_def, (erule conjE)+,
rule funcset_eq[of _ I], assumption+)
lemma prod_tOp_mem:"⟦∀k∈I. Ring (A k); X ∈ carr_prodag I A;
Y ∈ carr_prodag I A⟧ ⟹ prod_tOp I A X Y ∈ carr_prodag I A"
apply (subst carr_prodag_def, simp)
apply (rule conjI)
apply (simp add:prod_tOp_def restrict_def extensional_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:Un_carrier_def prod_tOp_def)
apply (simp add:carr_prodag_def, (erule conjE)+)
apply (blast dest: Ring.ring_tOp_closed del:PiE)
apply (rule ballI)
apply (simp add:prod_tOp_def)
apply (simp add:carr_prodag_def, (erule conjE)+)
apply (simp add:Ring.ring_tOp_closed)
done
lemma prod_tOp_func:"∀k∈I. Ring (A k) ⟹
prod_tOp I A ∈ carr_prodag I A → carr_prodag I A → carr_prodag I A"
by (simp add:prod_tOp_mem)
lemma prod_one_func:"∀k∈I. Ring (A k) ⟹
prod_one I A ∈ carr_prodag I A"
apply (simp add:prod_one_def carr_prodag_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:Un_carrier_def)
apply (blast dest: Ring.ring_one)
apply (simp add: Ring.ring_one)
done
lemma prodrg_carrier:"∀k∈I. Ring (A k) ⟹
carrier (prodrg I A) = carrier (prodag I A)"
by (simp add:prodrg_def prodag_def)
lemma prodrg_ring:"∀k∈I. Ring (A k) ⟹ Ring (prodrg I A)"
apply (rule Ring.intro)
apply (simp add:prodrg_def)
apply (rule prod_pOp_func,
rule ballI, simp add:Ring.ring_is_ag)
apply (simp add:prodrg_def, rule prod_pOp_assoc,
simp add:Ring.ring_is_ag, assumption+)
apply (simp add:prodrg_def, rule prod_pOp_commute,
simp add:Ring.ring_is_ag, assumption+)
apply (simp add:prodrg_def, rule prod_mOp_func,
simp add:Ring.ring_is_ag)
apply (simp add:prodrg_def)
apply (cut_tac X = a in prod_mOp_mem[of "I" "A"])
apply (simp add:Ring.ring_is_ag, assumption)
apply (cut_tac X = "prod_mOp I A a" and Y = a in prod_pOp_mem[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+,
cut_tac prod_zero_func[of "I" "A"])
apply (rule carr_prodag_mem_eq[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+,
rule ballI, simp add:prod_pOp_def,
subst prod_mOp_mem_i, simp add:Ring.ring_is_ag, assumption+,
subst prod_zero_i, simp add:Ring.ring_is_ag, assumption+,
rule aGroup.l_m, simp add:Ring.ring_is_ag,
simp add:prodag_comp_i, simp add:Ring.ring_is_ag)
apply (simp add:prodrg_def,
rule prod_zero_func, simp add:Ring.ring_is_ag)
apply (simp add:prodrg_def,
cut_tac prod_zero_func[of "I" "A"],
cut_tac X = "prod_zero I A" and Y = a in prod_pOp_mem[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+,
rule carr_prodag_mem_eq[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+)
apply (rule ballI)
apply (simp add:prod_pOp_def prod_zero_def)
apply (rule aGroup.ag_l_zero, simp add:Ring.ring_is_ag)
apply (simp add:prodag_comp_i, simp add:Ring.ring_is_ag)
apply (simp add:prodrg_def,
rule prod_tOp_func, simp add:Ring.ring_is_ag)
apply (simp add:prodrg_def)
apply (frule_tac X = a and Y = b in prod_tOp_mem[of "I" "A"], assumption+,
frule_tac X = "prod_tOp I A a b" and Y = c in
prod_tOp_mem[of "I" "A"], assumption+,
frule_tac X = b and Y = c in prod_tOp_mem[of "I" "A"], assumption+,
frule_tac X = a and Y = "prod_tOp I A b c" in
prod_tOp_mem[of "I" "A"], assumption+)
apply (rule carr_prodag_mem_eq[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+, rule ballI)
apply (simp add:prod_tOp_def)
apply (rule Ring.ring_tOp_assoc, simp, (simp add:prodag_comp_i)+)
apply (simp add:prodrg_def)
apply (frule_tac X = a and Y = b in prod_tOp_mem[of "I" "A"], assumption+,
frule_tac X = b and Y = a in prod_tOp_mem[of "I" "A"], assumption+,
rule carr_prodag_mem_eq[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+)
apply (rule ballI, simp add:prod_tOp_def)
apply (rule Ring.ring_tOp_commute, (simp add:prodag_comp_i)+)
apply (simp add:prodrg_def, rule prod_one_func, assumption)
apply (simp add:prodrg_def)
apply (cut_tac X = b and Y = c in prod_pOp_mem[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+,
cut_tac X = a and Y = b in prod_tOp_mem[of "I" "A"], assumption+,
cut_tac X = a and Y = c in prod_tOp_mem[of "I" "A"], assumption+,
cut_tac X = "prod_tOp I A a b" and Y = "prod_tOp I A a c" in
prod_pOp_mem[of "I" "A"], simp add:Ring.ring_is_ag, assumption+)
apply (rule carr_prodag_mem_eq[of "I" "A"],
simp add:Ring.ring_is_ag, rule prod_tOp_mem[of "I" "A"], assumption+)
apply (rule ballI, simp add:prod_tOp_def prod_pOp_def)
apply (rule Ring.ring_distrib1, (simp add:prodag_comp_i)+)
apply (simp add:prodrg_def,
cut_tac prod_one_func[of "I" "A"],
cut_tac X = "prod_one I A" and Y = a in prod_tOp_mem[of "I" "A"],
assumption+)
apply (rule carr_prodag_mem_eq[of "I" "A"],
simp add:Ring.ring_is_ag, assumption+,
rule ballI, simp add:prod_tOp_def prod_one_def,
rule Ring.ring_l_one, simp, simp add:prodag_comp_i)
apply simp
done
lemma prodrg_elem_extensional:"⟦∀k∈I. Ring (A k); f ∈ carrier (prodrg I A)⟧
⟹ f ∈ extensional I"
apply (simp add:prodrg_carrier)
apply (simp add:prodag_def carr_prodag_def)
done
lemma prodrg_pOp:"∀k∈I. Ring (A k) ⟹
pop (prodrg I A) = prod_pOp I A"
apply (simp add:prodrg_def)
done
lemma prodrg_mOp:"∀k∈I. Ring (A k) ⟹
mop (prodrg I A) = prod_mOp I A"
apply (simp add:prodrg_def)
done
lemma prodrg_zero:"∀k∈I. Ring (A k) ⟹
zero (prodrg I A) = prod_zero I A"
apply (simp add:prodrg_def)
done
lemma prodrg_tOp:"∀k∈I. Ring (A k) ⟹
tp (prodrg I A) = prod_tOp I A"
apply (simp add:prodrg_def)
done
lemma prodrg_one:"∀k∈I. Ring (A k) ⟹
un (prodrg I A) = prod_one I A"
apply (simp add:prodrg_def)
done
lemma prodrg_sameTr5:"⟦∀k∈I. Ring (A k); ∀k∈I. A k = B k⟧
⟹ prod_tOp I A = prod_tOp I B"
apply (frule prod_tOp_func)
apply (subgoal_tac "carr_prodag I A = carr_prodag I B", simp)
apply (frule prod_tOp_func [of "I" "B"])
apply (rule funcset_eq [of _ "carr_prodag I B" _])
apply (simp add:prod_tOp_def extensional_def)
apply (simp add:prod_tOp_def extensional_def)
apply (rule ballI)
apply (frule_tac x = x in funcset_mem [of "prod_tOp I A" "carr_prodag I B"
"carr_prodag I B → carr_prodag I B"], assumption+)
apply (frule_tac x = x in funcset_mem [of "prod_tOp I B" "carr_prodag I B"
"carr_prodag I B → carr_prodag I B"], assumption+)
apply (thin_tac " prod_tOp I A
∈ carr_prodag I B → carr_prodag I B → carr_prodag I B")
apply (thin_tac "prod_tOp I B
∈ carr_prodag I B → carr_prodag I B → carr_prodag I B")
apply (rule funcset_eq [of _ "carr_prodag I B"])
apply (simp add:prod_tOp_def extensional_def)
apply (simp add:prod_tOp_def extensional_def)
apply (rule ballI)
apply (frule_tac f = "prod_tOp I A x" and A = "carr_prodag I B" and
x = xa in funcset_mem, assumption+)
apply (frule_tac f = "prod_tOp I B x" and A = "carr_prodag I B" and
x = xa in funcset_mem, assumption+)
apply (subgoal_tac "∀k∈I. aGroup (B k)")
apply (rule carr_prodag_mem_eq, assumption+)
apply (rule ballI, simp add:prod_tOp_def)
apply (rule ballI, rule Ring.ring_is_ag, simp)
apply (subgoal_tac "∀k∈I. aGroup (A k)")
apply (simp add:prodag_sameTr1)
apply (rule ballI, rule Ring.ring_is_ag, simp)
done
lemma prodrg_sameTr6:"⟦∀k∈I. Ring (A k); ∀k∈I. A k = B k⟧
⟹ prod_one I A = prod_one I B"
apply (frule prod_one_func [of "I" "A"])
apply (cut_tac prodag_sameTr1[of "I" "A" "B"])
apply (rule carr_prodag_mem_eq[of I A "prod_one I A" "prod_one I B"])
apply (simp add:Ring.ring_is_ag, assumption)
apply (cut_tac prod_one_func [of "I" "B"], simp)
apply simp
apply (rule ballI, simp add:prod_one_def)
apply (simp add:Ring.ring_is_ag, simp)
done
lemma prodrg_same:"⟦∀k∈I. Ring (A k); ∀k∈I. A k = B k⟧
⟹ prodrg I A = prodrg I B"
apply (subgoal_tac "∀k∈I. aGroup (A k)")
apply (frule prodag_sameTr1, assumption+)
apply (frule prodag_sameTr2, assumption+)
apply (frule prodag_sameTr3, assumption+)
apply (frule prodag_sameTr4, assumption+)
apply (frule prodrg_sameTr5, assumption+)
apply (frule prodrg_sameTr6, assumption+)
apply (simp add:prodrg_def)
apply (rule ballI, rule Ring.ring_is_ag, simp)
done
lemma prodrg_component:"⟦f ∈ carrier (prodrg I A); i ∈ I⟧ ⟹
f i ∈ carrier (A i)"
by (simp add:prodrg_def carr_prodag_def)
lemma project_rhom:"⟦∀k∈I. Ring (A k); j ∈ I⟧ ⟹
PRoject I A j ∈ rHom ( prodrg I A) (A j)"
apply (simp add:rHom_def)
apply (rule conjI)
apply (simp add:aHom_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:prodrg_carrier)
apply (cut_tac prodag_carrier[of I A], simp)
apply (simp add:PRoject_def)
apply (cut_tac prodag_carrier[of I A], simp,
thin_tac "carrier (aΠ⇘I⇙ A) = carr_prodag I A")
apply (simp add:prodag_comp_i)
apply (simp add:Ring.ring_is_ag)
apply (simp add:Ring.ring_is_ag)
apply (subgoal_tac "∀k∈I. aGroup (A k)")
apply (frule project_aHom [of "I" "A" "j"], assumption+)
apply (rule conjI)
apply (simp add:prodrg_carrier aHom_def)
apply (simp add:prodrg_carrier)
apply (simp add:prodrg_pOp)
apply (simp add:prodag_pOp[THEN sym])
apply (simp add:aHom_def)
apply (rule ballI, simp add:Ring.ring_is_ag)
apply (rule conjI)
apply (rule ballI)+
apply (simp add:prodrg_carrier)
apply (cut_tac prodag_carrier[of I A], simp)
apply (frule_tac X = x and Y = y in prod_tOp_mem[of I A], assumption+)
apply (simp add:prodrg_tOp)
apply (simp add:PRoject_def)
apply (simp add:prod_tOp_def)
apply (rule ballI)
apply (simp add:Ring.ring_is_ag)
apply (frule prodrg_ring [of "I" "A"])
apply (frule Ring.ring_one[of "rΠ⇘I⇙ A"])
apply (simp add:prodrg_carrier)
apply (cut_tac prodag_carrier[of I A], simp)
apply (simp add:PRoject_def) apply (simp add:prodrg_def)
apply (fold prodrg_def) apply (simp add:prod_one_def)
apply (rule ballI)
apply (simp add:Ring.ring_is_ag)
done
lemma augm_funcTr:"⟦∀k ≤(Suc n). Ring (B k);
f ∈ carr_prodag {i. i ≤ (Suc n)} B⟧ ⟹
f = augm_func n (restrict f {i. i ≤ n}) (Un_carrier {i. i ≤ n} B) (Suc 0)
(λx∈{0::nat}. f (x + Suc n))
(Un_carrier {0} (compose {0} B (slide (Suc n))))"
apply (rule carr_prodag_mem_eq [of "{i. i ≤ (Suc n)}" "B" "f"
"augm_func n (restrict f {i. i ≤ n}) (Un_carrier {i. i ≤ n} B) (Suc 0)
(λx∈{0}. f (x + Suc n)) (Un_carrier {0} (compose {0} B (slide (Suc n))))"])
apply (rule ballI, simp add:Ring.ring_is_ag)
apply (simp add:augm_func_def)
apply (simp add:carr_prodag_def)
apply (rule conjI)
apply (simp add:augm_func_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add:augm_func_def sliden_def)
apply (erule conjE)+
apply (frule_tac x = x in funcset_mem[of f "{i. i ≤ Suc n}"
"Un_carrier {i. i ≤ Suc n} B"]) apply simp
apply simp
apply (rule impI)
apply (rule_tac x = "Suc n" in funcset_mem[of f "{i. i ≤ Suc n}"
"Un_carrier {i. i ≤ Suc n} B"], assumption) apply simp
apply (rule allI, (erule conjE)+)
apply (simp add:augm_func_def)
apply (case_tac "i ≤ n", simp add:sliden_def)
apply (simp add:sliden_def, rule impI)
apply (simp add:nat_not_le_less,
frule_tac m = n and n = i in Suc_leI,
frule_tac m = i and n = "Suc n" in Nat.le_antisym, assumption+,
simp)
apply (rule ballI, simp)
apply (simp add:augm_func_def sliden_def)
apply (rule impI, simp add:nat_not_le_less)
apply (frule_tac n = l in Suc_leI[of n _])
apply (frule_tac m = l and n = "Suc n" in Nat.le_antisym, assumption+,
simp)
done
lemma A_to_prodag_mem:"⟦Ring A; ∀k∈I. Ring (B k); ∀k∈I. (S k) ∈
rHom A (B k); x ∈ carrier A ⟧ ⟹ A_to_prodag A I S B x ∈ carr_prodag I B"
apply (simp add:carr_prodag_def)
apply (rule conjI)
apply (simp add:A_to_prodag_def extensional_def)
apply (rule conjI)
apply (rule Pi_I)
apply (simp add: A_to_prodag_def)
apply (subgoal_tac "(S xa) ∈ rHom A (B xa)") prefer 2 apply simp
apply (thin_tac "∀k∈I. S k ∈ rHom A (B k)")
apply (frule_tac f = "S xa" and A = A and R = "B xa" in rHom_mem, assumption+)
apply (simp add:Un_carrier_def) apply blast
apply (rule ballI)
apply (simp add:A_to_prodag_def)
apply (rule_tac f = "S i" and A = A and R = "B i" and a = x in rHom_mem)
apply simp
apply assumption
done
lemma A_to_prodag_rHom:"⟦Ring A; ∀k∈I. Ring (B k); ∀k∈I. (S k) ∈
rHom A (B k) ⟧ ⟹ A_to_prodag A I S B ∈ rHom A (rΠ⇘I⇙ B)"
apply (simp add:rHom_def [of "A" "rΠ⇘I⇙ B"])
apply (rule conjI)
apply (cut_tac A_to_prodag_aHom[of A I B S])
apply (subst aHom_def, simp)
apply (simp add:prodrg_carrier)
apply (simp add:aHom_def)
apply (simp add:prodrg_def)
apply (cut_tac prodag_pOp[of I B], simp)
apply (rule ballI, simp add:Ring.ring_is_ag,
simp add:Ring.ring_is_ag,
rule ballI, simp add:Ring.ring_is_ag)
apply (rule ballI)
apply (simp add:rHom_def)
apply (rule conjI)
apply (rule ballI)+
apply (frule_tac x = x and y = y in Ring.ring_tOp_closed[of A], assumption+)
apply (frule_tac x = "x ⋅⇩r⇘A⇙ y" in A_to_prodag_mem[of A I B S], assumption+,
frule_tac x = x in A_to_prodag_mem[of A I B S], assumption+,
frule_tac x = y in A_to_prodag_mem[of A I B S], assumption+)
apply (simp add:prodrg_tOp[of I B])
apply (frule_tac X = "A_to_prodag A I S B x " and Y = "A_to_prodag A I S B y" in prod_tOp_mem[of I B], assumption+)
apply (cut_tac X = "A_to_prodag A I S B (x ⋅⇩r⇘A⇙ y)" and Y = "prod_tOp I B (A_to_prodag A I S B x) (A_to_prodag A I S B y)" in carr_prodag_mem_eq[of I B])
apply (rule ballI, simp add:Ring.ring_is_ag) apply assumption+
apply (rule ballI, simp add:prod_tOp_def A_to_prodag_def)
apply (frule_tac x = l in bspec, assumption,
thin_tac "∀k∈I. Ring (B k)",
frule_tac x = l in bspec, assumption,
thin_tac "∀k∈I. S k ∈ rHom A (B k)")
apply (simp add:rHom_tOp) apply simp
apply (simp add:prodrg_one[of I B])
apply (frule prod_one_func[of I B])
apply (frule Ring.ring_one[of A],
frule_tac x = "1⇩r⇘A⇙" in A_to_prodag_mem[of A I B S], assumption+)
apply (cut_tac X = "A_to_prodag A I S B 1⇩r⇘A⇙" and Y = "prod_one I B" in
carr_prodag_mem_eq[of I B])
apply (rule ballI, simp add:Ring.ring_is_ag)
apply assumption+
apply (rule ballI)
apply (subst A_to_prodag_def, simp add:prod_one_def)
apply (frule_tac x = l in bspec, assumption,
thin_tac "∀k∈I. Ring (B k)",
frule_tac x = l in bspec, assumption,
thin_tac "∀k∈I. S k ∈ rHom A (B k)")
apply (simp add:rHom_one)
apply assumption
done
lemma ac_fProd_ProdTr1:"∀k ≤ (Suc n). Ring (B k) ⟹
ag_setfunc n B (Suc 0) (compose {0::nat} B (slide (Suc n)))
(carr_prodag {i. i ≤ n} B) (carr_prodag {0}
(compose {0} B (slide (Suc n)))) ⊆ carr_prodag {i. i ≤ (Suc n)} B"
supply [[simproc del: defined_all]]
apply (rule subsetI)
apply (simp add:ag_setfunc_def)
apply (erule exE, erule conjE, erule exE, erule conjE)
apply (simp,
thin_tac "x =
augm_func n g (Un_carrier {j. j ≤ n} B) (Suc 0) h
(Un_carrier {0} (compose {0} B (slide (Suc n))))")
apply (simp add:carr_prodag_def [of "{j. j ≤ (Suc n)}" "B"])
apply (rule conjI)
apply (simp add:augm_func_def)
apply (rule conjI)
apply (simp add:Pi_def) apply (rule allI) apply (rule impI)
apply (simp add:augm_func_def)
apply (case_tac "x ≤ n")
apply simp apply (simp add:carr_prodag_def)
apply (erule conjE)+ apply (frule_tac x = x in mem_of_Nset [of _ "n"])
apply (frule_tac f = g and x = x in funcset_mem[of _ "{j. j ≤ n}"
"Un_carrier {j. j ≤ n} B"], assumption+)
apply (simp add:Un_carrier_def,
erule exE, erule conjE, erule exE, simp, erule conjE,
frule_tac x = i and y = n and z = "Suc n" in le_less_trans,
simp,
frule_tac x = i and y = "Suc n" in less_imp_le, blast)
apply (simp add:sliden_def)
apply (simp add:carr_prodag_def Un_carrier_def, (erule conjE)+)
apply (simp add:compose_def slide_def)
apply (cut_tac n_in_Nsetn[of "Suc n"], blast)
apply (rule allI, rule impI)
apply (simp add:augm_func_def)
apply (case_tac "i ≤ n", simp)
apply (simp add:carr_prodag_def [of "{i. i ≤ n}" _])
apply simp apply (thin_tac "g ∈ carr_prodag {i. i ≤ n} B")
apply (simp add: not_less [symmetric, of _ n],
frule_tac n = i in Suc_leI[of n],
frule_tac m = i and n = "Suc n" in le_antisym, assumption+, simp)
apply (simp add:carr_prodag_def compose_def slide_def sliden_def)
done
lemma ac_fProd_Prod:"∀k ≤ n. Ring (B k) ⟹
ac_fProd_Rg n B = carr_prodag {j. j ≤ n} B"
apply (case_tac "n = 0")
apply simp
apply (subgoal_tac "∃m. n = Suc m")
apply (subgoal_tac "∀m. n = Suc m ⟶
ac_fProd_Rg n B = carr_prodag {j. j ≤ n} B")
apply blast apply (thin_tac "∃m. n = Suc m")
apply (rule allI, rule impI) apply (simp, thin_tac "n = Suc m")
apply (rule equalityI)
apply (simp add:ac_fProd_ProdTr1)
apply (rule subsetI)
apply (rename_tac m f)
apply (frule augm_funcTr, assumption+)
apply (simp add:ag_setfunc_def)
apply (subgoal_tac "(restrict f {j. j ≤ m}) ∈ carr_prodag {j. j ≤ m} B")
apply (subgoal_tac "(λx∈{0::nat}. f (Suc (x + m))) ∈ carr_prodag {0}
(compose {0} B (slide (Suc m)))")
apply blast
apply (thin_tac "f =
augm_func m (restrict f {i. i ≤ m}) (Un_carrier {i. i ≤ m} B)
(Suc 0) (λx∈{0}. f (Suc (x + m)))
(Un_carrier {0} (compose {0} B (slide (Suc m))))")
apply (simp add:carr_prodag_def)
apply (rule conjI)
apply (simp add:Pi_def restrict_def)
apply (simp add:Un_carrier_def compose_def slide_def)
apply (simp add:compose_def slide_def)
apply (thin_tac "f =
augm_func m (restrict f {i. i ≤ m}) (Un_carrier {i. i ≤ m} B)
(Suc 0) (λx∈{0}. f (Suc (x + m)))
(Un_carrier {0} (compose {0} B (slide (Suc m))))")
apply (simp add:carr_prodag_def)
apply (simp add:Un_carrier_def)
apply (simp add:Pi_def)
apply (rule allI) apply (rule impI)
apply (erule conjE)+
apply (rotate_tac 1)
apply (frule_tac a = x in forall_spec, simp)
apply (erule exE,
thin_tac "∀x≤Suc m. ∃xa. (∃i≤Suc m. xa = carrier (B i)) ∧ f x ∈ xa")
apply (frule_tac a = x in forall_spec, simp)
apply blast
apply (cut_tac t = n in Suc_pred[THEN sym], simp)
apply blast
done
text‹A direct product of a finite number of rings defined with
‹ac_fProd_Rg› is equal to that defined by using ‹carr_prodag›.›
definition
fprodrg :: "[nat, nat ⇒ ('a, 'more) Ring_scheme] ⇒
⦇carrier:: (nat ⇒ 'a) set, pop::[(nat ⇒ 'a), (nat ⇒ 'a)]
⇒ (nat ⇒ 'a), mop:: (nat ⇒ 'a) ⇒ (nat ⇒ 'a), zero::(nat ⇒ 'a),
tp :: [(nat ⇒ 'a), (nat ⇒ 'a)] ⇒ (nat ⇒ 'a), un :: (nat ⇒ 'a) ⦈" where
"fprodrg n B = ⦇ carrier = ac_fProd_Rg n B,
pop = λf. λg. prod_pOp {i. i ≤ n} B f g, mop = λf. prod_mOp {i. i ≤ n} B f,
zero = prod_zero {i. i ≤ n} B, tp = λf. λg. prod_tOp {i. i ≤ n} B f g,
un = prod_one {i. i ≤ n} B ⦈"
definition
fPRoject ::"[nat, nat ⇒ ('a, 'more) Ring_scheme, nat]
⇒ (nat ⇒ 'a) ⇒ 'a" where
"fPRoject n B x = (λf∈ac_fProd_Rg n B. f x)"
lemma fprodrg_ring:"∀k ≤ n. Ring (B k) ⟹ Ring (fprodrg n B)"
apply (simp add:fprodrg_def)
apply (frule ac_fProd_Prod)
apply simp
apply (fold prodrg_def)
apply (simp add:prodrg_ring)
done
section "Chinese remainder theorem"
lemma Chinese_remTr1:"⟦Ring A; ∀k ≤ (n::nat). ideal A (J k);
∀k ≤ n. B k = qring A (J k); ∀k ≤ n. S k = pj A (J k) ⟧ ⟹
ker⇘A,(rΠ⇘{j. j ≤ n}⇙ B)⇙ (A_to_prodag A {j. j ≤ n} S B) =
⋂ {I. ∃k∈{j. j ≤ n}. I = (J k)}"
apply (rule equalityI)
apply (rule subsetI)
apply (simp add:ker_def)
apply (rule allI, rule impI)
apply (rename_tac a K, erule conjE)
apply (simp add:prodrg_def, simp add:A_to_prodag_def prod_one_def)
apply (erule exE, erule conjE)
apply (subgoal_tac "(λk∈{j. j ≤ n}. S k a) k = (λx∈{j. j ≤ n}. 𝟬⇘B x⇙) k")
apply (thin_tac "(λk∈{j. j ≤ n}. S k a) = prod_zero {j. j ≤ n} B")
apply simp apply (frule_tac I = "J k" in Ring.qring_zero [of "A"])
apply simp
apply (frule_tac I = "J k" and x = a in pj_mem [of "A"]) apply simp
apply assumption apply simp
apply (frule_tac I = "J k" and a = a in Ring.a_in_ar_coset [of "A"])
apply simp apply assumption apply simp
apply (simp add:prod_zero_def)
apply (rule subsetI)
apply (simp add:CollectI ker_def)
apply (cut_tac Nset_inc_0[of n])
apply (frule_tac a = "J 0" in forall_spec, blast)
apply (frule_tac x = 0 in spec, simp)
apply (frule_tac h = x in Ring.ideal_subset [of "A" "J 0"], simp+)
apply (thin_tac "x ∈ J 0")
apply (simp add:A_to_prodag_def prodrg_def)
apply (simp add:prod_zero_def)
apply (rule funcset_eq [of _ "{j. j ≤ n}"])
apply (simp add:extensional_def restrict_def)+
apply (rule allI, rule impI)
apply (simp add:Ring.qring_zero)
apply (frule_tac a = xa in forall_spec, assumption,
thin_tac "∀k ≤ n. ideal A (J k)")
apply (subst pj_mem [of "A"], assumption+)
apply (frule_tac I = "J xa" and a = x in Ring.a_in_ar_coset [of "A"],
assumption+)
apply (rule_tac a = x and I = "J xa" in Ring.Qring_fix1 [of "A"], assumption+)
apply blast
done
lemma (in Ring) coprime_prod_int2Tr:
"((∀k ≤ (Suc n). ideal R (J k)) ∧
(∀i ≤ (Suc n). ∀j ≤ (Suc n). (i ≠j ⟶ coprime_ideals R (J i) (J j))))
⟶ (⋂ {I. ∃k ≤ (Suc n). I = (J k)} = ideal_n_prod R (Suc n) J)"
apply (induct_tac n)
apply (rule impI)
apply (erule conjE)
apply (simp add:Nset_1)
apply (subst coprime_int_prod [THEN sym, of "J 0" "J (Suc 0)"], simp+)
apply (rule equalityI, rule subsetI)
apply (simp, blast)
apply (rule subsetI, simp, rule allI, rule impI, erule exE, (erule conjE)+)
apply simp
apply (simp add:Nset_1_1, erule disjE, (simp del:ideal_n_prodSn)+)
apply (rule impI)
apply (subgoal_tac "⋂{I. ∃k ≤ (Suc (Suc n)). I = J k} =
(⋂{I. ∃k ≤ (Suc n). I = J k}) ∩ (J (Suc (Suc n)))")
apply (subgoal_tac "⋂{I. ∃k ≤ (Suc n). I = J k} = (iΠ⇘R,(Suc n)⇙ J)")
apply (frule_tac n = "Suc n" and J = J in coprime_n_idealsTr4)
apply (simp del:ideal_n_prodSn)
apply (subst coprime_int_prod)
apply (rule n_prod_ideal)
apply (rule allI, simp, simp, assumption)
apply simp apply (cut_tac n = "Suc n" in Nsetn_sub_mem1)
apply simp
apply (thin_tac "(∀k≤Suc n. ideal R (J k)) ∧
(∀i≤Suc n. ∀j≤Suc n. i ≠ j ⟶ coprime_ideals R (J i) (J j)) ⟶
⋂{I. ∃k≤Suc n. I = J k} = iΠ⇘R,Suc n⇙ J",
thin_tac "(∀k≤Suc (Suc n). ideal R (J k)) ∧
(∀i≤Suc (Suc n).
∀j≤Suc (Suc n). i ≠ j ⟶ coprime_ideals R (J i) (J j))")
apply (rule equalityI, rule subsetI, simp)
apply (rule conjI,
rule allI, rule impI, erule exE, erule conjE, simp,
frule_tac a = xa in forall_spec,
frule_tac x = k and y = "Suc n" and z = "Suc (Suc n)" in
le_less_trans, simp,
frule_tac x = k and y = "Suc (Suc n)" in less_imp_le, blast)
apply simp
apply (frule_tac a = "J (Suc (Suc n))" in forall_spec,
cut_tac n = "Suc (Suc n)" in le_refl, blast, simp)
apply (rule subsetI, simp, rule allI, rule impI)
apply (erule exE, erule conjE)
apply (erule conjE,
case_tac "k = Suc (Suc n)", simp)
apply (frule_tac m = k and n = "Suc (Suc n)" in noteq_le_less, assumption,
thin_tac "k ≤ Suc (Suc n)")
apply (frule_tac x = k and n = "Suc n" in Suc_less_le)
apply (frule_tac a = xa in forall_spec,
blast,
thin_tac "∀xa. (∃k≤Suc n. xa = J k) ⟶ x ∈ xa",
simp)
done
lemma (in Ring) coprime_prod_int2:"⟦ ∀k ≤ (Suc n). ideal R (J k);
∀i ≤ (Suc n). ∀j ≤ (Suc n). (i ≠j ⟶ coprime_ideals R (J i) (J j))⟧
⟹ (⋂ {I. ∃k ≤ (Suc n). I = (J k)} = ideal_n_prod R (Suc n) J)"
apply (simp add:coprime_prod_int2Tr)
done
lemma (in Ring) coprime_2_n:"⟦ideal R A; ideal R B⟧ ⟹
(qring R A) ⨁⇩r (qring R B) = rΠ⇘{j. j ≤ (Suc 0)}⇙ (prodB1 (qring R A) (qring R B))"
apply (simp add:Prod2Rg_def Nset_1)
done
text‹In this and following lemmata, ideals A and B are of type
‹('a, 'more) RingType_scheme›. Don't try
‹(rΠ⇩(Nset n) B) ⨁⇩r B (Suc n)››
lemma (in Ring) A_to_prodag2_hom:"⟦ideal R A; ideal R B; S 0 = pj R A;
S (Suc 0) = pj R B⟧ ⟹
A_to_prodag R {j. j ≤ (Suc 0)} S (prodB1 (qring R A) (qring R B)) ∈
rHom R (qring R A ⨁⇩r qring R B)"
apply (subst coprime_2_n [of "A" "B"], assumption+)
apply (rule A_to_prodag_rHom, rule Ring_axioms)
apply (rule ballI)
apply (case_tac "k = 0")
apply (simp add:prodB1_def)
apply (simp add:qring_ring)
apply (simp)
apply (frule_tac n = k in Suc_leI[of 0], thin_tac "0 < k")
apply (frule_tac m = k and n = "Suc 0" in le_antisym, assumption)
apply (simp, simp add:prodB1_def, simp add:qring_ring)
apply (rule ballI)
apply (simp add:Nset_1)
apply (erule disjE)
apply (simp add:prodB1_def, rule pj_Hom, rule Ring_axioms, assumption)
apply (simp, simp add:prodB1_def)
apply (rule pj_Hom, rule Ring_axioms, assumption+)
done
lemma (in Ring) A2coprime_rsurjecTr:"⟦ideal R A; ideal R B; S 0 = pj R A;
S (Suc 0) = pj R B⟧ ⟹
(carrier (qring R A ⨁⇩r qring R B)) =
carr_prodag {j. j ≤ (Suc 0)} (prodB1 (qring R A) (qring R B))"
apply (simp add:Prod2Rg_def prodrg_def Nset_1)
done
lemma (in Ring) A2coprime_rsurjec:"⟦ideal R A; ideal R B; S 0 = pj R A;
S (Suc 0) = pj R B; coprime_ideals R A B⟧ ⟹
surjec⇘R,((qring R A) ⨁⇩r (qring R B))⇙
(A_to_prodag R {j. j≤(Suc 0)} S (prodB1 (qring R A) (qring R B)))"
apply (frule A_to_prodag2_hom [of "A" "B" "S"], assumption+)
apply (simp add:surjec_def)
apply (rule conjI,
simp add:rHom_def)
apply (rule surj_to_test[of "A_to_prodag R {j. j ≤ (Suc 0)} S
(prodB1 (qring R A) (qring R B))" "carrier R"
"carrier (qring R A ⨁⇩r qring R B)"])
apply (simp add:rHom_def aHom_def)
apply (rule ballI)
apply (frule rHom_func[of "A_to_prodag R {j. j ≤ (Suc 0)} S
(prodB1 (R /⇩r A) (R /⇩r B))" R],
thin_tac "A_to_prodag R {j. j ≤ (Suc 0)} S (prodB1 (R /⇩r A) (R /⇩r B))
∈ rHom R (R /⇩r A ⨁⇩r R /⇩r B)")
apply (simp add:A2coprime_rsurjecTr[of A B S])
apply (simp add:Nset_1)
apply (frule_tac X = "b 0" and Y = "b (Suc 0)" in
coprime_surjTr[of A B], assumption+)
apply (simp add:carr_prodag_def prodB1_def,
simp add:carr_prodag_def prodB1_def)
apply (erule bexE)
apply (frule_tac x = r in funcset_mem[of "A_to_prodag R {0, Suc 0} S
(prodB1 (R /⇩r A) (R /⇩r B))"
"carrier R" "carr_prodag {0, Suc 0} (prodB1 (R /⇩r A) (R /⇩r B))"],
assumption+)
apply (cut_tac X = "A_to_prodag R {0, Suc 0} S (prodB1 (R /⇩r A) (R /⇩r B)) r"
and Y = b in
carr_prodag_mem_eq[of "{0, Suc 0}" "prodB1 (R /⇩r A) (R /⇩r B)"])
apply (rule ballI)
apply (simp, erule disjE)
apply (simp add:prodB1_def, fold prodB1_def,
simp add:qring_ring Ring.ring_is_ag)
apply (simp add:prodB1_def, fold prodB1_def,
simp add:qring_ring Ring.ring_is_ag)
apply assumption+
apply (rule ballI, simp, erule disjE, simp)
apply (subst A_to_prodag_def, simp)
apply (subst A_to_prodag_def, simp)
apply blast
done
lemma (in Ring) prod2_n_Tr1:"⟦∀k ≤ (Suc 0). ideal R (J k);
∀k ≤ (Suc 0). B k = qring R (J k);
∀k ≤ (Suc 0). S k = pj R (J k) ⟧ ⟹
A_to_prodag R {j. j ≤ (Suc 0)} S
(prodB1 (qring R (J 0)) (qring R (J (Suc 0)))) =
A_to_prodag R {j. j ≤ (Suc 0)} S B"
apply (subgoal_tac "∀k ≤ (Suc 0). (prodB1 (qring R (J 0)) (qring R (J (Suc 0)))) k = B k")
apply (simp add:A_to_prodag_def)
apply (rule allI, rule impI)
apply (case_tac "k = 0", simp add:Nset_1_1)
apply (simp add:prodB1_def)
apply (simp add:Nset_1_1)
apply (simp add:prodB1_def)
done
lemma (in aGroup) restrict_prod_Suc:"⟦∀k ≤ (Suc (Suc n)). ideal R (J k);
∀k ≤ (Suc (Suc n)). B k = R /⇩r J k;
∀k ≤ (Suc (Suc n)). S k = pj R (J k);
f ∈ carrier (rΠ⇘{j. j ≤ (Suc (Suc n))}⇙ B)⟧ ⟹
restrict f {j. j ≤ (Suc n)} ∈ carrier (rΠ⇘{j. j ≤ (Suc n)}⇙ B)"
apply (cut_tac Nsetn_sub_mem1[of "Suc n"])
apply (simp add:prodrg_def)
apply (simp add:carr_prodag_def, (erule conjE)+)
apply (simp add:Un_carrier_def)
apply (rule Pi_I)
apply simp
apply (frule_tac x = x in funcset_mem[of f "{j. j ≤ (Suc (Suc n))}"
"⋃{X. ∃i ≤ (Suc (Suc n)). X = carrier (R /⇩r J i)}"],
simp)
apply simp
apply (erule exE, erule conjE, erule exE, erule conjE, simp)
apply (rotate_tac -5)
apply (frule_tac a = x in forall_spec) apply simp
apply blast
done
lemma (in Ring) Chinese_remTr2:"(∀k ≤ (Suc n). ideal R (J k)) ∧
(∀k≤(Suc n). B k = qring R (J k)) ∧
(∀k≤(Suc n). S k = pj R (J k)) ∧
(∀i≤(Suc n). ∀j≤ (Suc n). (i ≠j ⟶
coprime_ideals R (J i) (J j))) ⟶
surjec⇘R,(rΠ⇘{j. j≤ (Suc n)}⇙ B)⇙
(A_to_prodag R {j. j≤(Suc n)} S B)"
apply (cut_tac Ring)
apply (induct_tac n)
apply (rule impI) apply (erule conjE)+
apply (frule A_to_prodag_rHom [of R "{j. j ≤ Suc 0}" "B" "S"])
apply (rule ballI, simp add:Ring.qring_ring)
apply (rule ballI, simp add:pj_Hom)
apply (frule rHom_func[of "A_to_prodag R {j. j ≤ (Suc 0)} S B" R
"rΠ⇘{j. j ≤ (Suc 0)}⇙ B"])
apply (simp add:surjec_def)
apply (rule conjI)
apply (simp add:rHom_def)
apply (rule surj_to_test, assumption+)
apply (rule ballI) apply (simp add:Nset_1)
apply (cut_tac coprime_elems [of "J 0" "J (Suc 0)"])
apply (rename_tac f)
apply (erule bexE, erule bexE)
apply (simp add:prodrg_def) apply (fold prodrg_def)
apply (cut_tac X = "f 0" and Y = "f (Suc 0)" in
coprime_surjTr[of "J 0" "J (Suc 0)"], simp+)
apply (simp add:carr_prodag_def, simp add:carr_prodag_def)
apply (erule bexE, (erule conjE)+)
apply (frule_tac x = r in funcset_mem[of "A_to_prodag R {0, Suc 0} S B"
"carrier R" "carr_prodag {0, Suc 0} B"], assumption+)
apply (cut_tac X = "A_to_prodag R {0, Suc 0} S B r" and Y = f in
carr_prodag_mem_eq[of "{0, Suc 0}" B])
apply (rule ballI, simp, erule disjE, simp add:qring_ring
Ring.ring_is_ag,
simp add:Ring.qring_ring Ring.ring_is_ag)
apply assumption+
apply (rule ballI, simp, erule disjE, simp)
apply (simp add:A_to_prodag_def, simp add:A_to_prodag_def)
apply blast apply simp+
apply (rule impI, (erule conjE)+)
apply (cut_tac n = "Suc n" in Nsetn_sub_mem1)
apply (subgoal_tac "∀k∈{i. i ≤ Suc (Suc n)}. Ring (B k)")
apply (frule_tac I = "{i. i ≤ Suc (Suc n)}" in A_to_prodag_rHom [of "R" _ "B" "S"])
apply assumption
apply (rule ballI)
apply (simp add:pj_Hom)
apply simp
apply (subst surjec_def, rule conjI,
simp add:rHom_def)
apply (cut_tac n = "Suc n" in coprime_n_idealsTr4[of _ J])
apply blast
apply (frule_tac f = "A_to_prodag R {j. j ≤ (Suc (Suc n))} S B" and
A = R in rHom_func)
apply (rule_tac f = "A_to_prodag R {j. j ≤ (Suc (Suc n))} S B" and
A = "carrier R" and B = "carrier (rΠ⇘{j. j ≤ (Suc (Suc n))}⇙ B)" in
surj_to_test, assumption+)
apply (rule ballI)
apply (cut_tac n = "Suc n" in n_prod_ideal[of _ J])
apply (rule allI, simp)
apply (frule_tac A = "iΠ⇘R,(Suc n)⇙ J" and B = "J (Suc (Suc n))" in
coprime_elems,
cut_tac n = "Suc (Suc n)" in n_in_Nsetn,
blast, assumption)
apply (erule bexE, erule bexE) apply (rename_tac n f a b)
apply (thin_tac " coprime_ideals R (iΠ⇘R,(Suc n)⇙ J) (J (Suc (Suc n)))")
apply (cut_tac n = "Suc n" and a = a and J = J in ele_n_prod,
rule allI, simp, assumption)
apply (cut_tac ring_is_ag)
apply (frule_tac n = n and f = f in aGroup.restrict_prod_Suc[of R _ R J B S],
assumption+)
apply (frule_tac S = "rΠ⇘{j. j ≤ (Suc n)}⇙ B" and
f = "A_to_prodag R {j. j ≤ (Suc n)} S B" in surjec_surj_to[of R])
apply (frule_tac f = "A_to_prodag R {j. j ≤ (Suc n)} S B" and A = "carrier R"
and B = "carrier (rΠ⇘{j. j ≤ (Suc n)}⇙ B)" and
b = "restrict f {j. j ≤ (Suc n)}" in surj_to_el2, assumption)
apply (erule bexE, rename_tac n f a b u)
apply (cut_tac n = "Suc (Suc n)" in n_in_Nsetn,
frule_tac f = f and I = "{j. j ≤ (Suc (Suc n))}" and A = B and
i = "Suc (Suc n)" in prodrg_component, assumption)
apply simp
apply (frule_tac J = "J (Suc (Suc n))" and X = "f (Suc (Suc n))" in
pj_surj_to[of R], simp, assumption)
apply (erule bexE, rename_tac n f a b u v)
apply (frule_tac a = "Suc (Suc n)" in forall_spec, simp,
frule_tac I = "J (Suc (Suc n))" and h = b in Ring.ideal_subset[of R],
assumption+,
cut_tac I = "iΠ⇘R,n⇙ J ♢⇩r⇘R⇙ J (Suc n)" and h = a in
Ring.ideal_subset[of R], assumption+)
apply (frule_tac x = b and y = u in Ring.ring_tOp_closed[of R], assumption+,
frule_tac x = a and y = v in Ring.ring_tOp_closed[of R], assumption+,
frule Ring.ring_is_ag[of R],
frule_tac x = "b ⋅⇩r⇘R⇙ u" and y = "a ⋅⇩r⇘R⇙ v" in aGroup.ag_pOp_closed[of R],
assumption+)
apply (frule_tac f = "A_to_prodag R {j. j ≤ (Suc (Suc n))} S B" and
A = "carrier R" and B = "carrier (rΠ⇘{j. j ≤ (Suc (Suc n))}⇙ B)" and
x = "b ⋅⇩r⇘R⇙ u ±⇘R⇙ a ⋅⇩r⇘R⇙ v" in funcset_mem, assumption+)
apply (frule_tac f = "A_to_prodag R {j. j ≤ (Suc (Suc n))} S B
(b ⋅⇩r⇘R⇙ u ±⇘R⇙ a ⋅⇩r⇘R⇙ v)" and I = "{j. j ≤ (Suc (Suc n))}"
and g = f in carr_prodrg_mem_eq, simp)
apply (rule ballI)
apply (subst A_to_prodag_def, simp)
apply (frule_tac I = "J i" in pj_Hom[of R], simp)
apply (simp add: rHom_add)
apply (frule_tac a = i in forall_spec, assumption,
thin_tac "∀k ≤ (Suc (Suc n)). ideal R (J k)",
frule_tac I = "J i" in Ring.qring_ring[of R], assumption,
thin_tac "∀k ≤ (Suc (Suc n)). Ring (R /⇩r J k)",
frule_tac R = "R /⇩r (J i)" and x = b and y = u and f = "pj R (J i)" in
rHom_tOp[of R], assumption+, simp,
thin_tac "pj R (J i) (b ⋅⇩r⇘R⇙ u) = pj R (J i) b ⋅⇩r⇘R /⇩r J i⇙ pj R (J i) u",
frule_tac R = "R /⇩r (J i)" and x = a and y = v and f = "pj R (J i)" in
rHom_tOp[of R], simp add:Ring.qring_ring, assumption+)
apply (frule_tac f = "pj R (J i)" and R = "R /⇩r J i" and a = v in
rHom_mem[of _ R], assumption+,
frule_tac f = "pj R (J i)" and R = "R /⇩r J i" and a = u in
rHom_mem[of _ R], assumption+,
frule_tac f = "pj R (J i)" and R = "R /⇩r J i" and a = b in
rHom_mem[of _ R], assumption+,
frule_tac f = "pj R (J i)" and R = "R /⇩r J i" and a = a in
rHom_mem[of _ R], assumption+)
apply (frule_tac R = "R /⇩r J i" in Ring.ring_is_ag)
apply (case_tac "i ≤ (Suc n)")
apply (frule_tac I1 = "J i" and x1 = a in pj_zero[THEN sym, of R ],
assumption+, simp,
thin_tac "pj R (J i) (a ⋅⇩r⇘R⇙ v) = 𝟬⇘R /⇩r J i⇙ ⋅⇩r⇘R /⇩r J i⇙ pj R (J i) v")
apply (simp add:Ring.ring_times_0_x)
apply (frule_tac f = "pj R (J i)" and A = R and R = "R /⇩r J i" and
x = a and y = b in rHom_add, assumption+, simp,
thin_tac "A_to_prodag R {j. j ≤ Suc (Suc n)} S B
(b ⋅⇩r u) ±⇘rΠ⇘{i. i ≤ Suc (Suc n)}⇙ B⇙
A_to_prodag R {j. j ≤ Suc (Suc n)} S B (a ⋅⇩r v)
∈ carrier (rΠ⇘{j. j ≤ Suc (Suc n)}⇙ B)")
apply (simp add:aGroup.ag_l_zero)
apply (rotate_tac -1, frule sym, thin_tac " pj R (J i) 1⇩r⇘R⇙ = pj R (J i) b",
simp add:rHom_one) apply (simp add:Ring.ring_l_one)
apply (simp add:aGroup.ag_r_zero)
apply (frule_tac f = "A_to_prodag R {j. j ≤ (Suc n)} S B u" and
g = "restrict f {j. j ≤ (Suc n)}" and x = i in eq_fun_eq_val,
thin_tac "A_to_prodag R {j. j≤(Suc n)} S B u = restrict f {j. j≤(Suc n)}")
apply (simp add:A_to_prodag_def)
apply simp
apply (frule_tac y = i and x = "Suc n" in not_le_imp_less,
frule_tac m = "Suc n" and n = i in Suc_leI,
frule_tac m = i and n = "Suc (Suc n)" in Nat.le_antisym, assumption+,
simp)
apply (frule_tac I1 = "J (Suc (Suc n))" and x1 = b in pj_zero[THEN sym, of
R ], assumption+, simp add:Ring.ring_times_0_x)
apply (frule_tac f = "pj R (J (Suc (Suc n)))" and A = R and
R = "R /⇩r J (Suc (Suc n))" and
x = a and y = b in rHom_add, assumption+, simp)
apply (simp add:aGroup.ag_r_zero)
apply (rotate_tac -1, frule sym,
thin_tac "pj R (J (Suc (Suc n))) 1⇩r⇘R⇙ = pj R (J (Suc (Suc n))) a",
simp add:rHom_one,
simp add:Ring.ring_l_one)
apply (simp add:aGroup.ag_l_zero)
apply blast
apply (rule ballI, simp add:Ring.qring_ring)
done
lemma (in Ring) Chinese_remTr3:"⟦∀k ≤ (Suc n). ideal R (J k);
∀k ≤ (Suc n). B k = qring R (J k); ∀k≤ (Suc n). S k = pj R (J k);
∀i ≤ (Suc n). ∀j ≤ (Suc n). (i ≠j ⟶ coprime_ideals R (J i) (J j))⟧ ⟹
surjec⇘R,(rΠ⇘{j. j ≤ (Suc n)}⇙ B)⇙
(A_to_prodag R {j. j ≤ (Suc n)} S B)"
apply (simp add:Chinese_remTr2 [of "n" "J" "B" "S"])
done
lemma (in Ring) imset:"⟦∀k≤ (Suc n). ideal R (J k)⟧
⟹ {I. ∃k≤ (Suc n). I = J k} = {J k| k. k ∈ {j. j ≤ (Suc n)}}"
apply blast
done
theorem (in Ring) Chinese_remThm:"⟦(∀k ≤ (Suc n). ideal R (J k));
∀k≤(Suc n). B k = qring R (J k); ∀k ≤ (Suc n). S k = pj R (J k);
∀i ≤ (Suc n). ∀j ≤ (Suc n). (i ≠j ⟶ coprime_ideals R (J i) (J j))⟧
⟹ bijec⇘(qring R (⋂ {J k | k. k∈{j. j ≤ (Suc n)}})),(rΠ⇘{j. j ≤ (Suc n)}⇙ B)⇙
((A_to_prodag R {j. j ≤ (Suc n)} S B)°⇘R,(prodrg {j. j ≤ (Suc n)} B)⇙)"
apply (frule Chinese_remTr3, assumption+)
apply (cut_tac I = "{j. j ≤ (Suc n)}" and A = B in prodrg_ring)
apply (rule ballI, simp add:qring_ring)
apply (cut_tac surjec_ind_bijec [of "R" "rΠ⇘{j. j ≤ (Suc n)}⇙ B"
"A_to_prodag R {j. j ≤ (Suc n)} S B"])
apply (cut_tac Ring,
simp add:Chinese_remTr1 [of "R" "Suc n" "J" "B" "S"])
apply (simp add:imset, rule Ring_axioms, assumption+)
apply (rule A_to_prodag_rHom, rule Ring_axioms)
apply (rule ballI)
apply (simp add:qring_ring)
apply (rule ballI, simp, rule pj_Hom, rule Ring_axioms, simp)
apply assumption
done
lemma (in Ring) prod_prime:"⟦ideal R A; ∀k≤(Suc n). prime_ideal R (P k);
∀l≤(Suc n). ¬ (A ⊆ P l);
∀k≤ (Suc n). ∀l≤ (Suc n). k = l ∨ ¬ (P k) ⊆ (P l)⟧ ⟹
∀i ≤ (Suc n). (nprod R (ppa R P A i) n ∈ A ∧
(∀l ∈ {j. j≤(Suc n)} - {i}. nprod R (ppa R P A i) n ∈ P l) ∧
(nprod R (ppa R P A i) n ∉ P i))"
apply (rule allI, rule impI)
apply (rule conjI)
apply (frule_tac i = i in prod_primeTr1[of n P A], assumption+)
apply (frule_tac n = n and f = "ppa R P A i" in ideal_nprod_inc[of A])
apply (rule allI, rule impI)
apply (rotate_tac -2,
frule_tac a = ia in forall_spec, assumption,
thin_tac "∀l ≤ n.
ppa R P A i l ∈ A ∧
ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i",
simp add:ideal_subset)
apply (rotate_tac -1,
frule_tac a = n in forall_spec, simp,
thin_tac "∀l≤ n.
ppa R P A i l ∈ A ∧
ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i",
(erule conjE)+,
blast, assumption)
apply (frule_tac i = i in prod_primeTr1[of n P A], assumption+)
apply (rule conjI)
apply (rule ballI)
apply (frule_tac a = l in forall_spec, simp,
frule_tac I = "P l" in prime_ideal_ideal)
apply (frule_tac n = n and f = "ppa R P A i" and A = "P l" in ideal_nprod_inc)
apply (rule allI) apply (simp add:ppa_mem, simp)
apply (case_tac "l < i",
thin_tac "∀l≤ (Suc n). ¬ A ⊆ P l",
thin_tac "∀k≤ (Suc n). ∀l ≤ (Suc n). k = l ∨ ¬ P k ⊆ P l")
apply (erule conjE,
frule_tac x = l and y = i and z = "Suc n" in less_le_trans,
assumption,
frule_tac x = l and n = n in Suc_less_le)
apply (rotate_tac 2,
frule_tac a = l in forall_spec, assumption,
thin_tac "∀l≤n. ppa R P A i l ∈ A ∧
ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i",
thin_tac "l < Suc n")
apply (simp only:skip_im_Tr1_2, blast)
apply (frule_tac x = l and y = i in leI,
thin_tac "¬ l < i",
cut_tac x = l and A = "{j. j ≤ (Suc n)}" and a = i in in_diff1)
apply simp
apply (erule conjE,
frule not_sym, thin_tac "l ≠ i",
frule_tac x = i and y = l in le_imp_less_or_eq,
erule disjE, thin_tac "i ≤ l",
frule_tac x = i and n = l in less_le_diff)
apply (cut_tac i = i and n = n and x = "l - Suc 0" in skip_im_Tr2_1,
simp, assumption+, simp,
frule_tac x = l and n = n in le_Suc_diff_le)
apply (rotate_tac -7,
frule_tac a = "l - Suc 0" in forall_spec, assumption,
thin_tac "∀l≤n. ppa R P A i l ∈ A ∧
ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i",
simp, (erule conjE)+)
apply blast
apply simp
apply assumption
apply (frule_tac a = i in forall_spec, assumption,
thin_tac "∀k≤ (Suc n). prime_ideal R (P k)")
apply (rule_tac P = "P i" and n = n and f = "ppa R P A i" in
prime_nprod_exc, assumption+)
apply (rule allI, rule impI)
apply (rotate_tac -3,
frule_tac a = ia in forall_spec, assumption,
thin_tac "∀l ≤ n.
ppa R P A i l ∈ A ∧
ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i",
simp add:ideal_subset)
apply (rule allI, rule impI) apply (
rotate_tac 4,
frule_tac a = l in forall_spec, assumption,
thin_tac "∀l≤ n.
ppa R P A i l ∈ A ∧
ppa R P A i l ∈ P (skip i l) ∧ ppa R P A i l ∉ P i",
simp)
done
lemma skip_im1:"⟦i ≤ (Suc n); P ∈ {j. j ≤ (Suc n)} → Collect (prime_ideal R)⟧
⟹
compose {j. j ≤ n} P (skip i) ` {j. j ≤ n} = P ` ({j. j ≤ (Suc n)} - {i})"
apply (cut_tac skip_fun[of i n])
apply (subst setim_cmpfn[of _ _ _ _ "{X. prime_ideal R X}"], assumption+)
apply simp
apply (simp add:skip_fun_im)
done
lemma (in Ring) mutch_aux1:"⟦ideal R A; i ≤ (Suc n);
P ∈ {j. j ≤ (Suc n)} → Collect (prime_ideal R)⟧ ⟹
compose {j. j ≤ n} P (skip i) ∈ {j. j ≤ n} → Collect (prime_ideal R)"
apply (cut_tac skip_fun[of i n])
apply (simp add:composition[of "skip i" "{j. j ≤ n}" "{j. j ≤ (Suc n)}" P
"Collect (prime_ideal R)"])
done
lemma (in Ring) prime_ideal_cont1Tr:"ideal R A ⟹
∀P. ((P ∈ {j. j ≤ (n::nat)} → {X. prime_ideal R X}) ∧
(A ⊆ ⋃ (P ` {j. j ≤ n}))) ⟶ (∃i≤ n. A ⊆ (P i))"
apply (induct_tac n)
apply (rule allI, rule impI)
apply (erule conjE)
apply simp
apply (rule allI, rule impI)
apply (erule conjE)+
apply (case_tac "∃i ≤ (Suc n). ∃j≤ (Suc n). (i ≠ j ∧ P i ⊆ P j)")
apply ((erule exE, erule conjE)+, erule conjE)
apply (frule_tac f = P and n = n and X = "{X. prime_ideal R X}" and
A = A and i = i and j = j in Un_less_Un, assumption+, simp+)
apply (frule mutch_aux1, assumption+)
apply (frule_tac a = "compose {j. j ≤ n} P (skip i)" in forall_spec,
simp, erule exE)
apply (cut_tac i = i and n = n and x = ia in skip_fun_im1,
simp+, erule conjE, simp add:compose_def,blast)
apply (thin_tac "∀P. P ∈ {j. j ≤ n} → {X. prime_ideal R X} ∧
A ⊆ ⋃(P ` {j. j ≤ n}) ⟶
(∃i≤n. A ⊆ P i)",
rule contrapos_pp, simp+)
apply (cut_tac n = n and P = P in prod_prime [of A], assumption)
apply (rule allI, rule impI,
frule_tac f = P and A = "{j. j ≤ (Suc n)}" and B = "{X. prime_ideal R X}"
and x = k in funcset_mem, simp, simp, assumption+)
apply (frule_tac n = "Suc n" and
f = "λi∈{j. j ≤ (Suc n)}. (nprod R (ppa R P A i) n)" in
nsum_ideal_inc[of A], rule allI, rule impI, simp)
apply (subgoal_tac "(nsum R (λi∈{j. j ≤ (Suc n)}. nprod R (ppa R P A i) n)
(Suc n)) ∉ (⋃x∈{j. j ≤ (Suc n)}. P x)")
apply blast
apply (simp del:nsum_suc)
apply (rule allI, rule impI) apply (rename_tac n P l)
apply (frule_tac f = P and A = "{j. j ≤ (Suc n)}" and
B = "{X. prime_ideal R X}"
and x = l in funcset_mem, simp, simp del:nsum_suc,
frule_tac I = "P l" in prime_ideal_ideal)
apply (rule_tac A = "P l" and n = "Suc n" and
f = "λi∈{j. j ≤ (Suc n)}. (nprod R (ppa R P A i) n)" in
nsum_ideal_exc, simp+, rule allI, simp add:ideal_subset)
apply (rule contrapos_pp, simp+)
apply (rotate_tac -1,
frule_tac a = l in forall_spec, simp,
thin_tac "∀j≤Suc n.
(∃la∈{i. i ≤ Suc n} - {j}. eΠ⇘R,n⇙ ppa R P A la ∉ P l) ∨
eΠ⇘R,n⇙ ppa R P A j ∈ P l",
thin_tac "∀i≤Suc n. ∀j≤Suc n. i = j ∨ ¬ P i ⊆ P j",
thin_tac "∀i≤Suc n. ¬ A ⊆ P i")
apply (erule disjE, erule bexE)
apply (frule_tac a = la in forall_spec, simp,
thin_tac "∀i≤Suc n.
eΠ⇘R,n⇙ ppa R P A i ∈ A ∧
(∀l∈{j. j ≤ Suc n} - {i}. eΠ⇘R,n⇙ ppa R P A i ∈ P l) ∧
eΠ⇘R,n⇙ ppa R P A i ∉ P i",
(erule conjE)+)
apply blast
apply blast
done
lemma (in Ring) prime_ideal_cont1:"⟦ideal R A; ∀i ≤ (n::nat).
prime_ideal R (P i); A ⊆ ⋃ {X. (∃i ≤ n. X = (P i))} ⟧ ⟹
∃i≤ n. A⊆(P i)"
apply (frule prime_ideal_cont1Tr[of A n])
apply (frule_tac a = P in forall_spec,
thin_tac "∀P. P ∈ {j. j ≤ n} → {X. prime_ideal R X} ∧
A ⊆ ⋃(P ` {j. j ≤ n}) ⟶ (∃i≤n. A ⊆ P i)")
apply (rule conjI, simp,
rule subsetI, simp,
frule_tac c = x in subsetD[of A "⋃{X. ∃i≤n. X = P i}"], assumption+,
simp, blast)
apply assumption
done
lemma (in Ring) prod_n_ideal_contTr0:"(∀l≤ n. ideal R (J l)) ⟶
iΠ⇘R,n⇙ J ⊆ ⋂{X. (∃k≤n. X = (J k))}"
apply (induct_tac n)
apply simp
apply (rule impI)
apply (cut_tac n = n in Nsetn_sub_mem1,
simp)
apply (cut_tac n = n in n_prod_ideal[of _ J], simp)
apply (cut_tac I = "iΠ⇘R,n⇙ J" and J = "J (Suc n)" in
ideal_prod_sub_Int) apply assumption apply simp
apply (frule_tac A = "iΠ⇘R,n⇙ J ♢⇩r⇘R⇙ J (Suc n)" and
B = "iΠ⇘R,n⇙ J ∩ J (Suc n)" and
C = "⋂{X. ∃k≤ n. X = J k} ∩ J (Suc n)" in subset_trans)
apply (rule_tac A = "iΠ⇘R,n⇙ J" and B = "⋂{X. ∃k≤n. X = J k}" and
C = "J (Suc n)" in inter_mono, assumption)
apply (rule_tac A = "iΠ⇘R,n⇙ J ♢⇩r J (Suc n)" and
B = "⋂{X. ∃k≤ n. X = J k} ∩ J (Suc n)" and
C = "⋂{X. ∃k≤ (Suc n). X = J k}" in subset_trans,
assumption)
apply (rule subsetI)
apply simp
apply (rule allI, rule impI)
apply (erule exE, (erule conjE)+)
apply (case_tac "k = Suc n", simp)
apply (frule_tac m = k and n = "Suc n" in noteq_le_less, assumption)
apply (thin_tac " k ≤ Suc n")
apply (frule_tac x = k and n = "Suc n" in less_le_diff,
thin_tac "k < Suc n", simp, thin_tac "∀l≤Suc n. ideal R (J l)")
apply (frule_tac a = xa in forall_spec, blast,
thin_tac "∀xa. (∃k≤n. xa = J k) ⟶ x ∈ xa",
simp)
done
lemma (in Ring) prod_n_ideal_contTr:"⟦∀l≤ n. ideal R (J l)⟧ ⟹
iΠ⇘R,n⇙ J ⊆ ⋂{X. (∃k ≤ n. X = (J k))}"
apply (simp add:prod_n_ideal_contTr0)
done
lemma (in Ring) prod_n_ideal_cont2:"⟦∀l≤ (n::nat). ideal R (J l);
prime_ideal R P; ⋂{X. (∃k≤ n. X = (J k))} ⊆ P⟧ ⟹
∃l≤ n. (J l) ⊆ P"
apply (frule prod_n_ideal_contTr[of n J])
apply (frule_tac A = "iΠ⇘R,n⇙ J" and B = "⋂{X. ∃k≤ n. X = J k}" and C = P
in subset_trans, assumption+)
apply (thin_tac "⋂{X. ∃k≤ n. X = J k} ⊆ P",
thin_tac "iΠ⇘R,n⇙ J ⊆ ⋂{X. ∃k≤ n. X = J k}")
apply (simp add:ideal_n_prod_prime)
done
lemma (in Ring) prod_n_ideal_cont3:"⟦∀l≤ (n::nat). ideal R (J l);
prime_ideal R P; ⋂{X. (∃k≤ n. X = (J k))} = P⟧ ⟹
∃l≤ n. (J l) = P"
apply (frule prod_n_ideal_cont2[of n J P], assumption+)
apply simp
apply (erule exE)
apply (subgoal_tac "J l = P")
apply blast
apply (rule equalityI, simp)
apply (rule subsetI)
apply (rotate_tac -4, frule sym, thin_tac "⋂{X. ∃k≤ n. X = J k} = P")
apply simp
apply blast
done
definition
ideal_quotient :: "[_ , 'a set, 'a set] ⇒ 'a set" where
"ideal_quotient R A B = {x| x. x ∈ carrier R ∧ (∀b∈B. x ⋅⇩r⇘R⇙ b ∈ A)}"
abbreviation
IDEALQT (‹(3_/ †⇩_/ _)› [82,82,83]82) where
"A †⇩R B == ideal_quotient R A B"
lemma (in Ring) ideal_quotient_is_ideal:
"⟦ideal R A; ideal R B⟧ ⟹ ideal R (ideal_quotient R A B)"
apply (rule ideal_condition)
apply (rule subsetI)
apply (simp add:ideal_quotient_def CollectI)
apply (simp add:ideal_quotient_def)
apply (cut_tac ring_zero)
apply (subgoal_tac "∀b∈B. 𝟬 ⋅⇩r b ∈ A")
apply blast
apply (rule ballI)
apply (frule_tac h = b in ideal_subset[of B], assumption)
apply (frule_tac x = b in ring_times_0_x )
apply (simp add:ideal_zero)
apply (rule ballI)+
apply (simp add:ideal_quotient_def, (erule conjE)+,
rule conjI)
apply (rule ideal_pOp_closed)
apply (simp add:whole_ideal, assumption+)
apply (cut_tac ring_is_ag)
apply (simp add:aGroup.ag_mOp_closed)
apply (rule ballI)
apply (subst ring_distrib2)
apply (simp add:ideal_subset, assumption)
apply (cut_tac ring_is_ag, simp add: aGroup.ag_mOp_closed)
apply (frule_tac a1 = y and b1 = b in ring_inv1_1 [THEN sym])
apply (simp add:ideal_subset, simp)
apply (rule ideal_pOp_closed, assumption+, simp)
apply (rule ideal_inv1_closed, assumption+, simp)
apply (rule ballI)+
apply (simp add:ideal_quotient_def)
apply (rule conjI)
apply (erule conjE)
apply (simp add:ring_tOp_closed)
apply (erule conjE)
apply (rule ballI)
apply (subst ring_tOp_assoc, assumption+, simp add:ideal_subset)
apply (simp add:ideal_ring_multiple [of "A"])
done
section ‹Addition of finite elements of a ring and ‹ideal_multiplication››
text‹We consider sum in an abelian group›
lemma (in aGroup) nsum_mem1Tr:" A +> J ⟹
(∀j ≤ n. f j ∈ J) ⟶ nsum A f n ∈ J"
apply (induct_tac n)
apply (rule impI)
apply simp
apply (rule impI)
apply simp
apply (rule asubg_pOp_closed, assumption+)
apply simp
done
lemma (in aGroup) fSum_mem:"⟦∀j ∈ nset (Suc n) m. f j ∈ carrier A; n < m⟧ ⟹
fSum A f (Suc n) m ∈ carrier A"
apply (simp add:fSum_def)
apply (rule nsum_mem)
apply (rule allI, simp add:cmp_def slide_def)
apply (rule impI)
apply (frule_tac x = "Suc (n + j)" in bspec)
apply (simp add:nset_def, arith)
done
lemma (in aGroup) nsum_mem1:"⟦A +> J; ∀j ≤ n. f j ∈ J⟧ ⟹ nsum A f n ∈ J"
apply (simp add:nsum_mem1Tr)
done
lemma (in aGroup) nsum_eq_i:"⟦∀j≤n. f j ∈ carrier A; ∀j≤n. g j ∈ carrier A;
i ≤ n; ∀l ≤ i. f l = g l⟧ ⟹ nsum A f i = nsum A g i"
apply (rule nsum_eq)
apply (rule allI, rule impI, simp)+
done
lemma (in aGroup) nsum_cmp_eq:"⟦f ∈ {j. j≤(n::nat)} → carrier A;
h1 ∈ {j. j ≤ n} → {j. j ≤ n}; h2 ∈ {j. j ≤ n} → {j. j ≤ n}; i ≤ n⟧ ⟹
nsum A (cmp f (cmp h2 h1)) i = nsum A (cmp (cmp f h2) h1) i"
apply (rule nsum_eq_i [of n "cmp f (cmp h2 h1)" "cmp (cmp f h2) h1" i])
apply (rule allI, rule impI, simp add:cmp_def)
apply ((rule funcset_mem, assumption)+, simp)
apply (rule allI, rule impI, simp add:cmp_def,
(rule funcset_mem, assumption)+, simp+)
apply (rule allI, rule impI, simp add:cmp_def)
done
lemma (in aGroup) nsum_cmp_eq_transpos:"⟦ ∀j≤(Suc n). f j ∈ carrier A;
i ≤ n;i ≠ n ⟧ ⟹
nsum A (cmp f (cmp (transpos i n) (cmp (transpos n (Suc n)) (transpos i n))))
(Suc n) = nsum A (cmp f (transpos i (Suc n))) (Suc n)"
apply (rule nsum_eq [of "Suc n" "cmp f (cmp (transpos i n)
(cmp (transpos n (Suc n)) (transpos i n)))"
"cmp f (transpos i (Suc n))"])
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac i = i and n = "Suc n" and j = n and l = j in transpos_mem,
simp+)
apply (cut_tac i = n and n = "Suc n" and j = "Suc n" and l = "transpos i n j"
in transpos_mem, simp+)
apply (cut_tac i = i and n = "Suc n" and j = n and
l = "transpos n (Suc n) (transpos i n j)" in transpos_mem,
simp+)
apply (rule allI, rule impI, simp add:cmp_def)
apply (cut_tac i = i and n = "Suc n" and j = "Suc n" and l = j in transpos_mem,
simp+)
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (thin_tac "∀j≤Suc n. f j ∈ carrier A",
rule eq_elems_eq_val[of _ _ f])
apply (simp add:transpos_def)
done
lemma transpos_Tr_n1:"Suc (Suc 0) ≤ n ⟹
transpos (n - Suc 0) n n = n - Suc 0"
apply (simp add:transpos_def)
done
lemma transpos_Tr_n2:"Suc (Suc 0) ≤ n ⟹
transpos (n - (Suc 0)) n (n - (Suc 0)) = n"
apply (simp add:transpos_def)
done
lemma (in aGroup) additionTr0:"⟦0 < n; ∀j ≤ n. f j ∈ carrier A⟧
⟹ nsum A (cmp f (transpos (n - 1) n)) n = nsum A f n"
apply (case_tac "n ≤ 1")
apply simp
apply (frule Suc_leI [of "0" "n"])
apply (frule le_antisym [of "n" "Suc 0"], assumption+, simp)
apply (simp add:cmp_def)
apply (subst transpos_ij_1[of 0 "Suc 0"], simp+)
apply (subst transpos_ij_2[of 0 "Suc 0"], simp+)
apply (rule ag_pOp_commute, simp+)
apply (frule not_le_imp_less[of n "Suc 0"])
apply (frule_tac Suc_leI [of "Suc 0" "n"],
thin_tac "¬ n ≤ Suc 0")
apply (cut_tac nsum_suc[of A f "n - Suc 0"], simp)
apply (cut_tac nsum_suc[of A "cmp f (transpos (n - Suc 0) n)" "n - Suc 0"],
simp,
thin_tac "Σ⇩e A f n = Σ⇩e A f (n - Suc 0) ± f n",
thin_tac "Σ⇩e A (cmp f (transpos (n - Suc 0) n)) n =
Σ⇩e A (cmp f (transpos (n - Suc 0) n)) (n - Suc 0) ±
(cmp f (transpos (n - Suc 0) n) n)")
apply (case_tac "n = Suc (Suc 0)", simp)
apply (cut_tac transpos_id_1[of "Suc 0" "Suc (Suc 0)" "Suc (Suc 0)" 0],
cut_tac transpos_ij_1[of "Suc 0" "Suc (Suc 0)" "Suc (Suc 0)"],
cut_tac transpos_ij_2[of "Suc 0" "Suc (Suc 0)" "Suc (Suc 0)"],
simp add:cmp_def,
thin_tac "n = Suc (Suc 0)",
thin_tac "transpos (Suc 0) (Suc (Suc 0)) 0 = 0",
thin_tac "transpos (Suc 0) (Suc (Suc 0)) (Suc 0) = Suc (Suc 0)",
thin_tac "transpos (Suc 0) (Suc (Suc 0)) (Suc (Suc 0)) = Suc 0")
apply (subst ag_pOp_assoc, simp+)
apply (subst ag_pOp_commute[of "f (Suc (Suc 0))" "f (Suc 0)"], simp+)
apply (subst ag_pOp_assoc[THEN sym], simp+)
apply (frule not_sym)
apply (frule noteq_le_less[of "Suc (Suc 0)" n], assumption,
thin_tac "Suc (Suc 0) ≤ n")
apply (cut_tac nsum_suc[of A f "n - Suc 0 - Suc 0"])
apply (cut_tac Suc_pred[of "n - Suc 0"], simp del:nsum_suc)
apply (cut_tac nsum_suc[of A "cmp f (transpos (n - Suc 0) n)"
"n - Suc (Suc 0)"], simp del:nsum_suc,
thin_tac "Σ⇩e A f (n - Suc 0) = Σ⇩e A f (n - Suc (Suc 0)) ± f (n - Suc 0)",
thin_tac "Suc (n - Suc (Suc 0)) = n - Suc 0",
thin_tac "Σ⇩e A (cmp f (transpos (n - Suc 0) n)) (n - Suc 0) =
Σ⇩e A (cmp f (transpos (n - Suc 0) n)) (n - Suc (Suc 0)) ±
(cmp f (transpos (n - Suc 0) n)) (n - Suc 0)")
apply (cut_tac nsum_eq_i[of n "cmp f (transpos (n - Suc 0) n)" f
"n - Suc (Suc 0)"], simp,
thin_tac "Σ⇩e A (cmp f (transpos (n - Suc 0) n)) (n - Suc (Suc 0)) =
Σ⇩e A f (n - Suc (Suc 0))")
apply (simp add:cmp_def)
apply (cut_tac transpos_ij_1[of "n - Suc 0" n n], simp)
apply (cut_tac transpos_ij_2[of "n - Suc 0" n n], simp)
apply (subst ag_pOp_assoc,
rule nsum_mem, rule allI, rule impI)
apply (frule_tac x = j and y = "n - Suc (Suc 0)" and z = n in
le_less_trans, simp, frule_tac x = j and y = n in less_imp_le)
apply simp+
apply (subst ag_pOp_commute[of "f n"], simp, simp)
apply (subst ag_pOp_assoc[THEN sym],
rule nsum_mem, rule allI, rule impI,
frule_tac x = j and y = "n - Suc (Suc 0)" and z = n in
le_less_trans, simp, frule_tac x = j and y = n in less_imp_le)
apply simp+
apply (rule allI, rule impI, simp add:cmp_def)
apply (cut_tac i = "n - Suc 0" and n = n and j = n and l = j in transpos_mem,
simp+)
apply (rule allI, rule impI)
apply (simp add:cmp_def)
apply (cut_tac i = "n - Suc 0" and n = n and j = n and x = l in transpos_id,
simp+)
apply (cut_tac x = l and y = "n - Suc (Suc 0)" and z = n in le_less_trans,
assumption) apply simp
apply arith
apply simp
apply arith
done
lemma (in aGroup) additionTr1:"⟦ ∀f. ∀h. f ∈ {j. j≤(Suc n)} → carrier A ∧
h ∈ {j. j≤(Suc n)} → {j. j≤(Suc n)} ∧ inj_on h {j. j≤(Suc n)} ⟶
nsum A (cmp f h) (Suc n) = nsum A f (Suc n);
f ∈ {j. j≤(Suc (Suc n))} → carrier A;
h ∈ {j. j≤(Suc (Suc n))} → {j. j≤(Suc (Suc n))};
inj_on h {j. j≤(Suc (Suc n))}; h (Suc (Suc n)) = Suc (Suc n)⟧
⟹ nsum A (cmp f h) (Suc (Suc n)) = nsum A f (Suc (Suc n))"
apply (subgoal_tac "f ∈ {j. j≤(Suc n)} → carrier A")
apply (subgoal_tac "h ∈ {j. j≤(Suc n)} → {j. j≤(Suc n)}")
apply (subgoal_tac "inj_on h {j. j≤(Suc n)}")
apply (subgoal_tac "nsum A (cmp f h) (Suc n) = nsum A f (Suc n)")
apply (thin_tac "∀f. ∀h. f ∈ {j. j≤(Suc n)} → carrier A ∧
h ∈ {j. j≤(Suc n)} → {j. j≤(Suc n)} ∧ inj_on h {j. j≤(Suc n)} ⟶
nsum A (cmp f h) (Suc n) = nsum A f (Suc n)")
prefer 2 apply simp
apply simp
apply (thin_tac "nsum A (cmp f h) n ± (cmp f h (Suc n)) = nsum A f n ± (f (Suc n))")
apply (simp add:cmp_def)
apply (thin_tac "∀f h. (f ∈ {j. j ≤ Suc n} → carrier A) ∧
(h ∈ {j. j≤Suc n} → {j. j≤Suc n}) ∧ (inj_on h {j. j≤Suc n}) ⟶
Σ⇩e A (cmp f h) (Suc n) = Σ⇩e A f (Suc n)")
apply (frule Nset_injTr0 [of "h" "Suc n"], assumption+, simp)
apply (frule Nset_injTr0 [of "h" "Suc n"], assumption+, simp)
apply (simp add:Pi_def)
done
lemma (in aGroup) additionTr1_1:"⟦∀f. ∀h. f ∈ {j. j≤Suc n} → carrier A ∧
h ∈ {j. j≤Suc n} → {j. j≤Suc n} ∧ inj_on h {j. j≤Suc n} ⟶
nsum A (cmp f h) (Suc n) = nsum A f (Suc n);
f ∈ {j. j≤Suc (Suc n)} → carrier A; i ≤ n⟧ ⟹
nsum A (cmp f (transpos i (Suc n))) (Suc (Suc n)) = nsum A f (Suc (Suc n))"
apply (rule additionTr1 [of "n" "f" "transpos i (Suc n)"], assumption+)
apply (rule transpos_hom [of "i" "Suc (Suc n)" "Suc n"])
apply simp+
apply (rule transpos_inj [of "i" "Suc (Suc n)" "Suc n"])
apply simp+
apply (subst transpos_id[of i "Suc (Suc n)" "Suc n" "Suc (Suc n)"])
apply simp+
done
lemma (in aGroup) additionTr1_2:"⟦∀f. ∀h. f ∈ {j. j≤Suc n} → carrier A ∧
h ∈ {j. j≤Suc n} → {j. j≤Suc n} ∧
inj_on h {j. j≤Suc n} ⟶
nsum A (cmp f h) (Suc n) = nsum A f (Suc n);
f ∈ {j. j≤ Suc (Suc n)} → carrier A; i ≤ (Suc n)⟧ ⟹
nsum A (cmp f (transpos i (Suc (Suc n)))) (Suc (Suc n)) =
nsum A f (Suc (Suc n))"
apply (case_tac "i = Suc n")
apply (simp del:nsum_suc)
apply (cut_tac additionTr0 [of "Suc (Suc n)" "f"], simp, simp,
rule allI, rule impI, rule funcset_mem[of f "{j. j ≤ Suc (Suc n)}"
"carrier A"], (simp del:nsum_suc)+)
apply (subst nsum_cmp_eq_transpos [THEN sym, of "Suc n" f i],
rule allI, rule impI, rule funcset_mem[of f "{j. j ≤ Suc (Suc n)}"
"carrier A"], assumption+,
simp, assumption+)
apply (subst nsum_cmp_eq [of "f" "Suc (Suc n)"
"cmp (transpos (Suc n) (Suc(Suc n))) (transpos i (Suc n))"
"transpos i (Suc n)" "Suc (Suc n)"], assumption+,
rule Pi_I, simp add:cmp_def,
rule transpos_mem, (simp del:nsum_suc)+,
rule transpos_mem, (simp del:nsum_suc)+,
rule Pi_I, simp,
rule transpos_mem, (simp del:nsum_suc)+)
apply (subst nsum_cmp_eq [of "cmp f (transpos i (Suc n))" "Suc (Suc n)"
"(transpos i (Suc n))" "transpos (Suc n) (Suc (Suc n))" "Suc (Suc n)"],
rule Pi_I, simp add:cmp_def,
rule funcset_mem[of f "{j. j ≤ Suc (Suc n)}" "carrier A"], assumption,
simp,
rule transpos_mem, (simp del:nsum_suc)+,
(rule Pi_I, simp,
rule transpos_mem, (simp del:nsum_suc)+)+)
apply (subst additionTr1_1 [of "n" "cmp (cmp f (transpos i (Suc n)))
(transpos (Suc n) (Suc (Suc n)))" "i"], assumption+,
rule cmp_fun [of _ "{j. j ≤ (Suc (Suc n))}"
"{j. j ≤ (Suc (Suc n))}" _ "carrier A"],
rule transpos_hom, simp, simp, simp,
rule cmp_fun [of _ "{j. j ≤ (Suc (Suc n))}"
"{j. j ≤ (Suc (Suc n))}" "f" "carrier A"],
rule transpos_hom, simp, simp, assumption+, arith)
apply (cut_tac additionTr0 [of "Suc (Suc n)" "cmp f (transpos i (Suc n))"],
simp del:nsum_suc,
thin_tac "nsum A (cmp
(cmp f (transpos i (Suc n))) (transpos (Suc n) (Suc (Suc n)))) (Suc (Suc n))
= nsum A (cmp f (transpos i (Suc n))) (Suc (Suc n))")
apply (rule additionTr1_1, assumption+, arith, simp,
rule allI, rule impI, simp add:cmp_def,
rule funcset_mem[of f "{j. j ≤ Suc (Suc n)}" "carrier A"],
assumption)
apply (simp add:transpos_mem)
done
lemma (in aGroup) additionTr2:" ∀f. ∀h. f ∈ {j. j ≤ (Suc n)} → carrier A ∧
h ∈ {j. j ≤ (Suc n)} → {j. j ≤ (Suc n)} ∧
inj_on h {j. j ≤ (Suc n)} ⟶
nsum A (cmp f h) (Suc n) = nsum A f (Suc n)"
apply (induct_tac n)
apply (rule allI)+
apply (rule impI, (erule conjE)+)
apply (simp add:cmp_def)
apply (case_tac "h 0 = 0")
apply (simp add:Nset_1)
apply (simp add:Nset_1 ag_pOp_commute)
apply (rule allI)+
apply (rule impI, (erule conjE)+)
apply (case_tac "h (Suc (Suc n)) = Suc (Suc n)")
apply (rule additionTr1, assumption+)
apply (frule_tac f = h and n = "Suc (Suc n)" in inj_surj, assumption+)
apply (frule sym, thin_tac "h ` {i. i ≤ Suc (Suc n)} = {i. i ≤ Suc (Suc n)}")
apply (cut_tac n = "Suc (Suc n)" in n_in_Nsetn)
apply (frule_tac a = "Suc (Suc n)" and A = "{i. i ≤ Suc (Suc n)}" and
B = "h ` {i. i ≤ Suc (Suc n)}" in eq_set_inc, assumption+)
apply (thin_tac "{i. i ≤ Suc (Suc n)} = h ` {i. i ≤ Suc (Suc n)}")
apply (simp del:nsum_suc add:image_def)
apply (erule exE, erule conjE)
apply (frule sym, thin_tac "Suc (Suc n) = h x")
apply (frule_tac i = x and n = "Suc (Suc n)" and j = "Suc (Suc n)" in
transpos_ij_2, simp del:nsum_suc add:n_in_Nsetn)
apply (rule contrapos_pp, (simp del:nsum_suc)+)
apply (frule_tac x = "transpos x (Suc (Suc n)) (Suc (Suc n))" and y = x and
f = h in eq_elems_eq_val,
thin_tac "transpos x (Suc (Suc n)) (Suc (Suc n)) = x",
simp del:nsum_suc)
apply (frule_tac f = h and A = "{i. i ≤ Suc (Suc n)}" and x = x and
y = "Suc (Suc n)" in inj_onTr2, simp, simp,
frule not_sym, simp)
apply (cut_tac f1 = "cmp f h" and n1 = n and i1 = x in
additionTr1_2[THEN sym], assumption)
apply (rule cmp_fun, simp, assumption, arith)
apply (simp del:nsum_suc,
thin_tac "Σ⇩e A (cmp f h) (Suc (Suc n)) =
Σ⇩e A (cmp (cmp f h) (transpos x (Suc (Suc n)))) (Suc (Suc n))")
apply (frule_tac f = f and n = "Suc n" and A = "carrier A" in func_pre)
apply (cut_tac f = "cmp h (transpos x (Suc (Suc n)))" and A = "{j. j ≤ (Suc ( Suc n))}" and ?A1.0 = "{j. j ≤ (Suc n)}" in restrict_inj)
apply (rule_tac f = "transpos x (Suc (Suc n))" and A = "{j. j ≤ Suc (Suc n)}"
and B = "{j. j ≤ Suc (Suc n)}" and g = h and C = "{j. j ≤ Suc (Suc n)}" in
cmp_inj, simp,
rule transpos_hom, simp, simp, assumption+,
rule transpos_inj, simp, simp, assumption+,
rule subsetI, simp)
apply (subst nsum_cmp_assoc,
rule allI, rule impI, simp add:Pi_def,
rule transpos_hom, assumption, simp, assumption+)
apply (cut_tac f = "cmp f (cmp h (transpos x (Suc (Suc n))))" and n = "Suc n"
in nsum_suc[of A ], simp del:nsum_suc,
thin_tac "Σ⇩e A (cmp f (cmp h (transpos x (Suc (Suc n))))) (Suc (Suc n)) =
Σ⇩e A (cmp f (cmp h (transpos x (Suc (Suc n))))) (Suc n) ±
cmp f (cmp h (transpos x (Suc (Suc n)))) (Suc (Suc n))")
apply (frule_tac x = f in spec,
thin_tac "∀f h. f ∈ {j. j ≤ Suc n} → carrier A ∧
h ∈ {j. j ≤ Suc n} → {j. j ≤ Suc n} ∧
inj_on h {j. j ≤ Suc n} ⟶
Σ⇩e A (cmp f h) (Suc n) = Σ⇩e A f (Suc n)")
apply (frule_tac a = "cmp h (transpos x (Suc (Suc n)))" in forall_spec,
thin_tac "∀h. f ∈ {j. j ≤ Suc n} → carrier A ∧
h ∈ {j. j ≤ Suc n} → {j. j ≤ Suc n} ∧ inj_on h {j. j ≤ Suc n} ⟶
Σ⇩e A (cmp f h) (Suc n) = Σ⇩e A f (Suc n)")
apply simp
apply (rule Pi_I)
apply (simp add:cmp_def)
apply (case_tac "xa = x", simp)
apply (cut_tac i = x and n = "Suc (Suc n)" and j = "Suc (Suc n)" in
transpos_ij_1, simp, simp, simp, simp,
frule_tac x = "Suc (Suc n)" and f = h and A = "{j. j ≤ Suc (Suc n)}"
and B = "{j. j ≤ Suc (Suc n)}" in funcset_mem, simp,
thin_tac "h ∈ {j. j ≤ Suc (Suc n)} → {j. j ≤ Suc (Suc n)}")
apply (cut_tac m = "h (Suc (Suc n))" and n = "Suc (Suc n)" in noteq_le_less,
simp, simp,
rule_tac x = "h (Suc (Suc n))" and n = "Suc n" in Suc_less_le,
assumption)
apply (subst transpos_id, simp, simp, simp, simp,
frule_tac x = xa and f = h and A = "{j. j ≤ Suc (Suc n)}" and
B = "{j. j ≤ Suc (Suc n)}" in funcset_mem, simp)
apply (frule_tac f = h and A = "{j. j ≤ Suc (Suc n)}" and x = xa and y = x
in injective, simp, simp, assumption)
apply (cut_tac m = "h xa" and n = "Suc (Suc n)" in noteq_le_less, simp,
simp)
apply (rule Suc_less_le, assumption,
thin_tac "∀h. f ∈ {j. j ≤ Suc n} → carrier A ∧
h ∈ {j. j ≤ Suc n} → {j. j ≤ Suc n} ∧ inj_on h {j. j ≤ Suc n} ⟶
Σ⇩e A (cmp f h) (Suc n) = Σ⇩e A f (Suc n)")
apply (simp del:nsum_suc add:cmp_def)
apply simp
done
lemma (in aGroup) addition2:"⟦f ∈ {j. j ≤ (Suc n)} → carrier A;
h ∈ {j. j ≤ (Suc n)} → {j. j ≤ (Suc n)}; inj_on h {j. j ≤ (Suc n)}⟧ ⟹
nsum A (cmp f h) (Suc n) = nsum A f (Suc n)"
apply (simp del:nsum_suc add:additionTr2)
done
lemma (in aGroup) addition21:"⟦f ∈ {j. j ≤ n} → carrier A;
h ∈ {j. j ≤ n} → {j. j ≤ n}; inj_on h {j. j ≤ n}⟧ ⟹
nsum A (cmp f h) n = nsum A f n"
apply (case_tac "n = 0")
apply (simp add: cmp_def)
apply (cut_tac f = f and n = "n - Suc 0" and h = h in addition2)
apply simp+
done
lemma (in aGroup) addition3:"⟦∀j ≤ (Suc n). f j ∈ carrier A; j ≤ (Suc n);
j ≠ Suc n⟧ ⟹ nsum A f (Suc n) = nsum A (cmp f (transpos j (Suc n))) (Suc n)"
apply (rule addition2 [THEN sym,of "f" "n" "transpos j (Suc n)"])
apply (simp)
apply (rule transpos_hom, assumption+, simp, assumption)
apply (rule transpos_inj, simp+)
done
lemma (in aGroup) nsum_splitTr:"(∀j ≤ (Suc (n + m)). f j ∈ carrier A) ⟶
nsum A f (Suc (n + m)) = nsum A f n ± (nsum A (cmp f (slide (Suc n))) m)"
apply (induct_tac m)
apply (rule impI) apply (simp add:slide_def cmp_def)
apply (rule impI, simp del:nsum_suc)
apply (cut_tac n = "Suc (n + na)" in nsum_suc[of A f],
simp del:nsum_suc,
thin_tac "Σ⇩e A f (Suc (Suc (n + na))) =
Σ⇩e A f n ± Σ⇩e A (cmp f (slide (Suc n))) na ± f (Suc (Suc (n + na)))")
apply (cut_tac f = "cmp f (slide (Suc n))" and n = na in nsum_suc[of A],
simp del:nsum_suc)
apply (subst ag_pOp_assoc)
apply (rule nsum_mem, rule allI, simp)
apply (rule_tac n = na in nsum_mem,
thin_tac "Σ⇩e A (cmp f (slide (Suc n))) (Suc na) =
Σ⇩e A (cmp f (slide (Suc n))) na ± (cmp f (slide (Suc n)) (Suc na))")
apply (rule allI, rule impI,
simp add:cmp_def slide_def, simp)
apply (simp add:cmp_def slide_def)
done
lemma (in aGroup) nsum_split:"∀j ≤ (Suc (n + m)). f j ∈ carrier A ⟹
nsum A f (Suc (n + m)) = nsum A f n ± (nsum A (cmp f (slide (Suc n))) m)"
by (simp del:nsum_suc add:nsum_splitTr)
lemma (in aGroup) nsum_split1:"⟦∀j ≤ m. f j ∈ carrier A; n < m⟧ ⟹
nsum A f m = nsum A f n ± (fSum A f (Suc n) m)"
apply (cut_tac nsum_split[of n "m - n - Suc 0" f])
apply simp
apply (simp add:fSum_def)
apply simp
done
lemma (in aGroup) nsum_minusTr:" (∀j ≤ n. f j ∈ carrier A) ⟶
-⇩a (nsum A f n) = nsum A (λx∈{j. j ≤ n}. -⇩a (f x)) n"
apply (induct_tac n)
apply (rule impI, simp)
apply (rule impI)
apply (subst nsum_suc, subst nsum_suc)
apply (subst ag_p_inv)
apply (rule_tac n = n in nsum_mem [of _ f],
rule allI, simp, simp)
apply (subgoal_tac "∀j≤n. f j ∈ carrier A", simp)
apply (rule_tac a = "Σ⇩e A (λu. if u ≤ n then -⇩a (f u) else undefined) n"
and b = "Σ⇩e A (λx∈{j. j ≤ (Suc n)}. -⇩a (f x)) n" and c = "-⇩a (f (Suc n))"
in ag_pOp_add_r,
rule_tac n = n in nsum_mem,
rule allI, rule impI, simp,
rule ag_mOp_closed, simp)
apply (rule_tac n = n in nsum_mem,
rule allI, rule impI, simp,
rule ag_mOp_closed, simp,
rule ag_mOp_closed, simp)
apply (rule_tac f = "λu. if u ≤ n then -⇩a (f u) else undefined" and
n = n and g = "λx∈{j. j ≤ (Suc n)}. -⇩a (f x)" in nsum_eq,
rule allI, rule impI,
simp, rule ag_mOp_closed, simp,
rule allI, simp, rule impI, rule ag_mOp_closed, simp)
apply (rule allI, simp)
apply (rule allI, simp)
done
lemma (in aGroup) nsum_minus:"∀j ≤ n. f j ∈ carrier A ⟹
-⇩a (nsum A f n) = nsum A (λx∈{j. j ≤ n}. -⇩a (f x)) n"
apply (simp add:nsum_minusTr)
done
lemma (in aGroup) ring_nsum_zeroTr:"(∀j ≤ (n::nat). f j ∈ carrier A) ∧
(∀j ≤ n. f j = 𝟬) ⟶ nsum A f n = 𝟬"
apply (induct_tac n)
apply (rule impI) apply (erule conjE)+ apply simp
apply (rule impI, (erule conjE)+)
apply (cut_tac n = n in Nsetn_sub_mem1, simp)
apply (simp add:ag_inc_zero)
apply (cut_tac ag_inc_zero,
simp add:ag_r_zero)
done
lemma (in aGroup) ring_nsum_zero:"∀j ≤ (n::nat). f j = 𝟬 ⟹ Σ⇩e A f n = 𝟬"
apply (cut_tac ring_nsum_zeroTr[of n f])
apply (simp add:ag_inc_zero)
done
lemma (in aGroup) ag_nsum_1_nonzeroTr:
"∀f. (∀j ≤ n. f j ∈ carrier A) ∧
(l ≤ n ∧ (∀j ∈ {j. j ≤ n} - {l}. f j = 𝟬))
⟶ nsum A f n = f l"
apply (induct_tac n)
apply simp
apply (rule allI,
rule impI, (erule conjE)+)
apply (case_tac "l = Suc n")
apply simp
apply (subgoal_tac "{j. j ≤ Suc n} - {Suc n} = {j. j ≤ n}", simp,
frule ring_nsum_zero, simp)
apply (rule ag_l_zero, simp)
apply (rule equalityI, rule subsetI, simp,
rule subsetI, simp)
apply (frule_tac m = l and n = "Suc n" in noteq_le_less, assumption,
thin_tac "l ≤ Suc n",
frule_tac x = l and n = n in Suc_less_le)
apply (cut_tac n = n in Nsetn_sub_mem1, simp)
apply (thin_tac "∀f. (∀j≤n. f j ∈ carrier A) ∧
(∀j∈{j. j ≤ n} - {l}. f j = 𝟬) ⟶
Σ⇩e A f n = f l",
frule_tac a = l in forall_spec, simp)
apply (simp add:ag_r_zero)
done
lemma (in aGroup) ag_nsum_1_nonzero:"⟦∀j ≤ n. f j ∈ carrier A; l ≤ n;
∀j∈({j. j ≤ n} - {l}). f j = 𝟬 ⟧ ⟹ nsum A f n = f l"
apply (simp add:ag_nsum_1_nonzeroTr[of n l])
done
definition
set_mult :: "[_ , 'a set, 'a set] ⇒ 'a set" where
"set_mult R A B = {z. ∃x∈A. ∃y∈B. x ⋅⇩r⇘R⇙ y = z}"
definition
sum_mult :: "[_ , 'a set, 'a set] ⇒ 'a set" where
"sum_mult R A B = {x. ∃n. ∃f ∈ {j. j ≤ (n::nat)}
→ set_mult R A B. nsum R f n = x}"
lemma (in Ring) set_mult_sub:"⟦A ⊆ carrier R; B ⊆ carrier R⟧ ⟹
set_mult R A B ⊆ carrier R"
apply (rule subsetI, simp add:set_mult_def, (erule bexE)+,
frule sym, thin_tac "xa ⋅⇩r y = x", simp)
apply (rule ring_tOp_closed, (simp add:subsetD)+)
done
lemma (in Ring) set_mult_mono:"⟦A1 ⊆ carrier R; A2 ⊆ carrier R; A1 ⊆ A2;
B ⊆ carrier R⟧ ⟹ set_mult R A1 B ⊆ set_mult R A2 B"
apply (rule subsetI)
apply (simp add:set_mult_def, (erule bexE)+)
apply (frule_tac c = xa in subsetD[of A1 A2], assumption+)
apply blast
done
lemma (in Ring) sum_mult_Tr1:"⟦A ⊆ carrier R; B ⊆ carrier R⟧ ⟹
(∀j ≤ n. f j ∈ set_mult R A B) ⟶ nsum R f n ∈ carrier R"
apply (cut_tac ring_is_ag)
apply (induct_tac n)
apply (rule impI, simp)
apply (frule set_mult_sub[of A B], assumption, simp add:subsetD)
apply (rule impI)
apply (cut_tac n = n in Nsetn_sub_mem1, simp)
apply (frule set_mult_sub[of A B], assumption)
apply (frule_tac a = "Suc n" in forall_spec, simp,
frule_tac c = "f (Suc n)" in subsetD[of "set_mult R A B" "carrier R"],
assumption)
apply (rule aGroup.ag_pOp_closed, assumption+)
done
lemma (in Ring) sum_mult_mem:"⟦A ⊆ carrier R; B ⊆ carrier R;
∀j ≤ n. f j ∈ set_mult R A B⟧ ⟹ nsum R f n ∈ carrier R"
apply (cut_tac ring_is_ag)
apply (simp add:sum_mult_Tr1)
done
lemma (in Ring) sum_mult_mem1:"⟦A ⊆ carrier R; B ⊆ carrier R;
x ∈ sum_mult R A B⟧ ⟹
∃n. ∃f∈{j. j ≤ (n::nat)} → set_mult R A B. nsum R f n = x"
by (simp add:sum_mult_def)
lemma (in Ring) sum_mult_subR:"⟦A ⊆ carrier R; B ⊆ carrier R⟧ ⟹
sum_mult R A B ⊆ carrier R"
apply (rule subsetI)
apply (frule_tac x = x in sum_mult_mem1[of A B], assumption+)
apply (erule exE, erule bexE, frule sym, thin_tac "Σ⇩e R f n = x", simp)
apply (cut_tac ring_is_ag)
apply (rule aGroup.nsum_mem[of R], assumption)
apply (rule allI, rule impI)
apply (frule_tac f = f and A = "{j. j ≤ n}" and B = "set_mult R A B" and
x = j in funcset_mem, simp)
apply (frule set_mult_sub[of A B], assumption)
apply (simp add:subsetD)
done
lemma (in Ring) times_mem_sum_mult:"⟦A ⊆ carrier R; B ⊆ carrier R;
a ∈ A; b ∈ B ⟧ ⟹ a ⋅⇩r b ∈ sum_mult R A B"
apply (simp add:sum_mult_def)
apply (subgoal_tac "(λi∈{j. j ≤ (0::nat)}. a ⋅⇩r b) ∈ {j. j ≤ 0} → set_mult R A B")
apply (subgoal_tac "nsum R (λi∈{j. j ≤ (0::nat)}. a ⋅⇩r b) 0 = a ⋅⇩r b")
apply blast
apply simp
apply (rule Pi_I, simp add:set_mult_def, blast)
done
lemma (in Ring) mem_minus_sum_multTr2:"⟦A ⊆ carrier R; B ⊆ carrier R;
∀j ≤ n. f j ∈ set_mult R A B; i ≤ n⟧ ⟹ f i ∈ carrier R"
apply (frule_tac a = i in forall_spec, simp)
apply (frule set_mult_sub[of A B], assumption, simp add:subsetD)
done
lemma (in aGroup) nsum_jointfun:"⟦∀j ≤ n. f j ∈ carrier A;
∀j ≤ m. g j ∈ carrier A⟧ ⟹
Σ⇩e A (jointfun n f m g) (Suc (n + m)) = Σ⇩e A f n ± (Σ⇩e A g m)"
apply (subst nsum_split)
apply (rule allI, rule impI)
apply (frule_tac f = f and n = n and A = "carrier A" and g = g and m = m
and B = "carrier A" in jointfun_mem, assumption+, simp)
apply (subgoal_tac "nsum A (jointfun n f m g) n = nsum A f n")
apply (subgoal_tac "nsum A (cmp (jointfun n f m g) (slide (Suc n))) m =
nsum A g m")
apply simp
apply (thin_tac "nsum A (jointfun n f m g) n = nsum A f n")
apply (rule nsum_eq)
apply (rule allI, rule impI,
simp add:cmp_def jointfun_def slide_def sliden_def,
assumption)
apply (rule allI, simp add:cmp_def jointfun_def slide_def sliden_def)
apply (rule nsum_eq)
apply (rule allI, rule impI,
simp add:jointfun_def, assumption)
apply (rule allI, rule impI)
apply (simp add:jointfun_def)
done
lemma (in Ring) sum_mult_pOp_closed:"⟦A ⊆ carrier R; B ⊆ carrier R;
a ∈ sum_mult R A B; b ∈ sum_mult R A B ⟧ ⟹ a ±⇘R⇙ b ∈ sum_mult R A B"
apply (cut_tac ring_is_ag)
apply (simp add:sum_mult_def)
apply ((erule exE)+, (erule bexE)+)
apply (rename_tac n m f g)
apply (frule sym, thin_tac "Σ⇩e R f n = a", frule sym,
thin_tac "Σ⇩e R g m = b", simp)
apply (frule set_mult_sub[of A B], assumption)
apply (subst aGroup.nsum_jointfun[THEN sym, of R], assumption)
apply (rule allI, rule impI,
frule_tac f = f and A = "{j. j ≤ n}" and B = "set_mult R A B" and
x = j in funcset_mem, simp, simp add:subsetD)
apply (rule allI, rule impI,
frule_tac f = g and A = "{j. j ≤ m}" and B = "set_mult R A B" and
x = j in funcset_mem, simp, simp add:subsetD)
apply (frule_tac f = f and n = n and A = "set_mult R A B" and g = g and m = m
and B = "set_mult R A B" in jointfun_hom, assumption+)
apply (simp del:nsum_suc)
apply blast
done
lemma (in Ring) set_mult_mOp_closed:"⟦A ⊆ carrier R; ideal R B;
x ∈ set_mult R A B⟧ ⟹ -⇩a x ∈ set_mult R A B"
apply (cut_tac ring_is_ag,
simp add:set_mult_def,
(erule bexE)+, frule sym, thin_tac "xa ⋅⇩r y = x", simp,
frule_tac c = xa in subsetD[of A "carrier R"], assumption+,
frule ideal_subset1[of B],
frule_tac c = y in subsetD[of B "carrier R"], assumption+,
simp add:ring_inv1_2,
frule_tac I = B and x = y in ideal_inv1_closed,
assumption+)
apply blast
done
lemma (in Ring) set_mult_ring_times_closed:"⟦A ⊆ carrier R; ideal R B;
x ∈ set_mult R A B; r ∈ carrier R⟧ ⟹ r ⋅⇩r x ∈ set_mult R A B"
apply (cut_tac ring_is_ag,
simp add:set_mult_def,
(erule bexE)+, frule sym, thin_tac "xa ⋅⇩r y = x", simp,
frule_tac c = xa in subsetD[of A "carrier R"], assumption+,
frule ideal_subset1[of B],
frule_tac c = y in subsetD[of B "carrier R"], assumption,
frule_tac x = r and y = "xa ⋅⇩r y" in ring_tOp_commute,
simp add:ring_tOp_closed, simp,
subst ring_tOp_assoc, assumption+)
apply (frule_tac x = y and y = r in ring_tOp_commute, assumption+,
simp,
frule_tac x = y and r = r in ideal_ring_multiple [of B], assumption+)
apply blast
done
lemma (in Ring) set_mult_sub_sum_mult:"⟦A ⊆ carrier R; ideal R B⟧ ⟹
set_mult R A B ⊆ sum_mult R A B"
apply (rule subsetI)
apply (simp add:sum_mult_def)
apply (cut_tac f = "(λi∈{j. j ≤ (0::nat)}. x)" in nsum_0[of R])
apply (cut_tac n_in_Nsetn[of 0],
simp del:nsum_0)
apply (cut_tac f = "λi∈{j. j ≤ (0::nat)}. x" and B = "%_. set_mult R A B" in
Pi_I[of "{j. j ≤ 0}"],
simp)
apply (subgoal_tac "Σ⇩e R (λi∈{j. j ≤ 0}. x) 0 = x")
apply blast
apply simp
done
lemma (in Ring) sum_mult_pOp_closedn:"⟦A ⊆ carrier R; ideal R B⟧ ⟹
(∀j ≤ n. f j ∈ set_mult R A B) ⟶ Σ⇩e R f n ∈ sum_mult R A B"
apply (induct_tac n)
apply (rule impI, simp)
apply (frule set_mult_sub_sum_mult[of A B], assumption+, simp add:subsetD)
apply (rule impI)
apply simp
apply (frule_tac a = "Suc n" in forall_spec, simp)
apply (frule set_mult_sub_sum_mult[of A B], assumption+,
frule_tac c= "f (Suc n)" in
subsetD[of "set_mult R A B" "sum_mult R A B"], assumption+)
apply (rule sum_mult_pOp_closed, assumption,
simp add:ideal_subset1, assumption+)
done
lemma (in Ring) mem_minus_sum_multTr4:"⟦A ⊆ carrier R; ideal R B⟧ ⟹
(∀j ≤ n. f j ∈ set_mult R A B) ⟶ -⇩a (nsum R f n) ∈ sum_mult R A B"
apply (cut_tac ring_is_ag)
apply (induct_tac n)
apply (rule impI)
apply (cut_tac n_in_Nsetn[of 0])
apply (frule_tac x = "f 0" in set_mult_mOp_closed[of A B], assumption+)
apply simp
apply (frule set_mult_sub_sum_mult[of A B], assumption+,
simp add:subsetD)
apply (rule impI)
apply (cut_tac n = n in Nsetn_sub_mem1, simp)
apply (frule sum_mult_subR[of A B], simp add:ideal_subset1)
apply (frule_tac n = n and f = f in sum_mult_pOp_closedn[of A B], assumption,
cut_tac n = n in Nsetn_sub_mem1, simp)
apply (frule_tac c = "Σ⇩e R f n" in subsetD[of "sum_mult R A B" "carrier R"],
assumption+,
frule_tac a = "Suc n" in forall_spec, simp,
thin_tac "∀j≤Suc n. f j ∈ set_mult R A B",
frule set_mult_sub[of A B], simp add:ideal_subset1,
frule_tac c = "f (Suc n)" in subsetD[of "set_mult R A B" "carrier R"],
assumption+ )
apply (frule_tac x = "Σ⇩e R f n" and y = "f (Suc n)" in aGroup.ag_p_inv[of R],
assumption+, simp)
apply (rule_tac a = "-⇩a (Σ⇩e R f n)" and b = "-⇩a (f (Suc n))" in
sum_mult_pOp_closed[of A B], assumption+,
simp add:ideal_subset1, assumption)
apply (frule_tac x = "f (Suc n)" in set_mult_mOp_closed[of A B], assumption+,
frule set_mult_sub_sum_mult[of A B], assumption+)
apply (simp add:subsetD)
done
lemma (in Ring) sum_mult_iOp_closed:"⟦A ⊆ carrier R; ideal R B;
x ∈ sum_mult R A B ⟧ ⟹ -⇩a x ∈ sum_mult R A B"
apply (frule sum_mult_mem1 [of A B x],
simp add:ideal_subset1, assumption)
apply (erule exE, erule bexE, frule sym, thin_tac "Σ⇩e R f n = x")
apply simp
apply (frule_tac n = n and f = f in mem_minus_sum_multTr4[of A B],
assumption+)
apply (simp add:Pi_def)
done
lemma (in Ring) sum_mult_ring_multiplicationTr:
"⟦A ⊆ carrier R; ideal R B; r ∈ carrier R⟧ ⟹
(∀j ≤ n. f j ∈ set_mult R A B) ⟶ r ⋅⇩r (nsum R f n) ∈ sum_mult R A B"
apply (cut_tac ring_is_ag)
apply (induct_tac n)
apply (rule impI, simp)
apply (simp add:set_mult_def)
apply ((erule bexE)+, frule sym, thin_tac "x ⋅⇩r y = f 0", simp)
apply (frule_tac c = x in subsetD[of A "carrier R"], assumption+)
apply (frule ideal_subset1[of B],
frule_tac c = y in subsetD[of B "carrier R"], assumption,
frule_tac x = r and y = "x ⋅⇩r y" in ring_tOp_commute,
simp add:ring_tOp_closed, simp,
subst ring_tOp_assoc, assumption+)
apply (frule_tac x = y and y = r in ring_tOp_commute, assumption+,
simp,
frule_tac x = y and r = r in ideal_ring_multiple [of B], assumption+)
apply (rule times_mem_sum_mult, assumption+)
apply (rule impI)
apply (cut_tac n = n in Nsetn_sub_mem1, simp)
apply (frule_tac f = f and n = n in aGroup.nsum_mem,
frule set_mult_sub [of "A" "B"], simp add:ideal_subset1,
rule allI, rule impI, cut_tac n = n in Nsetn_sub_mem1,
simp add: subsetD,
frule_tac a = "Suc n" in forall_spec, simp)
apply (frule set_mult_sub[of A B], simp add:ideal_subset1,
frule_tac c = "f (Suc n)" in subsetD[of "set_mult R A B" "carrier R"],
assumption)
apply (simp add: ring_distrib1)
apply (rule sum_mult_pOp_closed[of A B], assumption+,
simp add:ideal_subset1, assumption)
apply (frule_tac x = "f (Suc n)" in set_mult_ring_times_closed [of A B _ r],
assumption+, simp, assumption,
frule set_mult_sub_sum_mult[of A B], assumption+,
simp add:subsetD)
done
lemma (in Ring) sum_mult_ring_multiplication:"⟦A ⊆ carrier R; ideal R B;
r ∈ carrier R; a ∈ sum_mult R A B⟧ ⟹ r ⋅⇩r a ∈ sum_mult R A B"
apply (cut_tac ring_is_ag)
apply (frule sum_mult_mem1[of A B a],
simp add:ideal_subset1, assumption)
apply (erule exE, erule bexE, frule sym, thin_tac "Σ⇩e R f n = a", simp)
apply (subgoal_tac "∀j ≤ n. f j ∈ set_mult R A B")
apply (simp add:sum_mult_ring_multiplicationTr)
apply (simp add:Pi_def)
done
lemma (in Ring) ideal_sum_mult:"⟦A ⊆ carrier R; A ≠ {}; ideal R B⟧ ⟹
ideal R (sum_mult R A B)"
apply (simp add:ideal_def [of _ "sum_mult R A B"])
apply (cut_tac ring_is_ag)
apply (rule conjI)
apply (rule aGroup.asubg_test, assumption+)
apply (rule subsetI)
apply (frule_tac x = x in sum_mult_mem1[of A B],
simp add:ideal_subset1, assumption,
erule exE, erule bexE, frule sym, thin_tac "Σ⇩e R f n = x", simp)
apply (rule_tac f = f and n = n in sum_mult_mem[of A B _ _], assumption+)
apply (simp add:ideal_subset1)
apply (simp add:Pi_def)
apply (frule nonempty_ex[of A], erule exE)
apply (frule ideal_zero[of B])
apply (frule_tac a = x and b = 𝟬 in times_mem_sum_mult[of A B],
simp add:ideal_subset1, assumption+) apply blast
apply (rule ballI)+
apply (rule_tac a = a and b = "-⇩a b" in sum_mult_pOp_closed[of A B],
assumption, simp add:ideal_subset1, assumption+,
rule_tac x = b in sum_mult_iOp_closed[of A B], assumption+)
apply (rule ballI)+
apply (rule sum_mult_ring_multiplication, assumption+)
done
lemma (in Ring) ideal_inc_set_multTr:"⟦A ⊆ carrier R; ideal R B; ideal R C;
set_mult R A B ⊆ C ⟧ ⟹
∀f ∈ {j. j ≤ (n::nat)} → set_mult R A B. Σ⇩e R f n ∈ C"
apply (induct_tac n)
apply (simp add:subsetD)
apply (rule ballI)
apply (
frule_tac f = f and A = "{j. j ≤ Suc n}" and x = "Suc n" and
B = "set_mult R A B"in funcset_mem, simp,
frule_tac c = "f (Suc n)" in subsetD[of "set_mult R A B" "C"],
assumption+, simp)
apply (rule ideal_pOp_closed[of C], assumption+,
cut_tac n = n in Nsetn_sub_mem1,
frule_tac x = f in bspec, simp)
apply (simp add:Pi_def, assumption+)
done
lemma (in Ring) ideal_inc_set_mult:"⟦A ⊆ carrier R; ideal R B; ideal R C;
set_mult R A B ⊆ C ⟧ ⟹ sum_mult R A B ⊆ C"
apply (rule subsetI)
apply (frule_tac x = x in sum_mult_mem1[of A B],
simp add:ideal_subset1, assumption+)
apply (erule exE, erule bexE, frule sym, thin_tac "Σ⇩e R f n = x", simp,
thin_tac "x = Σ⇩e R f n", simp add:subsetD)
apply (simp add:ideal_inc_set_multTr)
done
lemma (in Ring) AB_inc_sum_mult:"⟦ideal R A; ideal R B⟧ ⟹
sum_mult R A B ⊆ A ∩ B"
apply (frule ideal_subset1[of A], frule ideal_subset1[of B])
apply (frule ideal_inc_set_mult [of "A" "B" "A"], assumption+)
apply (rule subsetI,
simp add:set_mult_def, (erule bexE)+, frule sym, thin_tac "xa ⋅⇩r y = x",
simp,
frule_tac c = xa in subsetD[of A "carrier R"], assumption+,
frule_tac c = y in subsetD[of B "carrier R"], assumption+,
subst ring_tOp_commute, assumption+,
simp add:ideal_ring_multiple)
apply (frule ideal_inc_set_mult [of "A" "B" "B"], assumption+)
apply (rule subsetI,
simp add:set_mult_def, (erule bexE)+, frule sym, thin_tac "xa ⋅⇩r y = x",
simp,
frule_tac c = xa in subsetD[of A "carrier R"], assumption+,
simp add:ideal_ring_multiple)
apply simp
done
lemma (in Ring) sum_mult_is_ideal_prod:"⟦ideal R A; ideal R B⟧ ⟹
sum_mult R A B = A ♢⇩r B"
apply (rule equalityI)
apply (frule ideal_prod_ideal [of "A" "B"], assumption+)
apply (rule ideal_inc_set_mult)
apply (simp add:ideal_subset1)+
apply (rule subsetI)
apply (simp add:set_mult_def ideal_prod_def)
apply (auto del:subsetI)
apply (rule subsetI)
apply (simp add:ideal_prod_def)
apply (frule ideal_subset1[of A],
frule ideal_sum_mult[of A B],
frule ideal_zero[of A], blast, assumption)
apply (frule_tac a = "sum_mult R A B" in forall_spec, simp)
apply (rule subsetI, simp,
thin_tac "∀xa. ideal R xa ∧ {x. ∃i∈A. ∃j∈B. x = i ⋅⇩r j} ⊆ xa ⟶ x ∈ xa",
(erule bexE)+, simp)
apply (rule times_mem_sum_mult, assumption,
simp add:ideal_subset1, assumption+)
done
lemma (in Ring) ideal_prod_assocTr0:"⟦ideal R A; ideal R B; ideal R C; y ∈ C;
z ∈ set_mult R A B⟧ ⟹ z ⋅⇩r y ∈ sum_mult R A (B ♢⇩r C)"
apply (simp add:set_mult_def, (erule bexE)+,
frule sym, thin_tac "x ⋅⇩r ya = z", simp)
apply (frule_tac h = x in ideal_subset[of A], assumption,
frule_tac h = ya in ideal_subset[of B], assumption,
frule_tac h = y in ideal_subset[of C], assumption,
subst ring_tOp_assoc, assumption+)
apply (frule ideal_subset1[of A],
frule ideal_subset1[of B],
frule ideal_subset1[of C],
frule ideal_prod_ideal[of B C], assumption,
frule ideal_subset1[of "B ♢⇩r C"])
apply (rule times_mem_sum_mult[of A "B ♢⇩r C"], assumption+,
subst sum_mult_is_ideal_prod[of B C, THEN sym], assumption+,
rule times_mem_sum_mult[of B C], assumption+)
done
lemma (in Ring) ideal_prod_assocTr1:"⟦ideal R A; ideal R B; ideal R C; y ∈ C⟧
⟹ ∀f ∈ {j. j≤(n::nat)} → set_mult R A B. (Σ⇩e R f n) ⋅⇩r y ∈ A ♢⇩r (B ♢⇩r C)"
apply (cut_tac ring_is_ag)
apply (frule ideal_prod_ideal[of "B" "C"], assumption+,
subst sum_mult_is_ideal_prod[of A "B ♢⇩r C", THEN sym], assumption+)
apply (induct_tac n)
apply simp
apply (simp add:ideal_prod_assocTr0)
apply (rule ballI,
frule_tac x = f in bspec,
thin_tac "∀f∈{j. j ≤ n} → set_mult R A B.
Σ⇩e R f n ⋅⇩r y ∈ sum_mult R A (B ♢⇩r C)",
rule Pi_I, simp,
frule_tac f = f and A = "{j. j ≤ Suc n}" and B = "set_mult R A B" and
x = x in funcset_mem, simp, assumption)
apply simp
apply (frule ideal_subset1[of A], frule ideal_subset1[of B],
frule set_mult_sub[of A B], assumption,
frule_tac f = f and A = "{j. j ≤ (Suc n)}" in extend_fun[of _ _
"set_mult R A B"
"carrier R"], assumption,
subst ring_distrib2,
simp add:ideal_subset)
apply (rule aGroup.nsum_mem, assumption)
apply (simp add:Pi_def)
apply (simp add:funcset_mem del:Pi_I',
frule_tac f = f and A = "{j. j ≤ Suc n}" and B = "set_mult R A B" and
x = "Suc n" in funcset_mem, simp)
apply (frule ideal_subset1[of A],
frule ideal_zero[of A],
frule ideal_sum_mult[of A "B ♢⇩r C"], blast, assumption)
apply (rule ideal_pOp_closed, assumption+)
apply (simp add:ideal_prod_assocTr0)
done
lemma (in Ring) ideal_quotient_idealTr:"⟦ideal R A; ideal R B; ideal R C;
x ∈ carrier R;∀c∈C. x ⋅⇩r c ∈ ideal_quotient R A B⟧ ⟹
f∈{j. j ≤ n} → set_mult R B C ⟶ x ⋅⇩r (nsum R f n) ∈ A"
apply (frule ideal_subset1 [of "A"],
frule ideal_subset1 [of "B"])
apply (induct_tac n)
apply (rule impI)
apply (cut_tac n_in_Nsetn[of 0])
apply (frule funcset_mem, assumption+)
apply (thin_tac "f ∈ {j. j ≤ 0} → set_mult R B C")
apply (simp add:set_mult_def)
apply (erule bexE)+
apply (frule sym, thin_tac "xa ⋅⇩r y = f 0", simp)
apply (frule_tac h = xa in ideal_subset[of B], assumption,
frule_tac h = y in ideal_subset[of C], assumption)
apply (frule_tac x = xa and y = y in ring_tOp_commute, assumption+,
simp)
apply (subst ring_tOp_assoc[THEN sym], assumption+)
apply (frule_tac x = y in bspec, assumption,
thin_tac "∀c∈C. x ⋅⇩r c ∈ A †⇩R B")
apply (simp add:ideal_quotient_def)
apply (rule impI)
apply (frule func_pre) apply simp
apply (cut_tac ring_is_ag)
apply (frule ideal_subset1[of B], frule ideal_subset1[of C],
frule set_mult_sub[of B C], assumption+)
apply (cut_tac n = n in nsum_memr [of _ "f"],
rule allI, rule impI,
frule_tac x = i in funcset_mem, simp, simp add:subsetD)
apply (frule_tac a = n in forall_spec, simp)
apply (thin_tac "∀l≤n. Σ⇩e R f l ∈ carrier R",
frule_tac f = f and A = "{j. j ≤ Suc n}" and B = "set_mult R B C"
and x = "Suc n" in funcset_mem, simp,
frule_tac c = "f (Suc n)" in subsetD[of "set_mult R B C" " carrier R"],
assumption+)
apply (subst ring_distrib1, assumption+)
apply (rule ideal_pOp_closed[of A], assumption+)
apply (simp add: set_mult_def, (erule bexE)+,
fold set_mult_def,
frule sym, thin_tac "xa ⋅⇩r y = f (Suc n)", simp)
apply (frule_tac c = xa in subsetD[of B "carrier R"], assumption+,
frule_tac c = y in subsetD[of C "carrier R"], assumption+,
frule_tac x = xa and y = y in ring_tOp_commute, assumption, simp,
subst ring_tOp_assoc[THEN sym], assumption+)
apply (simp add:ideal_quotient_def)
done
lemma (in Ring) ideal_quotient_ideal:"⟦ideal R A; ideal R B; ideal R C⟧ ⟹
A †⇩R B †⇩R C = A †⇩R B ♢⇩r C"
apply (rule equalityI)
apply (rule subsetI)
apply (simp add:ideal_quotient_def [of _ _ "C"])
apply (erule conjE)
apply (simp add:ideal_quotient_def [of _ _ "B ♢⇩r C"])
apply (rule ballI)
apply (simp add:sum_mult_is_ideal_prod [THEN sym])
apply (simp add:sum_mult_def)
apply (erule exE, erule bexE)
apply (rename_tac x c n f)
apply (frule sym) apply simp
apply (simp add:ideal_quotient_idealTr)
apply (rule subsetI)
apply (simp add:sum_mult_is_ideal_prod [THEN sym])
apply (simp add:ideal_quotient_def)
apply (erule conjE)
apply (rule ballI)
apply (rename_tac x c)
apply (frule ideal_subset [of "C"], assumption+)
apply (simp add:ring_tOp_closed)
apply (rule ballI)
apply (rename_tac x v u)
apply (frule ideal_subset [of "B"], assumption+)
apply (subst ring_tOp_assoc, assumption+)
apply (frule ideal_subset1[of B],
frule ideal_subset1[of C],
frule_tac a = u and b = v in times_mem_sum_mult[of B C], assumption+)
apply (frule_tac x = u and y = v in ring_tOp_commute, assumption,
simp)
done
lemma (in Ring) ideal_prod_assocTr:"⟦ideal R A; ideal R B; ideal R C⟧ ⟹
∀f. (f ∈ {j. j ≤ (n::nat)} → set_mult R (A ♢⇩r B) C ⟶
(Σ⇩e R f n) ∈ A ♢⇩r (B ♢⇩r C))"
apply (subgoal_tac "∀x∈(A ♢⇩r B). ∀y∈C. x ⋅⇩r y ∈ A ♢⇩r (B ♢⇩r C)")
apply (induct_tac n)
apply (rule allI) apply (rule impI)
apply (frule_tac f = f and A = "{j. j ≤ 0}" and B = "set_mult R (A ♢⇩r B) C"
and x = 0 in funcset_mem, simp, simp)
apply (simp add:set_mult_def)
apply ((erule bexE)+, frule sym, thin_tac "x ⋅⇩r y = f 0", simp)
apply (rule allI, rule impI)
apply (frule func_pre)
apply (frule_tac a = f in forall_spec, simp,
thin_tac "∀f. f ∈ {j. j ≤ n} → set_mult R (A ♢⇩r B) C ⟶
Σ⇩e R f n ∈ A ♢⇩r (B ♢⇩r C)",
frule ideal_prod_ideal[of "B" "C"], assumption+,
frule ideal_prod_ideal[of "A" "B ♢⇩r C"], assumption+, simp)
apply (rule ideal_pOp_closed[of "A ♢⇩r (B ♢⇩r C)"], assumption+)
apply (cut_tac n = "Suc n" in n_in_Nsetn,
frule_tac f = f and A = "{j. j ≤ Suc n}" and
B = "set_mult R (A ♢⇩r B) C" and x = "Suc n" in funcset_mem, assumption)
apply (thin_tac "f ∈ {j. j ≤ n} → set_mult R (A ♢⇩r B) C",
thin_tac "f ∈ {j. j ≤ Suc n} → set_mult R (A ♢⇩r B) C")
apply (simp add:set_mult_def)
apply ((erule bexE)+,
frule sym, thin_tac "x ⋅⇩r y = f (Suc n)", simp)
apply (rule ballI)+
apply (simp add:sum_mult_is_ideal_prod[of A B, THEN sym])
apply (frule ideal_subset1[of A], frule ideal_subset1[of B],
frule_tac x = x in sum_mult_mem1[of A B], assumption+)
apply (erule exE, erule bexE, frule sym, thin_tac "Σ⇩e R f n = x",
simp)
apply (simp add:ideal_prod_assocTr1)
done
lemma (in Ring) ideal_prod_assoc:"⟦ideal R A; ideal R B; ideal R C⟧ ⟹
(A ♢⇩r B) ♢⇩r C = A ♢⇩r (B ♢⇩r C)"
apply (rule equalityI)
apply (rule subsetI)
apply (frule ideal_prod_ideal[of "A" "B"], assumption+)
apply (frule sum_mult_is_ideal_prod[of "A ♢⇩r B" "C"], assumption+)
apply (frule sym) apply (thin_tac "sum_mult R (A ♢⇩r B) C = (A ♢⇩r B) ♢⇩r C")
apply simp apply (thin_tac "(A ♢⇩r B) ♢⇩r C = sum_mult R (A ♢⇩r B) C")
apply (thin_tac "ideal R (A ♢⇩r B)")
apply (frule ideal_prod_ideal[of "B" "C"], assumption+)
apply (simp add:sum_mult_def)
apply (erule exE, erule bexE)
apply (frule sym, thin_tac "Σ⇩e R f n = x", simp)
apply (simp add:ideal_prod_assocTr)
apply (rule subsetI)
apply (frule ideal_prod_ideal[of "B" "C"], assumption+)
apply (simp add:ideal_prod_commute [of "A" "B ♢⇩r C"])
apply (frule ideal_prod_ideal[of "A" "B"], assumption+)
apply (simp add:ideal_prod_commute[of "A ♢⇩r B" "C"])
apply (simp add:ideal_prod_commute[of "A" "B"])
apply (simp add:ideal_prod_commute[of "B" "C"])
apply (frule ideal_prod_ideal[of "C" "B"], assumption+)
apply (frule sum_mult_is_ideal_prod[of "C ♢⇩r B" "A"], assumption+)
apply (frule sym) apply (thin_tac "sum_mult R (C ♢⇩r B) A = (C ♢⇩r B) ♢⇩r A")
apply simp apply (thin_tac "(C ♢⇩r B) ♢⇩r A = sum_mult R (C ♢⇩r B) A")
apply (thin_tac "ideal R (C ♢⇩r B)")
apply (frule ideal_prod_ideal[of "B" "A"], assumption+)
apply (simp add:sum_mult_def)
apply (erule exE, erule bexE)
apply (frule sym, thin_tac "Σ⇩e R f n = x", simp)
apply (simp add:ideal_prod_assocTr)
done
lemma (in Ring) prod_principal_idealTr0:" ⟦a ∈ carrier R; b ∈ carrier R;
z ∈ set_mult R (R ♢⇩p a) (R ♢⇩p b)⟧ ⟹ z ∈ R ♢⇩p (a ⋅⇩r b)"
apply (simp add:set_mult_def, (erule bexE)+,
simp add:Rxa_def, (erule bexE)+, simp)
apply (frule_tac x = r and y = a and z = "ra ⋅⇩r b" in ring_tOp_assoc,
assumption+, simp add:ring_tOp_closed, simp)
apply (simp add:ring_tOp_assoc[THEN sym, of a _ b])
apply (frule_tac x = a and y = ra in ring_tOp_commute, assumption+, simp)
apply (simp add:ring_tOp_assoc[of _ a b],
frule_tac x = a and y = b in ring_tOp_closed, assumption)
apply (simp add:ring_tOp_assoc[THEN sym, of _ _ "a ⋅⇩r b"],
frule sym, thin_tac "r ⋅⇩r ra ⋅⇩r (a ⋅⇩r b) = z", simp,
frule_tac x = r and y = ra in ring_tOp_closed, assumption+)
apply blast
done
lemma (in Ring) prod_principal_idealTr1:" ⟦a ∈ carrier R; b ∈ carrier R⟧ ⟹
∀f ∈ {j. j ≤ (n::nat)} → set_mult R (R ♢⇩p a) (R ♢⇩p b).
Σ⇩e R f n ∈ R ♢⇩p (a ⋅⇩r b)"
apply (induct_tac n)
apply (rule ballI,
frule_tac f = f in funcset_mem[of _ "{j. j ≤ 0}"
"set_mult R (R ♢⇩p a) (R ♢⇩p b)"], simp)
apply (simp add:prod_principal_idealTr0)
apply (rule ballI,
frule func_pre,
frule_tac x = f in bspec, assumption,
thin_tac "∀f∈{j. j ≤ n} → set_mult R (R ♢⇩p a) (R ♢⇩p b).
Σ⇩e R f n ∈ R ♢⇩p (a ⋅⇩r b)")
apply (frule ring_tOp_closed[of a b], assumption)
apply (frule principal_ideal[of "a ⋅⇩r b"], simp,
rule ideal_pOp_closed, assumption+)
apply (cut_tac n = "Suc n" in n_in_Nsetn,
frule_tac f = f and A = "{j. j ≤ Suc n}" and
B = "set_mult R (R ♢⇩p a) (R ♢⇩p b)" in funcset_mem, assumption)
apply (simp add:prod_principal_idealTr0)
done
lemma (in Ring) prod_principal_ideal:"⟦a ∈ carrier R; b ∈ carrier R⟧ ⟹
(Rxa R a) ♢⇩r (Rxa R b) = Rxa R (a ⋅⇩r b)"
apply (frule principal_ideal[of "a"],
frule principal_ideal[of "b"])
apply (subst sum_mult_is_ideal_prod[THEN sym, of "Rxa R a" "Rxa R b"],
assumption+)
apply (rule equalityI)
apply (rule subsetI)
apply (simp add:sum_mult_def)
apply (erule exE, erule bexE)
apply (frule sym, thin_tac "Σ⇩e R f n = x", simp, thin_tac "x = Σ⇩e R f n")
apply (simp add:prod_principal_idealTr1)
apply (rule subsetI)
apply (simp add:Rxa_def, fold Rxa_def)
apply (erule bexE)
apply (simp add:ring_tOp_assoc[THEN sym])
apply (frule ideal_subset1[of "R ♢⇩p a"],
frule ideal_subset1[of "R ♢⇩p b"])
apply (rule_tac a = "r ⋅⇩r a" and b = b in times_mem_sum_mult[of "R ♢⇩p a"
"R ♢⇩p b"], assumption+)
apply (simp add:Rxa_def, blast)
apply (simp add:a_in_principal)
done
lemma (in Ring) principal_ideal_n_pow1:"a ∈ carrier R ⟹
(Rxa R a)⇗♢R n⇖ = Rxa R (a^⇗R n ⇖)"
apply (cut_tac ring_one)
apply (induct_tac n)
apply simp
apply (cut_tac a_in_principal[of "1⇩r"])
apply (frule principal_ideal[of "1⇩r"])
apply (frule ideal_inc_one, assumption, simp)
apply (simp add:ring_one)
apply simp
apply (frule_tac n = n in npClose[of a],
subst prod_principal_ideal, assumption+)
apply (simp add:ring_tOp_commute)
done
lemma (in Ring) principal_ideal_n_pow:"⟦a ∈ carrier R; I = Rxa R a⟧ ⟹
I ⇗♢R n⇖ = Rxa R (a^⇗R n⇖)"
apply simp
apply (rule principal_ideal_n_pow1[of "a" "n"], assumption+)
done
text‹more about ‹ideal_n_prod››
lemma (in Ring) nprod_eqTr:" f ∈ {j. j ≤ (n::nat)} → carrier R ∧
g ∈ {j. j ≤ n} → carrier R ∧ (∀j ≤ n. f j = g j) ⟶
nprod R f n = nprod R g n"
apply (induct_tac n)
apply simp
apply (rule impI, (erule conjE)+)
apply (frule func_pre[of f], frule func_pre[of g],
cut_tac n = n in Nsetn_sub_mem1, simp)
done
lemma (in Ring) nprod_eq:"⟦∀j ≤ n. f j ∈ carrier R; ∀j ≤ n. g j ∈ carrier R;
(∀j ≤ (n::nat). f j = g j)⟧ ⟹ nprod R f n = nprod R g n"
apply (cut_tac nprod_eqTr[of f n g])
apply simp
done
definition
mprod_expR :: "[('b, 'm) Ring_scheme, nat ⇒ nat, nat ⇒ 'b, nat] ⇒ 'b" where
"mprod_expR R e f n = nprod R (λj. ((f j)^⇗R (e j)⇖)) n"
lemma (in Ring) mprodR_Suc:"⟦e ∈ {j. j ≤ (Suc n)} → {j. (0::nat) ≤ j};
f ∈ {j. j ≤ (Suc n)} → carrier R⟧ ⟹
mprod_expR R e f (Suc n) =
(mprod_expR R e f n) ⋅⇩r ((f (Suc n))^⇗R (e (Suc n))⇖)"
apply (simp add:mprod_expR_def)
done
lemma (in Ring) mprod_expR_memTr:"e ∈ {j. j ≤ n} → {j. (0::nat) ≤ j} ∧
f ∈ {j. j ≤ n} → carrier R ⟶ mprod_expR R e f n ∈ carrier R"
apply (induct_tac n)
apply (rule impI, (erule conjE)+)
apply (cut_tac n_in_Nsetn[of 0],
simp add: mprod_expR_def)
apply (rule npClose,
simp add:Pi_def)
apply (rule impI, (erule conjE)+)
apply (frule func_pre[of "e"], frule func_pre[of "f"])
apply simp
apply (simp add:mprodR_Suc)
apply (rule ring_tOp_closed, assumption+)
apply (rule npClose, cut_tac n = "Suc n" in n_in_Nsetn)
apply (simp add:Pi_def)
done
lemma (in Ring) mprod_expR_mem:"⟦ e ∈ {j. j ≤ n} → {j. (0::nat) ≤ j};
f ∈ {j. j ≤ n} → carrier R⟧ ⟹ mprod_expR R e f n ∈ carrier R"
apply (simp add:mprod_expR_memTr)
done
lemma (in Ring) prod_n_principal_idealTr:"e ∈ {j. j≤n} → {j. (0::nat)≤j} ∧
f ∈ {j. j≤n} → carrier R ∧ (∀k ≤ n. J k = (Rxa R (f k))⇗♢R (e k)⇖) ⟶
ideal_n_prod R n J = Rxa R (mprod_expR R e f n)"
apply (induct_tac n)
apply (rule impI) apply (erule conjE)+
apply (simp add:mprod_expR_def)
apply (subgoal_tac "J 0 = R ♢⇩p (f 0) ⇗♢R (e 0)⇖")
apply simp
apply (rule principal_ideal_n_pow[of "f 0" "R ♢⇩p (f 0)"])
apply (cut_tac n_in_Nsetn[of 0], simp add:Pi_def) apply simp
apply (cut_tac n_in_Nsetn[of 0], simp)
apply (rule impI, (erule conjE)+)
apply (frule func_pre[of "e"], frule func_pre[of "f"])
apply (cut_tac n = n in Nsetn_sub_mem1,
simp add:mprodR_Suc)
apply (cut_tac n = "Suc n" in n_in_Nsetn, simp)
apply (frule_tac A = "{j. j ≤ Suc n}" and x = "Suc n" in funcset_mem[of "f" _ "carrier R"], simp)
apply (frule_tac a = "f (Suc n)" and I = "R ♢⇩p (f (Suc n))" and n = "e (Suc n)" in principal_ideal_n_pow) apply simp
apply (subst prod_principal_ideal[THEN sym])
apply (simp add:mprod_expR_mem)
apply (rule npClose, assumption+) apply simp
done
lemma (in Ring) prod_n_principal_ideal:"⟦e ∈ {j. j≤n} → {j. (0::nat)≤j};
f ∈ {j. j≤n} → carrier R; ∀k≤ n. J k = (Rxa R (f k))⇗♢R (e k)⇖⟧ ⟹
ideal_n_prod R n J = Rxa R (mprod_expR R e f n)"
apply (simp add:prod_n_principal_idealTr[of e n f J])
done
lemma (in Idomain) a_notin_n_pow1:"⟦a ∈ carrier R; ¬ Unit R a; a ≠ 𝟬; 0 < n⟧
⟹ a ∉ (Rxa R a) ⇗♢R (Suc n)⇖"
apply (rule contrapos_pp)
apply (simp del:ipSuc) apply (simp del:ipSuc)
apply (frule principal_ideal[of "a"])
apply (frule principal_ideal_n_pow[of "a" "R ♢⇩p a" "Suc n"])
apply simp apply (simp del:ipSuc)
apply (thin_tac "R ♢⇩p a ⇗♢R (Suc n)⇖ = R ♢⇩p (a^⇗R n⇖ ⋅⇩r a)")
apply (thin_tac "ideal R (R ♢⇩p a)")
apply (simp add:Rxa_def)
apply (erule bexE)
apply (frule npClose[of "a" "n"])
apply (simp add:ring_tOp_assoc[THEN sym])
apply (frule ring_l_one[THEN sym, of "a"])
apply (subgoal_tac "1⇩r ⋅⇩r a = r ⋅⇩r a^⇗R n⇖ ⋅⇩r a")
apply (cut_tac b = "r ⋅⇩r (a^⇗R n⇖)" in idom_mult_cancel_r[of "1⇩r" _ "a"])
apply (simp add:ring_one) apply (simp add:ring_tOp_closed)
apply assumption+
apply (thin_tac "1⇩r ⋅⇩r a = r ⋅⇩r a^⇗R n⇖ ⋅⇩r a",
thin_tac "a = 1⇩r ⋅⇩r a",
thin_tac "a = r ⋅⇩r a^⇗R n⇖ ⋅⇩r a")
apply (subgoal_tac "1⇩r = r ⋅⇩r (a^⇗R (Suc (n - Suc 0))⇖)") prefer 2
apply (simp del:ipSuc)
apply (thin_tac "1⇩r = r ⋅⇩r a^⇗R n⇖")
apply (simp del:Suc_pred)
apply (frule npClose[of "a" "n - Suc 0"])
apply (simp add:ring_tOp_assoc[THEN sym])
apply (frule_tac x = r and y = "a^⇗R (n - Suc 0)⇖" in ring_tOp_closed, assumption)
apply (simp add:ring_tOp_commute[of _ a])
apply (simp add:Unit_def) apply blast
apply simp
done
lemma (in Idomain) a_notin_n_pow2:"⟦a ∈ carrier R; ¬ Unit R a; a ≠ 𝟬;
0 < n⟧ ⟹ a^⇗R n⇖ ∉ (Rxa R a) ⇗♢R (Suc n)⇖"
apply (rule contrapos_pp)
apply (simp del:ipSuc, simp del:ipSuc)
apply (frule principal_ideal[of "a"])
apply (frule principal_ideal_n_pow[of "a" "R ♢⇩p a" "Suc n"])
apply (simp, simp del:ipSuc)
apply (thin_tac "R ♢⇩p a ⇗♢R (Suc n)⇖ = R ♢⇩p (a^⇗R n⇖ ⋅⇩r a)")
apply (thin_tac "ideal R (R ♢⇩p a)")
apply (simp add:Rxa_def)
apply (erule bexE)
apply (frule idom_potent_nonzero[of "a" "n"], assumption+)
apply (frule npClose[of "a" "n"])
apply (frule ring_l_one[THEN sym, of "a^⇗R n⇖ "])
apply (subgoal_tac "1⇩r ⋅⇩r (a^⇗R n⇖) = r ⋅⇩r ((a^⇗R n⇖) ⋅⇩r a)")
prefer 2 apply simp
apply (thin_tac "a^⇗R n⇖ = 1⇩r ⋅⇩r a^⇗R n⇖",
thin_tac "a^⇗R n⇖ = r ⋅⇩r (a^⇗R n⇖ ⋅⇩r a)")
apply (simp add:ring_tOp_commute[of "a^⇗R n⇖" a])
apply (simp add:ring_tOp_assoc[THEN sym])
apply (cut_tac ring_one,
frule_tac b = "r ⋅⇩r a" in idom_mult_cancel_r[of "1⇩r" _ "a^⇗R n⇖"],
simp add:ring_tOp_closed,
assumption+)
apply (simp add:ring_tOp_commute[of _ a])
apply (simp add:Unit_def, blast)
done
lemma (in Idomain) n_pow_not_prime:"⟦a ∈ carrier R; a ≠ 𝟬; 0 < n⟧
⟹ ¬ prime_ideal R ((Rxa R a) ⇗♢R (Suc n)⇖)"
apply (case_tac "n = 0")
apply simp
apply (case_tac "Unit R a")
apply (simp del:ipSuc add:prime_ideal_def, rule impI)
apply (frule principal_ideal[of "a"])
apply (frule principal_ideal_n_pow[of "a" "R ♢⇩p a" "Suc n"])
apply simp apply (simp del:npow_suc)
apply (simp del:npow_suc add:idom_potent_unit [of "a" "Suc n"])
apply (thin_tac "R ♢⇩p a ♢⇩r R ♢⇩p a ⇗♢R n⇖ = R ♢⇩p (a^⇗R (Suc n)⇖)")
apply (frule npClose[of "a" "Suc n"])
apply (frule a_in_principal[of "a^⇗R (Suc n)⇖"])
apply (simp add: ideal_inc_unit)
apply (frule a_notin_n_pow1[of "a" "n"], assumption+)
apply (frule a_notin_n_pow2[of "a" "n"], assumption+)
apply (frule npClose[of "a" "n"])
apply (frule principal_ideal[of "a"])
apply (frule principal_ideal_n_pow[of "a" "R ♢⇩p a" "Suc n"])
apply simp apply (simp del:ipSuc npow_suc)
apply (thin_tac "R ♢⇩p a ⇗♢R (Suc n)⇖ = R ♢⇩p (a^⇗R (Suc n)⇖)")
apply (subst prime_ideal_def)
apply (simp del:npow_suc) apply (rule impI)
apply (subgoal_tac "(a^⇗R n⇖) ⋅⇩r a ∈ R ♢⇩p (a^⇗R (Suc n)⇖)")
apply blast
apply (simp add:Rxa_def)
apply (frule ring_tOp_closed[of "a" "a^⇗R n⇖"], assumption+)
apply (frule ring_l_one[THEN sym, of "a ⋅⇩r (a^⇗R n⇖)"])
apply (cut_tac ring_one)
apply (simp add:ring_tOp_commute[of _ a], blast)
done
lemma (in Idomain) principal_pow_prime_condTr:
"⟦a ∈ carrier R; a ≠ 𝟬; prime_ideal R ((Rxa R a) ⇗♢R (Suc n)⇖)⟧ ⟹ n = 0"
apply (rule contrapos_pp, (simp del:ipSuc)+)
apply (frule n_pow_not_prime[of "a" "n"], assumption+)
apply (simp del:ipSuc)
done
lemma (in Idomain) principal_pow_prime_cond:
"⟦a ∈ carrier R; a ≠ 𝟬; prime_ideal R ((Rxa R a) ⇗♢R n⇖)⟧ ⟹ n = Suc 0"
apply (case_tac "n = 0")
apply simp
apply (simp add:prime_ideal_def) apply (erule conjE)
apply (cut_tac ring_one, simp)
apply (subgoal_tac "prime_ideal R (R ♢⇩p a ⇗♢R (Suc (n - Suc 0))⇖)")
apply (frule principal_pow_prime_condTr[of "a" "n - Suc 0"], assumption+)
apply simp apply simp
done
section "Extension and contraction"
locale TwoRings = Ring +
fixes R' (structure)
assumes secondR: "Ring R'"
definition
i_contract :: "['a ⇒ 'b, ('a, 'm1) Ring_scheme, ('b, 'm2) Ring_scheme,
'b set] ⇒ 'a set" where
"i_contract f R R' J = invim f (carrier R) J"
definition
i_extension :: "['a ⇒ 'b, ('a, 'm1) Ring_scheme, ('b, 'm2) Ring_scheme,
'a set] ⇒ 'b set" where
"i_extension f R R' I = sum_mult R' (f ` I) (carrier R')"
lemma (in TwoRings) i_contract_sub:"⟦f ∈ rHom R R'; ideal R' J ⟧ ⟹
(i_contract f R R' J) ⊆ carrier R"
by (auto simp add:i_contract_def invim_def)
lemma (in TwoRings) i_contract_ideal:"⟦f ∈ rHom R R'; ideal R' J ⟧ ⟹
ideal R (i_contract f R R' J)"
apply (cut_tac Ring,
cut_tac secondR)
apply (rule ideal_condition)
apply (simp add:i_contract_sub)
apply (simp add:i_contract_def invim_def)
apply (cut_tac ring_zero)
apply (cut_tac Ring)
apply (frule rHom_0_0[of R R' f], assumption+,
cut_tac Ring.ideal_zero[of R' J])
apply (frule sym, thin_tac "f 𝟬 = 𝟬⇘R'⇙", simp, blast,
assumption+)
apply (rule ballI)+
apply (simp add:i_contract_def invim_def, (erule conjE)+)
apply (cut_tac ring_is_ag,
frule_tac x = y in aGroup.ag_mOp_closed[of R], assumption)
apply (simp add:aGroup.ag_pOp_closed)
apply (simp add:rHom_add)
apply (frule_tac x = y in rHom_inv_inv[of R R' _ f], assumption+, simp,
thin_tac "f (-⇩a y) = -⇩a⇘R'⇙ (f y)",
frule_tac x = "f y" in Ring.ideal_inv1_closed[of R' J], assumption+,
rule Ring.ideal_pOp_closed[of R'], assumption+)
apply ((rule ballI)+,
simp add:i_contract_def invim_def, erule conjE,
simp add:ring_tOp_closed,
simp add:rHom_tOp)
apply (frule_tac a = r in rHom_mem[of f R R'], assumption,
simp add:Ring.ideal_ring_multiple[of R' J])
done
lemma (in TwoRings) i_contract_mono:"⟦f ∈ rHom R R'; ideal R' J1; ideal R' J2;
J1 ⊆ J2 ⟧ ⟹ i_contract f R R' J1 ⊆ i_contract f R R' J2"
apply (rule subsetI)
apply (simp add:i_contract_def invim_def) apply (erule conjE)
apply (rule subsetD, assumption+)
done
lemma (in TwoRings) i_contract_prime:"⟦f ∈ rHom R R'; prime_ideal R' P⟧ ⟹
prime_ideal R (i_contract f R R' P)"
apply (cut_tac Ring,
cut_tac secondR)
apply (simp add:prime_ideal_def, (erule conjE)+)
apply (simp add:i_contract_ideal)
apply (rule conjI)
apply (rule contrapos_pp, simp+)
apply (simp add:i_contract_def invim_def, erule conjE)
apply (simp add:rHom_one)
apply (rule ballI)+
apply (frule_tac a = x in rHom_mem[of "f" "R" "R'"], assumption+,
frule_tac a = y in rHom_mem[of "f" "R" "R'"], assumption+)
apply (rule impI)
apply (simp add:i_contract_def invim_def, erule conjE)
apply (simp add:rHom_tOp)
done
lemma (in TwoRings) i_extension_ideal:"⟦f ∈ rHom R R'; ideal R I ⟧ ⟹
ideal R' (i_extension f R R' I)"
apply (cut_tac Ring, cut_tac secondR)
apply (simp add:i_extension_def)
apply (rule Ring.ideal_sum_mult [of "R'" "f ` I" "carrier R'"], assumption+)
apply (rule subsetI)
apply (simp add:image_def)
apply (erule bexE, frule_tac a = xa in rHom_mem[of f R R'],
rule ideal_subset, assumption+, simp)
apply (frule ideal_zero, simp, blast)
apply (simp add:Ring.whole_ideal[of R'])
done
lemma (in TwoRings) i_extension_mono:"⟦f ∈ rHom R R'; ideal R I1; ideal R I2;
I1 ⊆ I2 ⟧ ⟹ (i_extension f R R' I1) ⊆ (i_extension f R R' I2)"
apply (rule subsetI)
apply (simp add:i_extension_def)
apply (simp add:sum_mult_def)
apply (erule exE, erule bexE)
apply (cut_tac Ring.set_mult_mono[of R' "f ` I1" "f ` I2" "carrier R'"])
apply (frule_tac f = fa and A = "{j. j ≤ n}" in extend_fun[of _ _
"set_mult R' (f ` I1) (carrier R')" "set_mult R' (f ` I2) (carrier R')"],
assumption+) apply blast
apply (simp add:secondR)
apply (simp add:image_def, rule subsetI, simp, erule bexE,
frule_tac h = xb in ideal_subset[of I1], assumption, simp add:rHom_mem)
apply (simp add:image_def, rule subsetI, simp, erule bexE,
frule_tac h = xb in ideal_subset[of I2], assumption, simp add:rHom_mem)
apply (rule subsetI,
simp add:image_def, erule bexE,
frule_tac c = xb in subsetD[of I1 I2], assumption+, blast)
apply simp
done
lemma (in TwoRings) e_c_inc_self:"⟦f ∈ rHom R R'; ideal R I⟧ ⟹
I ⊆ i_contract f R R' (i_extension f R R' I)"
apply (rule subsetI)
apply (simp add:i_contract_def i_extension_def invim_def)
apply (simp add:ideal_subset)
apply (cut_tac secondR,
frule Ring.ring_one [of "R'"])
apply (frule_tac h = x in ideal_subset[of I], assumption,
frule_tac f = f and A = R and R = R' and a = x in rHom_mem, assumption)
apply (frule_tac t = "f x" in Ring.ring_r_one[THEN sym, of R'], assumption)
apply (frule_tac a = "f x" and b = "1⇩r⇘R'⇙" in Ring.times_mem_sum_mult[of R'
"f ` I" "carrier R'"],
rule subsetI,
simp add:image_def, erule bexE,
frule_tac h = xb in ideal_subset[of I], assumption,
simp add:rHom_mem, simp,
simp add:image_def, blast, assumption+)
apply simp
done
lemma (in TwoRings) c_e_incd_self:"⟦f ∈ rHom R R'; ideal R' J ⟧ ⟹
i_extension f R R' (i_contract f R R' J) ⊆ J"
apply (rule subsetI)
apply (simp add:i_extension_def)
apply (simp add:sum_mult_def)
apply (erule exE, erule bexE)
apply (cut_tac secondR,
frule_tac n = n and f = fa in Ring.ideal_nsum_closed[of R' J ],
assumption)
apply (rule allI, rule impI) apply (
frule_tac f = fa and A = "{j. j ≤ n}" and
B = "set_mult R' (f ` i_contract f R R' J) (carrier R')" and x = j in
funcset_mem, simp) apply (
thin_tac "fa ∈ {j. j ≤ n} → set_mult R' (f ` i_contract f R R' J) (carrier R')")
apply (simp add:set_mult_def, (erule bexE)+,
simp add:i_contract_def invim_def, erule conjE)
apply (frule_tac x = "f xa" and r = y in Ring.ideal_ring_multiple1[of R' J],
assumption+, simp)
apply simp
done
lemma (in TwoRings) c_e_c_eq_c:"⟦f ∈ rHom R R'; ideal R' J ⟧ ⟹
i_contract f R R' (i_extension f R R' (i_contract f R R' J))
= i_contract f R R' J"
apply (frule i_contract_ideal [of "f" "J"], assumption)
apply (frule e_c_inc_self [of "f" "i_contract f R R' J"], assumption+)
apply (frule c_e_incd_self [of "f" "J"], assumption+)
apply (frule i_contract_mono [of "f"
"i_extension f R R' (i_contract f R R' J)" "J"])
apply (rule i_extension_ideal, assumption+)
apply (rule equalityI, assumption+)
done
lemma (in TwoRings) e_c_e_eq_e:"⟦f ∈ rHom R R'; ideal R I ⟧ ⟹
i_extension f R R' (i_contract f R R' (i_extension f R R' I))
= i_extension f R R' I"
apply (frule i_extension_ideal [of "f" "I"], assumption+)
apply (frule c_e_incd_self [of "f" "i_extension f R R' I"], assumption+)
apply (rule equalityI, assumption+)
apply (thin_tac "i_extension f R R' (i_contract f R R' (i_extension f R R' I))
⊆ i_extension f R R' I")
apply (frule e_c_inc_self [of "f" "I"], assumption+)
apply (rule i_extension_mono [of "f" "I"
"i_contract f R R' (i_extension f R R' I)"], assumption+)
apply (rule i_contract_ideal, assumption+)
done
section "Complete system of representatives"
definition
csrp_fn :: "[_, 'a set] ⇒ 'a set ⇒ 'a" where
"csrp_fn R I = (λx∈carrier (R /⇩r I). (if x = I then 𝟬⇘R⇙ else SOME y. y ∈ x))"
definition
csrp :: "[_ , 'a set] ⇒ 'a set" where
"csrp R I == (csrp_fn R I) ` (carrier (R /⇩r I))"
lemma (in Ring) csrp_mem:"⟦ideal R I; a ∈ carrier R⟧ ⟹
csrp_fn R I (a ⊎⇘R⇙ I) ∈ a ⊎⇘R⇙ I"
apply (simp add:csrp_fn_def qring_carrier)
apply (case_tac "a ⊎⇘R⇙ I = I") apply simp
apply (rule conjI, rule impI)
apply (simp add:ideal_zero)
apply (rule impI)
apply (cut_tac ring_zero)
apply (frule_tac x = 𝟬 in bspec, assumption+)
apply (thin_tac "∀a∈carrier R. a ⊎⇘R⇙ I ≠ I")
apply (frule ideal_zero[of "I"])
apply (frule ar_coset_same4[of "I" "𝟬"], assumption+, simp)
apply simp
apply (rule conjI)
apply (rule impI, rule someI2_ex)
apply (frule a_in_ar_coset[of "I" "a"], assumption+, blast, assumption+)
apply (rule impI)
apply (frule_tac x = a in bspec, assumption+,
thin_tac "∀aa∈carrier R. aa ⊎⇘R⇙ I ≠ a ⊎⇘R⇙ I", simp)
done
lemma (in Ring) csrp_same:"⟦ideal R I; a ∈ carrier R⟧ ⟹
csrp_fn R I (a ⊎⇘R⇙ I) ⊎⇘R⇙ I = a ⊎⇘R⇙ I"
apply (frule csrp_mem[of "I" "a"], assumption+)
apply (rule ar_cos_same[of "a" "I" "csrp_fn R I (a ⊎⇘R⇙ I)"], assumption+)
done
lemma (in Ring) csrp_mem1:"⟦ideal R I; x ∈ carrier (R /⇩r I)⟧ ⟹
csrp_fn R I x ∈ x"
apply (simp add:qring_carrier, erule bexE, frule sym,
thin_tac "a ⊎⇘R⇙ I = x", simp)
apply (simp add:csrp_mem)
done
lemma (in Ring) csrp_fn_mem:"⟦ideal R I; x ∈ carrier (R /⇩r I)⟧ ⟹
(csrp_fn R I x) ∈ carrier R"
apply (simp add:qring_carrier, erule bexE, frule sym,
thin_tac "a ⊎⇘R⇙ I = x", simp,
frule_tac a = a in csrp_mem[of "I"], assumption+)
apply (rule_tac a = a and x = "csrp_fn R I (a ⊎⇘R⇙ I)" in
ar_coset_subsetD[of "I"], assumption+)
done
lemma (in Ring) csrp_eq_coset:"⟦ideal R I; x ∈ carrier (R /⇩r I)⟧ ⟹
(csrp_fn R I x) ⊎⇘R⇙ I = x"
apply (simp add:qring_carrier, erule bexE)
apply (frule sym, thin_tac "a ⊎⇘R⇙ I = x", simp)
apply (frule_tac a = a in csrp_mem[of "I"], assumption+)
apply (rule ar_cos_same, assumption+)
done
lemma (in Ring) csrp_nz_nz:"⟦ideal R I; x ∈ carrier (R /⇩r I);
x ≠ 𝟬⇘(R /⇩r I)⇙⟧ ⟹ (csrp_fn R I x) ≠ 𝟬"
apply (rule contrapos_pp, simp+)
apply (frule csrp_eq_coset[of "I" "x"], assumption+, simp)
apply (simp add:qring_zero[of "I"])
apply (frule ideal_zero[of "I"]) apply (
cut_tac ring_zero)
apply (simp add:Qring_fix1 [of "𝟬" "I"])
done
lemma (in Ring) csrp_diff_in_vpr:"⟦ideal R I; x ∈ carrier R⟧ ⟹
x ± (-⇩a (csrp_fn R I (pj R I x))) ∈ I"
apply (frule csrp_mem[of "I" "x"],
frule csrp_same[of "I" "x"],
simp add:pj_mem, assumption,
frule ar_coset_subsetD[of I x "csrp_fn R I (x ⊎⇘R⇙ I)"],
assumption+)
apply (frule belong_ar_coset2[of I x "csrp_fn R I (x ⊎⇘R⇙ I)"], assumption+,
frule ideal_inv1_closed[of I "csrp_fn R I (x ⊎⇘R⇙ I) ± -⇩a x"], assumption+,
cut_tac ring_is_ag,
frule aGroup.ag_mOp_closed[of R x], assumption,
simp add:aGroup.ag_pOp_commute[of R "csrp_fn R I (x ⊎⇘R⇙ I)" "-⇩a x"])
apply (simp add:aGroup.ag_p_inv[of R "-⇩a x" "csrp_fn R I (x ⊎⇘R⇙ I)"],
simp add:aGroup.ag_inv_inv,
cut_tac Ring, simp add:pj_mem[of R I x])
done
lemma (in Ring) csrp_pj:"⟦ideal R I; x ∈ carrier (R /⇩r I)⟧ ⟹
(pj R I) (csrp_fn R I x) = x"
apply(cut_tac Ring,
frule csrp_fn_mem[of "I" "x"], assumption+,
simp add:pj_mem[of "R" "I" "csrp_fn R I x"],
simp add:csrp_eq_coset)
done
section "Polynomial ring"
text‹In this section, we treat a ring of polynomials over a ring S.
Numbers are of type ant›
definition
pol_coeff :: "[('a, 'more) Ring_scheme, (nat × (nat ⇒ 'a))] ⇒ bool" where
"pol_coeff S c ⟷ (∀j ≤ (fst c). (snd c) j ∈ carrier S)"
definition
c_max :: "[('a, 'more) Ring_scheme, nat × (nat ⇒ 'a)] ⇒ nat" where
"c_max S c = (if {j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙} = {} then 0 else
n_max {j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙})"
definition
polyn_expr :: "[('a, 'more) Ring_scheme, 'a, nat, nat × (nat ⇒ 'a)] ⇒ 'a" where
"polyn_expr R X k c == nsum R (λj. ((snd c) j) ⋅⇩r⇘R⇙ (X^⇗R j⇖)) k"
definition
algfree_cond :: "[('a, 'm) Ring_scheme, ('a, 'm1) Ring_scheme,
'a] ⇒ bool" where
"algfree_cond R S X ⟷ (∀c. pol_coeff S c ∧ (∀k ≤ (fst c).
(nsum R (λj. ((snd c) j) ⋅⇩r⇘R⇙ (X^⇗R j⇖)) k = 𝟬⇘R⇙ ⟶
(∀j ≤ k. (snd c) j = 𝟬⇘S⇙))))"
locale PolynRg = Ring +
fixes S (structure)
fixes X (structure)
assumes X_mem_R:"X ∈ carrier R"
and not_zeroring:"¬ zeroring S"
and subring: "Subring R S"
and algfree: "algfree_cond R S X"
and S_X_generate:"x ∈ carrier R ⟹
∃f. pol_coeff S f ∧ x = polyn_expr R X (fst f) f"
section ‹Addition and multiplication of ‹polyn_exprs››
subsection ‹Simple properties of a ‹polyn_ring››
lemma Subring_subset:"Subring R S ⟹ carrier S ⊆ carrier R"
by (simp add:Subring_def)
lemma (in Ring) subring_Ring:"Subring R S ⟹ Ring S"
by (simp add:Subring_def)
lemma (in Ring) mem_subring_mem_ring:"⟦Subring R S; x ∈ carrier S⟧ ⟹
x ∈ carrier R"
by (simp add:Subring_def, (erule conjE)+, simp add: subsetD)
lemma (in Ring) Subring_pOp_ring_pOp:"⟦Subring R S; a ∈ carrier S;
b ∈ carrier S ⟧ ⟹ a ±⇘S⇙ b = a ± b"
apply (simp add:Subring_def, (erule conjE)+)
apply (frule rHom_add[of "ridmap S" S R a b], assumption+)
apply (cut_tac Ring.ring_is_ag[of S],
frule aGroup.ag_pOp_closed[of S a b], assumption+,
simp add:ridmap_def, assumption)
done
lemma (in Ring) Subring_tOp_ring_tOp:"⟦Subring R S; a ∈ carrier S;
b ∈ carrier S ⟧ ⟹ a ⋅⇩r⇘S⇙ b = a ⋅⇩r b"
apply (simp add:Subring_def, (erule conjE)+)
apply (frule rHom_tOp[of "S" "R" "a" "b" "ridmap S"], rule Ring_axioms, assumption+)
apply (frule Ring.ring_tOp_closed[of "S" "a" "b"], assumption+,
simp add:ridmap_def)
done
lemma (in Ring) Subring_one_ring_one:"Subring R S ⟹ 1⇩r⇘S⇙ = 1⇩r"
apply (simp add:Subring_def, (erule conjE)+)
apply (frule rHom_one[of "S" "R" "ridmap S"], rule Ring_axioms, assumption+)
apply (simp add:ridmap_def, simp add:Ring.ring_one[of S])
done
lemma (in Ring) Subring_zero_ring_zero:"Subring R S ⟹ 𝟬⇘S⇙ = 𝟬"
apply (simp add:Subring_def, (erule conjE)+,
frule rHom_0_0[of "S" "R" "ridmap S"], rule Ring_axioms, assumption+,
simp add:ridmap_def, simp add:Ring.ring_zero[of "S"])
done
lemma (in Ring) Subring_minus_ring_minus:"⟦Subring R S; x ∈ carrier S⟧
⟹ -⇩a⇘S⇙ x = -⇩a x"
apply (simp add:Subring_def, (erule conjE)+, simp add:rHom_def, (erule conjE)+)
apply (cut_tac ring_is_ag, frule Ring.ring_is_ag[of "S"])
apply (frule aHom_inv_inv[of "S" "R" "ridmap S" "x"], assumption+,
frule aGroup.ag_mOp_closed[of "S" "x"], assumption+)
apply (simp add:ridmap_def)
done
lemma (in PolynRg) Subring_pow_ring_pow:"x ∈ carrier S ⟹
x^⇗S n⇖ = x^⇗R n⇖"
apply (cut_tac subring, frule subring_Ring)
apply (induct_tac n)
apply (simp, simp add:Subring_one_ring_one)
apply (frule_tac n = n in Ring.npClose[of S x], assumption+)
apply (simp add:Subring_tOp_ring_tOp)
done
lemma (in PolynRg) is_Ring: "Ring R" ..
lemma (in PolynRg) polyn_ring_nonzero:"1⇩r ≠ 𝟬"
apply (cut_tac Ring, cut_tac subring)
apply (simp add:Subring_zero_ring_zero[THEN sym])
apply (simp add:Subring_one_ring_one[THEN sym])
using Ring.Zero_ring1 not_zeroring subring_Ring apply blast
done
lemma (in PolynRg) polyn_ring_S_nonzero:"1⇩r⇘S⇙ ≠ 𝟬⇘S⇙"
apply (cut_tac subring)
apply (simp add:Subring_zero_ring_zero)
apply (simp add:Subring_one_ring_one)
apply (simp add:polyn_ring_nonzero)
done
lemma (in PolynRg) polyn_ring_X_nonzero:"X ≠ 𝟬"
apply (cut_tac algfree,
cut_tac subring)
apply (simp add:algfree_cond_def)
apply (rule contrapos_pp, simp+)
apply (drule_tac x = "Suc 0" in spec)
apply (subgoal_tac "pol_coeff S ((Suc 0),
(λj∈{l. l ≤ (Suc 0)}. if j = 0 then 𝟬⇘S⇙ else 1⇩r⇘S⇙))")
apply (drule_tac x = "λj∈{l. l ≤ (Suc 0)}. if j = 0 then 𝟬⇘S⇙ else 1⇩r⇘S⇙" in
spec)
apply (erule conjE, simp)
apply (simp only:Nset_1)
apply (drule_tac a = "Suc 0" in forall_spec, simp)
apply simp
apply (cut_tac subring, simp add:Subring_zero_ring_zero,
simp add:Subring_one_ring_one, cut_tac ring_zero, cut_tac ring_one,
simp add:ring_r_one, simp add:ring_times_x_0, cut_tac ring_is_ag,
simp add:aGroup.ag_r_zero,
drule_tac a = "Suc 0" in forall_spec, simp, simp)
apply (cut_tac polyn_ring_S_nonzero, simp add:Subring_zero_ring_zero)
apply (thin_tac "∀b. pol_coeff S (Suc 0, b) ∧
(∀k≤Suc 0. Σ⇩e R (λj. b j ⋅⇩r 𝟬^⇗R j⇖) k = 𝟬 ⟶ (∀j≤k. b j = 𝟬⇘S⇙))",
simp add:pol_coeff_def,
rule allI,
simp add:Subring_def, simp add:Ring.ring_zero,
(rule impI)+,
simp add:Ring.ring_one)
done
subsection "Coefficients of a polynomial"
lemma (in PolynRg) pol_coeff_split:"pol_coeff S f = pol_coeff S (fst f, snd f)"
by simp
lemma (in PolynRg) pol_coeff_cartesian:"pol_coeff S c ⟹
(fst c, snd c) = c"
by simp
lemma (in PolynRg) split_pol_coeff:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
pol_coeff S (k, snd c)"
by (simp add:pol_coeff_def)
lemma (in PolynRg) pol_coeff_pre:"pol_coeff S ((Suc n), f) ⟹
pol_coeff S (n, f)"
apply (simp add:pol_coeff_def)
done
lemma (in PolynRg) pol_coeff_le:"⟦pol_coeff S c; n ≤ (fst c)⟧ ⟹
pol_coeff S (n, (snd c))"
apply (simp add:pol_coeff_def)
done
lemma (in PolynRg) pol_coeff_mem:"⟦pol_coeff S c; j ≤ (fst c)⟧ ⟹
((snd c) j) ∈ carrier S"
by (simp add:pol_coeff_def)
lemma (in PolynRg) pol_coeff_mem_R:"⟦pol_coeff S c; j ≤ (fst c)⟧
⟹ ((snd c) j) ∈ carrier R"
apply (cut_tac subring, frule subring_Ring)
apply (frule pol_coeff_mem[of c "j"], assumption+,
simp add:mem_subring_mem_ring)
done
lemma (in PolynRg) Slide_pol_coeff:"⟦pol_coeff S c; n < (fst c)⟧ ⟹
pol_coeff S (((fst c) - Suc n), (λx. (snd c) (Suc (n + x))))"
apply (simp add: pol_coeff_def)
done
subsection ‹Addition of ‹polyn_exprs››
lemma (in PolynRg) monomial_mem:"pol_coeff S c ⟹
∀j ≤ (fst c). (snd c) j ⋅⇩r X^⇗R j⇖ ∈ carrier R"
apply (rule allI, rule impI)
apply (rule ring_tOp_closed)
apply (simp add:pol_coeff_mem_R[of c],
cut_tac X_mem_R, simp add:npClose)
done
lemma (in PolynRg) polyn_mem:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
polyn_expr R X k c ∈ carrier R"
apply (simp add:polyn_expr_def,
cut_tac ring_is_ag)
apply (rule aGroup.nsum_mem[of R k "λj. (snd c) j ⋅⇩r X^⇗R j⇖"], assumption+)
apply (simp add:monomial_mem)
done
lemma (in PolynRg) polyn_exprs_eq:"⟦pol_coeff S c; pol_coeff S d;
k ≤ (min (fst c) (fst d)); ∀j ≤ k. (snd c) j = (snd d) j⟧ ⟹
polyn_expr R X k c = polyn_expr R X k d"
apply (cut_tac ring_is_ag,
simp add:polyn_expr_def,
cut_tac subring,
cut_tac X_mem_R)
apply (rule aGroup.nsum_eq[of R k "λj. (snd c) j ⋅⇩r X^⇗R j⇖"
"λj. (snd d) j ⋅⇩r X^⇗R j⇖"], assumption)
apply (simp add:monomial_mem)+
done
lemma (in PolynRg) polyn_expr_restrict:"pol_coeff S (Suc n, f) ⟹
polyn_expr R X n (Suc n, f) = polyn_expr R X n (n, f)"
apply (cut_tac subring, frule subring_Ring,
cut_tac pol_coeff_le[of "(Suc n, f)" n])
apply (cut_tac polyn_exprs_eq[of "(Suc n, f)" "(n, f)" n],
(simp add:pol_coeff_split[THEN sym])+)
done
lemma (in PolynRg) polyn_expr_short:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
polyn_expr R X k c = polyn_expr R X k (k, snd c)"
apply (rule polyn_exprs_eq[of c "(k, snd c)" k], assumption+)
apply (simp add:pol_coeff_def)
apply (simp)
apply simp
done
lemma (in PolynRg) polyn_expr0:"pol_coeff S c ⟹
polyn_expr R X 0 c = (snd c) 0"
apply (simp add:polyn_expr_def)
apply (cut_tac subring,
cut_tac subring_Ring[of S])
apply (frule pol_coeff_mem[of c 0], simp)
apply (frule mem_subring_mem_ring [of S "(snd c) 0"], assumption)
apply (simp add:ring_r_one, assumption)
done
lemma (in PolynRg) polyn_expr_split:"
polyn_expr R X k f = polyn_expr R X k (fst f, snd f)"
by simp
lemma (in PolynRg) polyn_Suc:"Suc n ≤ (fst c) ⟹
polyn_expr R X (Suc n) ((Suc n), (snd c)) =
polyn_expr R X n c ± ((snd c) (Suc n)) ⋅⇩r (X^⇗R (Suc n)⇖)"
by (simp add:polyn_expr_def)
lemma (in PolynRg) polyn_Suc_split:"pol_coeff S (Suc n, f) ⟹
polyn_expr R X (Suc n) ((Suc n), f) =
polyn_expr R X n (n, f) ± (f (Suc n)) ⋅⇩r (X^⇗R (Suc n)⇖)"
apply (cut_tac polyn_Suc[of n "(Suc n, f)"])
apply (simp del:npow_suc)
apply (subst polyn_expr_short[of "(Suc n, f)" n], assumption+, simp)
apply (simp del:npow_suc)
apply simp
done
lemma (in PolynRg) polyn_n_m:"⟦pol_coeff S c; n < m; m ≤ (fst c)⟧ ⟹
polyn_expr R X m (m, (snd c)) = polyn_expr R X n (n, (snd c)) ±
(fSum R (λj. ((snd c) j) ⋅⇩r (X^⇗R j⇖)) (Suc n) m)"
apply (simp add:polyn_expr_def, cut_tac ring_is_ag)
apply (rule aGroup.nsum_split1[of "R" m "λj. ((snd c) j) ⋅⇩r (X^⇗R j⇖)" n],
assumption+)
apply (rule allI, rule impI)
apply (frule_tac monomial_mem[of c],
frule_tac i = j and j = m and k = "(fst c)" in le_trans, assumption+,
simp+)
done
lemma (in PolynRg) polyn_n_m1:"⟦pol_coeff S c; n < m; m ≤ (fst c)⟧ ⟹
polyn_expr R X m c = polyn_expr R X n c ±
(fSum R (λj. ((snd c) j) ⋅⇩r (X^⇗R j⇖)) (Suc n) m)"
apply (subst polyn_expr_short[of c n], assumption)
apply (frule_tac x = n and y = m and z = "fst c" in less_le_trans, assumption,
simp add:less_imp_le)
apply (subst polyn_expr_short[of c m], assumption+)
apply (simp add:polyn_n_m)
done
lemma (in PolynRg) polyn_n_m_mem:"⟦pol_coeff S c; n < m; m ≤ (fst c)⟧ ⟹
(fSum R (λj. ((snd c) j) ⋅⇩r (X^⇗R j⇖)) (Suc n) m) ∈ carrier R"
apply (simp add:fSum_def)
apply (cut_tac ring_is_ag,
rule_tac n = "m - Suc n" in aGroup.nsum_mem, assumption+)
apply (rule allI, rule impI,
simp del:npow_suc add:cmp_def slide_def)
apply (rule ring_tOp_closed)
apply (simp add:pol_coeff_def)
apply (frule_tac a = "Suc (n + j)" in forall_spec, arith)
apply (cut_tac subring)
apply (simp add:mem_subring_mem_ring)
apply (rule npClose)
apply (cut_tac X_mem_R,
simp del:npow_suc add:npClose)
done
lemma (in PolynRg) polyn_n_ms_eq:"⟦pol_coeff S c; pol_coeff S d;
m ≤ min (fst c) (fst d); n < m;
∀j∈nset (Suc n) m. (snd c) j = (snd d) j⟧ ⟹
(fSum R (λj. ((snd c) j) ⋅⇩r (X^⇗R j⇖)) (Suc n) m) =
(fSum R (λj. ((snd d) j) ⋅⇩r (X^⇗R j⇖)) (Suc n) m)"
apply (cut_tac ring_is_ag)
apply (cut_tac aGroup.fSum_eq1[of R "Suc n" m "λj. (snd c) j ⋅⇩r X^⇗R j⇖"
"λj. (snd d) j ⋅⇩r X^⇗R j⇖"],
assumption+)
apply (rule Suc_leI, assumption,
simp add:nset_def, simp add:monomial_mem)
apply (frule Suc_leI,
rule ballI, simp add:nset_def)
apply (simp add:monomial_mem)
apply simp
done
lemma (in PolynRg) polyn_addTr:
"(pol_coeff S (n, f)) ∧ (pol_coeff S (n, g)) ⟶
(polyn_expr R X n (n, f)) ± (polyn_expr R X n (n, g)) =
nsum R (λj. ((f j) ±⇘S⇙ (g j)) ⋅⇩r (X^⇗R j⇖)) n"
apply (cut_tac subring,
frule subring_Ring[of S])
apply (induct_tac n)
apply (rule impI, simp, erule conjE)
apply (simp add:polyn_expr0)
apply (cut_tac pol_coeff_mem[of "(0, f)" 0], simp,
cut_tac pol_coeff_mem[of "(0, g)" 0], simp,
frule mem_subring_mem_ring[of S "f 0"], assumption+,
frule mem_subring_mem_ring[of S "g 0"], assumption+,
frule Ring.ring_is_ag[of S],
frule aGroup.ag_pOp_closed[of S "f 0" "g 0"], assumption+,
frule mem_subring_mem_ring[of S "f 0 ±⇘S⇙ g 0"], assumption+)
apply (simp add:ring_r_one)
apply (simp add:Subring_pOp_ring_pOp[of S "f 0" "g 0"])
apply (simp del:npow_suc)+
apply (rule impI, erule conjE)
apply (frule_tac n = n in pol_coeff_pre[of _ f],
frule_tac n = n in pol_coeff_pre[of _ g], simp del:npow_suc)
apply (cut_tac n = n and c = "(Suc n, f)" in polyn_Suc, simp del:npow_suc,
simp del:npow_suc,
thin_tac "polyn_expr R X (Suc n) (Suc n, f) =
polyn_expr R X n (Suc n, f) ± f (Suc n) ⋅⇩r X^⇗R (Suc n)⇖")
apply (cut_tac n = n and c = "(Suc n, g)" in polyn_Suc, simp del:npow_suc,
simp del:npow_suc,
thin_tac "polyn_expr R X (Suc n) (Suc n, g) =
polyn_expr R X n (Suc n, g) ± g (Suc n) ⋅⇩r X^⇗R (Suc n)⇖")
apply (cut_tac c = "(Suc n, f)" and k = n in polyn_mem, assumption,
simp del:npow_suc,
cut_tac k = n and c = "(Suc n, g)" in polyn_mem, assumption,
simp del:npow_suc)
apply (frule_tac j = "Suc n" and c = "(Suc n, f)" in pol_coeff_mem_R, simp,
frule_tac j = "Suc n" and c = "(Suc n, g)" in pol_coeff_mem_R, simp,
cut_tac X_mem_R,
frule_tac n = "Suc n" in npClose[of "X"], simp del:npow_suc)
apply (frule_tac x = "f (Suc n)" and y = "X^⇗R (Suc n)⇖" in ring_tOp_closed,
assumption+,
frule_tac x = "g (Suc n)" and y = "X^⇗R (Suc n)⇖" in ring_tOp_closed,
assumption+)
apply (cut_tac ring_is_ag,
subst aGroup.pOp_assocTr43, assumption+)
apply (frule_tac x = "f (Suc n) ⋅⇩r X^⇗R (Suc n)⇖" and
y = "polyn_expr R X n (Suc n, g)" in aGroup.ag_pOp_commute[of R],
assumption+, simp del:npow_suc,
thin_tac "f (Suc n) ⋅⇩r X^⇗R (Suc n)⇖ ± polyn_expr R X n (Suc n, g) =
polyn_expr R X n (Suc n, g) ± f (Suc n) ⋅⇩r X^⇗R (Suc n)⇖")
apply (subst aGroup.pOp_assocTr43[THEN sym], assumption+,
simp del:npow_suc add:polyn_expr_restrict)
apply (frule_tac c = "(Suc n, f)" and j = "Suc n" in pol_coeff_mem, simp,
frule_tac c = "(Suc n, g)" and j = "Suc n" in pol_coeff_mem, simp)
apply (subst ring_distrib2[THEN sym], assumption+)
apply (frule_tac c = "(Suc n, f)" and j = "Suc n" in pol_coeff_mem, simp,
frule_tac c = "(Suc n, g)" and j = "Suc n" in pol_coeff_mem, simp)
apply (frule_tac a = "f (Suc n)" and b = "g (Suc n)" in
Subring_pOp_ring_pOp[of S], simp, simp)
apply simp
done
lemma (in PolynRg) polyn_add_n:"⟦pol_coeff S (n, f); pol_coeff S (n, g)⟧ ⟹
(polyn_expr R X n (n, f)) ± (polyn_expr R X n (n, g)) =
nsum R (λj. ((f j) ±⇘S⇙ (g j)) ⋅⇩r (X^⇗R j⇖)) n"
by (simp add:polyn_addTr)
definition
add_cf :: "[('a, 'm) Ring_scheme, nat × (nat ⇒ 'a), nat × (nat ⇒ 'a)] ⇒
nat × (nat ⇒ 'a)" where
"add_cf S c d =
(if (fst c) < (fst d) then ((fst d), λj. (if j ≤ (fst c)
then (((snd c) j) ±⇘S⇙ ((snd d) j)) else ((snd d) j)))
else if (fst c) = (fst d) then ((fst c), λj. ((snd c) j ±⇘S⇙ (snd d) j))
else ((fst c), λj. (if j ≤ (fst d) then
((snd c) j ±⇘S⇙ (snd d) j) else ((snd c) j))))"
lemma (in PolynRg) add_cf_pol_coeff:"⟦pol_coeff S c; pol_coeff S d⟧
⟹ pol_coeff S (add_cf S c d)"
apply (cut_tac subring,
frule subring_Ring[of S], frule Ring.ring_is_ag[of S])
apply (simp add:pol_coeff_def)
apply (rule allI, rule impI)
apply (case_tac "(fst c) < (fst d)", simp add:add_cf_def)
apply (rule impI, rule aGroup.ag_pOp_closed, assumption+, simp+)
apply (drule leI[of "fst c" "fst d"],
drule le_imp_less_or_eq[of "fst d" "fst c"])
apply (erule disjE)
apply (simp add:add_cf_def, rule impI)
apply (frule Ring.ring_is_ag[of S], rule aGroup.ag_pOp_closed, assumption,
simp+)
apply (simp add:add_cf_def)
apply (frule Ring.ring_is_ag[of S], rule aGroup.ag_pOp_closed, assumption,
simp+)
done
lemma (in PolynRg) add_cf_len:"⟦pol_coeff S c; pol_coeff S d⟧
⟹ fst (add_cf S c d) = (max (fst c) (fst d))"
by (simp add: add_cf_def max.absorb1 max.absorb2)
lemma (in PolynRg) polyn_expr_restrict1:"⟦pol_coeff S (n, f);
pol_coeff S (Suc (m + n), g)⟧ ⟹
polyn_expr R X (m + n) (add_cf S (n, f) (m + n, g)) =
polyn_expr R X (m + n) (m + n, snd (add_cf S (n, f) (Suc (m + n), g)))"
apply (frule pol_coeff_pre[of "m+n" g])
apply (frule add_cf_pol_coeff[of "(n, f)" "(Suc (m + n), g)"], assumption+,
frule add_cf_pol_coeff[of "(n, f)" "(m + n, g)"], assumption+)
apply (rule polyn_exprs_eq[of "add_cf S (n, f) (m + n, g)"
"(m + n, snd (add_cf S (n, f) (Suc (m + n), g)))" "m + n"], assumption+)
apply (rule split_pol_coeff[of "add_cf S (n, f) (Suc (m + n), g)" "m + n"],
assumption, simp add:add_cf_len)
apply (simp add:add_cf_len)
apply (rule allI, rule impI)
apply (simp add:add_cf_def)
done
lemma (in PolynRg) polyn_add_n1:"⟦pol_coeff S (n, f); pol_coeff S (n, g)⟧ ⟹
(polyn_expr R X n (n, f)) ± (polyn_expr R X n (n, g)) =
polyn_expr R X n (add_cf S (n, f) (n, g))"
apply (subst polyn_add_n, assumption+)
apply (simp add:polyn_expr_def add_cf_def)
done
lemma (in PolynRg) add_cf_val_hi:"(fst c) < (fst d) ⟹
snd (add_cf S c d) (fst d) = (snd d) (fst d)"
by (simp add:add_cf_def)
lemma (in PolynRg) add_cf_commute:"⟦pol_coeff S c; pol_coeff S d⟧
⟹ ∀j ≤ (max (fst c) (fst d)). snd (add_cf S c d) j =
snd (add_cf S d c) j"
apply (cut_tac subring, frule subring_Ring,
frule Ring.ring_is_ag[of S])
apply (simp add: add_cf_def max.absorb1 max.absorb2)
apply (case_tac "(fst c) = (fst d)", simp add: pol_coeff_def)
apply (rule allI, rule impI,
rule aGroup.ag_pOp_commute[of S], simp+)
apply (case_tac "(fst d) < (fst c)", simp,
rule allI, rule impI,
rule aGroup.ag_pOp_commute, assumption+)
apply (frule_tac x = j and y = "fst d" and z = "fst c" in le_less_trans,
assumption+, frule_tac x = j and y = "fst c" in less_imp_le,
thin_tac "j < fst c", simp add:pol_coeff_mem, simp add:pol_coeff_mem)
apply simp
apply (frule leI[of "fst d" "fst c"],
frule noteq_le_less[of "fst c" "fst d"], assumption,
rule allI, rule impI,
simp)
apply (rule aGroup.ag_pOp_commute, assumption+,
simp add:pol_coeff_mem,
frule_tac x = j and y = "fst c" and z = "fst d" in le_less_trans,
assumption+, frule_tac x = j and y = "fst d" in less_imp_le,
thin_tac "j < fst d", simp add:pol_coeff_mem)
done
lemma (in PolynRg) polyn_addTr1:"pol_coeff S (n, f) ⟹
∀g. pol_coeff S (n + m, g) ⟶
(polyn_expr R X n (n, f) ± (polyn_expr R X (n + m) ((n + m), g))
= polyn_expr R X (n + m) (add_cf S (n, f) ((n + m), g)))"
apply (cut_tac subring, frule subring_Ring)
apply (induct_tac m)
apply (rule allI, rule impI, simp)
apply (simp add:polyn_add_n1)
apply (simp add:add.commute[of n])
apply (rule allI, rule impI)
apply (frule_tac n = "na + n" and f = g in pol_coeff_pre)
apply (drule_tac a = g in forall_spec, assumption)
apply (cut_tac n = "na + n" and c = "(Suc (na + n), g)" in polyn_Suc,
simp, simp del:npow_suc,
thin_tac "polyn_expr R X (Suc (na + n)) (Suc (na + n), g) =
polyn_expr R X (na + n) (Suc (na + n), g) ±
g (Suc (na + n)) ⋅⇩r X^⇗R (Suc (na + n))⇖")
apply (frule_tac c = "(n, f)" and k = n in polyn_mem, simp,
frule_tac c = "(Suc (na + n), g)" and k = "na + n" in polyn_mem, simp,
frule_tac c = "(Suc (na + n), g)" in monomial_mem)
apply (drule_tac a = "Suc (na + n)" in forall_spec, simp del:npow_suc,
cut_tac ring_is_ag,
subst aGroup.ag_pOp_assoc[THEN sym], assumption+, simp del:npow_suc)
apply (simp del:npow_suc add:polyn_expr_restrict)
apply (frule_tac c = "(n, f)" and d = "(Suc (na + n), g)" in
add_cf_pol_coeff, assumption+,
frule_tac c = "(n, f)" and d = "(na + n, g)" in
add_cf_pol_coeff, assumption+)
apply (frule_tac c = "add_cf S (n, f) (Suc (na + n), g)" and
n = "na + n" and m = "Suc (na + n)" in polyn_n_m, simp,
subst add_cf_len, assumption+, simp)
apply (cut_tac k = "Suc (na + n)" and f = "add_cf S (n, f) (Suc (na + n), g)"
in polyn_expr_split)
apply (frule_tac c = "(n, f)" and d = "(Suc (na + n), g)" in
add_cf_len, assumption+, simp del: npow_suc add: max.absorb1 max.absorb2)
apply (thin_tac "polyn_expr R X (Suc (na + n))
(Suc (na + n), snd (add_cf S (n, f) (Suc (na + n), g))) =
polyn_expr R X (na + n)
(na + n, snd (add_cf S (n, f) (Suc (na + n), g))) ±
Σ⇩f R (λj. snd (add_cf S (n, f) (Suc (na + n), g)) j ⋅⇩r
X^⇗R j⇖) (Suc (na + n)) (Suc (na + n))",
thin_tac "polyn_expr R X (Suc (na + n)) (add_cf S (n, f) (Suc (na + n),
g)) =
polyn_expr R X (na + n)
(na + n, snd (add_cf S (n, f) (Suc (na + n), g))) ±
Σ⇩f R (λj. snd (add_cf S (n, f) (Suc (na + n), g)) j ⋅⇩r
X^⇗R j⇖) (Suc (na + n)) (Suc (na + n))")
apply (simp del:npow_suc add:fSum_def cmp_def slide_def)
apply (cut_tac d = "(Suc (na + n), g)" in add_cf_val_hi[of "(n, f)"],
simp, simp del:npow_suc,
thin_tac "snd (add_cf S (n, f) (Suc (na + n), g)) (Suc (na + n)) =
g (Suc (na + n))")
apply (frule_tac c = "add_cf S (n, f) (Suc (na + n), g)" and k = "na + n" in
polyn_mem, simp,
frule_tac c = "add_cf S (n, f) (na + n, g)" and k = "na + n" in
polyn_mem, simp )
apply (subst add_cf_len, assumption+, simp del:npow_suc)
apply (frule_tac a = "polyn_expr R X (na + n) (add_cf S (n, f) (na + n, g))"
and b = "polyn_expr R X (na + n) (add_cf S (n, f) (Suc (na + n), g))"
and c = "g (Suc (na + n)) ⋅⇩r X^⇗R (Suc (na + n))⇖" in
aGroup.ag_pOp_add_r[of R], assumption+)
apply (rule_tac c = "add_cf S (n, f) (na + n, g)" and
d = "add_cf S (n, f) (Suc (na + n), g)" and k = "na + n" in
polyn_exprs_eq, assumption+, simp,
subst add_cf_len, assumption+)
apply (simp)
apply (rule allI, rule impI,
(subst add_cf_def)+, simp,
frule_tac m = na and g = g in polyn_expr_restrict1[of n f], assumption,
simp del:npow_suc)
done
lemma (in PolynRg) polyn_add:"⟦pol_coeff S (n, f); pol_coeff S (m, g)⟧
⟹ polyn_expr R X n (n, f) ± (polyn_expr R X m (m, g))
= polyn_expr R X (max n m) (add_cf S (n, f) (m, g))"
apply (cut_tac less_linear[of n m])
apply (erule disjE,
frule polyn_addTr1[of n f "m - n"],
drule_tac a = g in forall_spec, simp, simp add: max.absorb1 max.absorb2)
apply (erule disjE,
simp add:polyn_add_n1)
apply (frule polyn_mem[of "(n, f)" n], simp,
frule polyn_mem[of "(m, g)" m], simp)
apply (cut_tac ring_is_ag, simp add:aGroup.ag_pOp_commute)
apply (frule polyn_addTr1[of m g "n - m"],
drule_tac a = f in forall_spec, simp, simp,
frule add_cf_commute[of "(m, g)" "(n, f)"], assumption+,
simp add:max_def,
frule add_cf_pol_coeff[of "(n, f)" "(m, g)"], assumption+,
frule add_cf_pol_coeff[of "(m, g)" "(n, f)"], assumption+)
apply (rule polyn_exprs_eq[of "add_cf S (m, g) (n, f)"
"add_cf S (n, f) (m, g)" n], assumption+)
apply (simp add:add_cf_len, simp)
done
lemma (in PolynRg) polyn_add1:"⟦pol_coeff S c; pol_coeff S d⟧
⟹ polyn_expr R X (fst c) c ± (polyn_expr R X (fst d) d)
= polyn_expr R X (max (fst c) (fst d)) (add_cf S c d)"
apply (cases c)
apply (cases d)
apply (simp add: polyn_add)
done
lemma (in PolynRg) polyn_minus_nsum:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
-⇩a (polyn_expr R X k c) = nsum R (λj. ((-⇩a⇘S⇙ ((snd c) j)) ⋅⇩r (X^⇗R j⇖))) k"
apply (cut_tac subring,
frule subring_Ring[of S],
frule Ring.ring_is_ag[of S],
cut_tac ring_is_ag,
cut_tac X_mem_R)
apply (simp add:polyn_expr_def,
subst aGroup.nsum_minus[of R], assumption)
apply (frule monomial_mem[of c], rule allI, rule impI,
frule_tac i = j and j = k and k = "fst c" in le_trans, assumption+,
simp)
apply (rule aGroup.nsum_eq, assumption,
rule allI, rule impI, simp,
rule aGroup.ag_mOp_closed, assumption)
apply (frule monomial_mem[of c],
frule_tac i = j and j = k and k = "fst c" in le_trans, assumption+,
simp)
apply (rule allI, rule impI,
rule ring_tOp_closed)
apply (frule_tac j = j in pol_coeff_mem[of c])
apply (frule_tac i = j and j = k and k = "fst c" in le_trans, assumption+,
simp add:Subring_minus_ring_minus,
frule_tac x = "(snd c) j" in mem_subring_mem_ring[of S], assumption,
simp add:aGroup.ag_mOp_closed,
simp add:npClose)
apply (rule allI, rule impI, simp,
cut_tac j = j in pol_coeff_mem[of c], assumption,
rule_tac i = j and j = k and k = "fst c" in le_trans, assumption+)
apply (simp add:Subring_minus_ring_minus,
frule_tac x = "(snd c) j" in mem_subring_mem_ring[of S], assumption)
apply (subst ring_inv1_1, assumption+)
apply (simp add:npClose, simp)
done
lemma (in PolynRg) minus_pol_coeff:"pol_coeff S c ⟹
pol_coeff S ((fst c), (λj. (-⇩a⇘S⇙ ((snd c) j))))"
apply (simp add:pol_coeff_def)
apply (rule allI, rule impI)
apply (cut_tac subring, frule subring_Ring)
apply (frule Ring.ring_is_ag[of "S"])
apply (rule aGroup.ag_mOp_closed, assumption)
apply simp
done
lemma (in PolynRg) polyn_minus:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
-⇩a (polyn_expr R X k c) =
polyn_expr R X k (fst c, (λj. (-⇩a⇘S⇙ ((snd c) j))))"
apply (cases c)
apply (subst polyn_minus_nsum)
apply (simp_all add: polyn_expr_def)
done
definition
m_cf :: "[('a, 'm) Ring_scheme, nat × (nat ⇒ 'a)] ⇒ nat × (nat ⇒ 'a)" where
"m_cf S c = (fst c, (λj. (-⇩a⇘S⇙ ((snd c) j))))"
lemma (in PolynRg) m_cf_pol_coeff:"pol_coeff S c ⟹
pol_coeff S (m_cf S c)"
by (simp add:m_cf_def, simp add:minus_pol_coeff)
lemma (in PolynRg) m_cf_len:"pol_coeff S c ⟹
fst (m_cf S c) = fst c"
by (simp add:m_cf_def)
lemma (in PolynRg) polyn_minus_m_cf:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
-⇩a (polyn_expr R X k c) =
polyn_expr R X k (m_cf S c)"
by (simp add:m_cf_def polyn_minus)
lemma (in PolynRg) polyn_zero_minus_zero:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
(polyn_expr R X k c = 𝟬) = (polyn_expr R X k (m_cf S c) = 𝟬)"
apply (cut_tac ring_is_ag)
apply (simp add:polyn_minus_m_cf[THEN sym])
apply (rule iffI, simp)
apply (simp add:aGroup.ag_inv_zero)
apply (frule polyn_mem[of c k], assumption)
apply (frule aGroup.ag_inv_inv[of "R" "polyn_expr R X k c"], assumption)
apply (simp add:aGroup.ag_inv_zero)
done
lemma (in PolynRg) coeff_0_pol_0:"⟦pol_coeff S c; k ≤ fst c⟧ ⟹
(∀j≤ k. (snd c) j = 𝟬⇘S⇙) = (polyn_expr R X k c = 𝟬)"
apply (rule iffI)
apply (cut_tac ring_is_ag, cut_tac subring,
frule subring_Ring)
apply (simp add:Subring_zero_ring_zero)
apply (simp add:polyn_expr_def,
rule aGroup.nsum_zeroA[of R], assumption)
apply (rule allI, rule impI,
cut_tac X_mem_R)
apply (drule_tac a = j in forall_spec, simp,
frule_tac n = j in npClose[of X], simp)
apply (simp add:ring_times_0_x)
apply (cases c)
using algfree [simplified algfree_cond_def] by (auto simp add: polyn_expr_def)
subsection ‹Multiplication of ‹pol_exprs››
subsection "Multiplication"
definition
ext_cf :: "[('a, 'm) Ring_scheme, nat, nat × (nat ⇒ 'a)] ⇒
nat × (nat ⇒ 'a)" where
"ext_cf S n c = (n + fst c, λi. if n ≤ i then (snd c) (sliden n i) else 𝟬⇘S⇙)"
definition
sp_cf :: "[('a, 'm) Ring_scheme, 'a, nat × (nat ⇒ 'a)] ⇒ nat × (nat ⇒ 'a)" where
"sp_cf S a c = (fst c, λj. a ⋅⇩r⇘S⇙ ((snd c) j))"
definition
special_cf :: "('a, 'm) Ring_scheme ⇒ nat × (nat ⇒ 'a)" (‹C⇩0›) where
"C⇩0 S = (0, λj. 1⇩r⇘S⇙)"
lemma (in PolynRg) special_cf_pol_coeff:"pol_coeff S (C⇩0 S)"
apply (cut_tac subring, frule subring_Ring)
apply (simp add:pol_coeff_def special_cf_def)
apply (simp add:Ring.ring_one)
done
lemma (in PolynRg) special_cf_len:"fst (C⇩0 S) = 0"
apply (simp add:special_cf_def)
done
lemma (in PolynRg) ext_cf_pol_coeff:"pol_coeff S c ⟹
pol_coeff S (ext_cf S n c)"
apply (simp add: pol_coeff_def ext_cf_def sliden_def)
apply (rule impI)
apply (rule Ring.ring_zero)
apply (rule subring_Ring)
apply (rule subring)
done
lemma (in PolynRg) ext_cf_len:"pol_coeff S c ⟹
fst (ext_cf S m c) = m + fst c"
by (simp add:ext_cf_def)
lemma (in PolynRg) ext_special_cf_len:"fst (ext_cf S m (C⇩0 S)) = m"
apply (cut_tac special_cf_pol_coeff)
apply (simp add:ext_cf_len special_cf_def)
done
lemma (in PolynRg) ext_cf_self:"pol_coeff S c ⟹
∀j ≤ (fst c). snd (ext_cf S 0 c) j = (snd c) j"
apply (rule allI, rule impI, simp add:ext_cf_def sliden_def)
done
lemma (in PolynRg) ext_cf_hi:"pol_coeff S c ⟹
(snd c) (fst c) =
snd (ext_cf S n c) (n + (fst c))"
apply (subst ext_cf_def)
apply (simp add:sliden_def)
done
lemma (in PolynRg) ext_special_cf_hi:"snd (ext_cf S n (C⇩0 S)) n = 1⇩r⇘S⇙"
apply (cut_tac special_cf_pol_coeff)
apply (cut_tac ext_cf_hi[of "C⇩0 S" n, THEN sym])
apply (simp add:special_cf_def, assumption)
done
lemma (in PolynRg) ext_cf_lo_zero:"⟦pol_coeff S c; 0 < n; x ≤ (n - Suc 0)⟧
⟹ snd (ext_cf S n c) x = 𝟬⇘S⇙"
apply (cut_tac Suc_le_mono[THEN sym, of x "n - Suc 0"], simp,
cut_tac x = x and y = "Suc x" and z = n in less_le_trans,
simp, assumption,
simp add:nat_not_le_less[THEN sym, of x n],
thin_tac "x ≤ n - Suc 0")
apply (simp add:ext_cf_def)
done
lemma (in PolynRg) ext_special_cf_lo_zero:"⟦0 < n; x ≤ (n - Suc 0)⟧
⟹ snd (ext_cf S n (C⇩0 S)) x = 𝟬⇘S⇙"
by (cut_tac special_cf_pol_coeff,
frule ext_cf_lo_zero[of "C⇩0 S" n], assumption+)
lemma (in PolynRg) sp_cf_pol_coeff:"⟦pol_coeff S c; a ∈ carrier S⟧ ⟹
pol_coeff S (sp_cf S a c)"
apply (cut_tac subring, frule subring_Ring)
apply (simp add:pol_coeff_def sp_cf_def,
rule allI, rule impI,
rule Ring.ring_tOp_closed, assumption+)
apply simp
done
lemma (in PolynRg) sp_cf_len:"⟦pol_coeff S c; a ∈ carrier S⟧ ⟹
fst (sp_cf S a c) = fst c"
by (simp add:sp_cf_def)
lemma (in PolynRg) sp_cf_val:"⟦pol_coeff S c; j ≤ (fst c); a ∈ carrier S⟧ ⟹
snd (sp_cf S a c) j = a ⋅⇩r⇘S⇙ ((snd c) j)"
by (simp add:sp_cf_def)
lemma (in PolynRg) polyn_ext_cf_lo_zero:"⟦pol_coeff S c; 0 < j⟧ ⟹
polyn_expr R X (j - Suc 0) (ext_cf S j c) = 𝟬"
apply (simp add:polyn_expr_def, cut_tac ring_is_ag,
rule aGroup.nsum_zeroA, assumption)
apply (rule allI, rule impI)
apply (frule_tac x = ja in ext_cf_lo_zero [of c j], assumption+)
apply (cut_tac X_mem_R, frule_tac n = ja in npClose[of X])
apply (cut_tac subring,
simp add:Subring_zero_ring_zero,
simp add:ring_times_0_x)
done
lemma (in PolynRg) monomial_d:"pol_coeff S c ⟹
polyn_expr R X d (ext_cf S d c) = ((snd c) 0) ⋅⇩r X^⇗R d⇖"
apply (cut_tac ring_is_ag,
cut_tac subring,
cut_tac X_mem_R,
frule subring_Ring[of S])
apply (frule pol_coeff_mem [of c 0], simp)
apply (case_tac "d = 0")
apply simp
apply (simp add:polyn_expr_def ext_cf_def sliden_def)
apply (frule ext_cf_pol_coeff[of c d])
apply (cut_tac polyn_Suc[of "d - Suc 0" "ext_cf S d c"])
apply (simp)
apply (cut_tac polyn_ext_cf_lo_zero[of c d], simp,
thin_tac "polyn_expr R X (d - Suc 0) (ext_cf S d c) = 𝟬")
apply (frule monomial_mem[of "ext_cf S d c"], simp add:ext_cf_len,
drule_tac a = d in forall_spec, simp, simp add:aGroup.ag_l_zero)
apply (subst polyn_expr_short[of "ext_cf S d c" d], assumption,
simp add:ext_cf_len)
apply (simp,
subst ext_cf_def, simp add:sliden_def , assumption+,
simp add:ext_cf_len)
done
lemma (in PolynRg) X_to_d:" X^⇗R d⇖ = polyn_expr R X d (ext_cf S d (C⇩0 S))"
apply (cut_tac special_cf_pol_coeff)
apply (subst monomial_d[of "C⇩0 S" d], assumption+)
apply (subst special_cf_def, simp)
apply (cut_tac subring, frule subring_Ring)
apply (simp add:Subring_one_ring_one)
apply (cut_tac X_mem_R, frule_tac n = d in npClose[of X])
apply (simp add:ring_l_one)
done
lemma (in PolynRg) c_max_ext_special_cf:"c_max S (ext_cf S n (C⇩0 S)) = n"
apply (cut_tac polyn_ring_S_nonzero,
cut_tac subring, frule subring_Ring)
apply (simp add:c_max_def special_cf_def ext_cf_def)
apply (cut_tac n_max[of "{j. (n ≤ j ⟶ j = n) ∧ n ≤ j}" n])
apply (erule conjE)+ apply simp
apply (rule subsetI, simp, erule conjE, simp)
apply (cut_tac le_refl[of n], blast)
done
lemma (in PolynRg) scalar_times_polynTr:"a ∈ carrier S ⟹
∀f. pol_coeff S (n, f) ⟶
a ⋅⇩r (polyn_expr R X n (n, f)) = polyn_expr R X n (sp_cf S a (n, f))"
apply (cut_tac subring,
cut_tac X_mem_R,
frule_tac x = a in mem_subring_mem_ring, assumption)
apply (induct_tac n,
rule allI, rule impI, simp add:polyn_expr_def sp_cf_def,
cut_tac n_in_Nsetn[of "0"])
apply (cut_tac subring_Ring,
frule_tac c = "(0, f)" in pol_coeff_mem[of _ "0"], simp)
apply (simp,
frule_tac x = "f 0" in mem_subring_mem_ring, assumption)
apply ( simp add:Subring_tOp_ring_tOp,
frule_tac y = "f 0" in ring_tOp_closed[of a], assumption+,
cut_tac ring_one, simp add:ring_tOp_assoc, assumption)
apply (rule allI, rule impI,
frule subring_Ring,
frule_tac n = n and f = f in pol_coeff_pre,
drule_tac x = f in spec, simp)
apply (cut_tac n = n and c = "(Suc n, f)" in polyn_Suc, simp,
simp del:npow_suc,
thin_tac "polyn_expr R X (Suc n) (Suc n, f) =
polyn_expr R X n (Suc n, f) ± f (Suc n) ⋅⇩r X^⇗R (Suc n)⇖")
apply (cut_tac n = n and c = "sp_cf S a (Suc n, f)" in polyn_Suc,
simp add:sp_cf_len)
apply (frule_tac c = "(Suc n, f)" and a = a in sp_cf_len, assumption+,
simp only:fst_conv)
apply (cut_tac k = "Suc n" and f = "sp_cf S a (Suc n, f)" in
polyn_expr_split, simp del:npow_suc,
thin_tac "polyn_expr R X (Suc n) (Suc n, snd (sp_cf S a (Suc n, f))) =
polyn_expr R X n (sp_cf S a (Suc n, f)) ±
snd (sp_cf S a (Suc n, f)) (Suc n) ⋅⇩r X^⇗R (Suc n)⇖",
thin_tac "polyn_expr R X (Suc n) (sp_cf S a (Suc n, f)) =
polyn_expr R X n (sp_cf S a (Suc n, f)) ±
snd (sp_cf S a (Suc n, f)) (Suc n) ⋅⇩r X^⇗R (Suc n)⇖")
apply (frule_tac c = "(Suc n, f)" and a = a in sp_cf_pol_coeff, assumption)
apply (frule_tac c = "(Suc n, f)" and k = n in polyn_mem,
simp,
frule_tac c = "(Suc n, f)" in monomial_mem,
drule_tac a = "Suc n" in forall_spec, simp,
simp only:snd_conv)
apply (subst ring_distrib1, assumption+,
subst polyn_expr_restrict, assumption+, simp del:npow_suc,
subst sp_cf_val, assumption, simp, assumption,
simp only:snd_conv,
frule_tac c = "(Suc n, f)" and j = "Suc n" in pol_coeff_mem,
simp, simp only:snd_conv,
simp del:npow_suc add:Subring_tOp_ring_tOp,
subst ring_tOp_assoc[THEN sym, of a], assumption+,
simp add:mem_subring_mem_ring, rule npClose, assumption)
apply (cut_tac ring_is_ag,
rule aGroup.ag_pOp_add_r, assumption+,
rule polyn_mem, rule sp_cf_pol_coeff, assumption+,
simp add:sp_cf_len,
rule polyn_mem, assumption, simp add:sp_cf_len,
frule_tac c = "(Suc n, f)" and j = "Suc n" in pol_coeff_mem_R,
simp, simp only:snd_conv,
(rule ring_tOp_closed)+, assumption+, rule npClose, assumption)
apply (rule_tac c = "sp_cf S a (n, f)" and d = "sp_cf S a (Suc n, f)" and
k = n in polyn_exprs_eq, rule sp_cf_pol_coeff, assumption+,
simp add:sp_cf_len)
apply (rule allI, rule impI,
(subst sp_cf_def)+, simp)
done
lemma (in PolynRg) scalar_times_pol_expr:"⟦a ∈ carrier S; pol_coeff S c;
n ≤ fst c⟧ ⟹
a ⋅⇩r (polyn_expr R X n c) = polyn_expr R X n (sp_cf S a c)"
apply (cases c) apply (simp only:)
apply (rename_tac m g)
apply (thin_tac "c = (m, g)")
apply (frule_tac c = "(m, g)" and k = n in polyn_expr_short, simp,
simp)
apply (frule scalar_times_polynTr[of a n],
drule_tac x = g in spec)
apply (frule_tac c = "(m, g)" and n = n in pol_coeff_le, simp, simp,
thin_tac "polyn_expr R X n (m, g) = polyn_expr R X n (n, g)",
thin_tac "a ⋅⇩r polyn_expr R X n (n, g) =
polyn_expr R X n (sp_cf S a (n, g))")
apply (frule_tac c = "(m, g)" and n = n in pol_coeff_le, simp, simp,
frule_tac c = "(n, g)" and a = a in sp_cf_pol_coeff, assumption,
frule_tac c = "(m, g)" and a = a in sp_cf_pol_coeff, assumption)
apply (rule_tac c = "sp_cf S a (n, g)" and d = "sp_cf S a (m, g)" and
k = n in polyn_exprs_eq, assumption+)
apply (simp add:sp_cf_len)
apply (rule allI, (subst sp_cf_def)+, simp)
done
lemma (in PolynRg) sp_coeff_nonzero:"⟦Idomain S; a ∈ carrier S; a ≠ 𝟬⇘S⇙;
pol_coeff S c; (snd c) j ≠ 𝟬⇘S⇙; j ≤ (fst c)⟧ ⟹
snd (sp_cf S a c) j ≠ 𝟬⇘S⇙"
apply (simp add:sp_cf_def)
apply (frule_tac y = "(snd c) j" in Idomain.idom_tOp_nonzeros[of S a],
assumption+,
simp add:pol_coeff_def, simp add:Pi_def, assumption+)
done
lemma (in PolynRg) ext_cf_inductTl:"pol_coeff S (Suc n, f) ⟹
polyn_expr R X (n + j) (ext_cf S j (Suc n, f)) =
polyn_expr R X (n + j) (ext_cf S j (n, f))"
apply (frule pol_coeff_pre[of n f],
frule ext_cf_pol_coeff[of "(Suc n, f)" j],
frule ext_cf_pol_coeff[of "(n, f)" j],
rule polyn_exprs_eq[of "ext_cf S j (Suc n, f)" "ext_cf S j (n, f)"
"n + j"], assumption+)
apply (simp add:ext_cf_len)
apply (rule allI, (subst ext_cf_def)+, simp add:sliden_def)
done
lemma (in PolynRg) low_deg_terms_zeroTr:"
pol_coeff S (n, f) ⟶
polyn_expr R X (n + j) (ext_cf S j (n, f)) =
(X^⇗R j⇖) ⋅⇩r (polyn_expr R X n (n, f))"
apply (cut_tac ring_is_ag,
cut_tac X_mem_R, frule npClose[of "X" "j"])
apply (induct_tac n)
apply (rule impI, simp)
apply (case_tac "j = 0", simp add:ext_cf_def sliden_def polyn_expr_def)
apply (frule_tac c = "(0, f)" and j = 0 in pol_coeff_mem_R, simp, simp)
apply (simp add:ring_r_one ring_l_one)
apply (cut_tac polyn_Suc[of "j - Suc 0" "ext_cf S j (0, f)"],
simp del:npow_suc)
apply (frule ext_cf_len[of "(0, f)" j],
cut_tac polyn_expr_split[of j "ext_cf S j (0, f)"], simp,
thin_tac "polyn_expr R X j (ext_cf S j (0, f)) =
polyn_expr R X (j - Suc 0) (ext_cf S j (0, f)) ±
snd (ext_cf S j (0, f)) j ⋅⇩r X^⇗R j⇖")
apply (simp add:polyn_ext_cf_lo_zero[of "(0, f)" j],
thin_tac "polyn_expr R X j (j, snd (ext_cf S j (0, f))) =
𝟬 ± snd (ext_cf S j (0, f)) j ⋅⇩r X^⇗R j⇖",
frule ext_cf_hi[THEN sym, of "(0, f)" j], simp add:polyn_expr_def)
apply (frule_tac c = "(0, f)" and j = 0 in pol_coeff_mem_R, simp, simp)
apply (subst aGroup.ag_l_zero, assumption, simp add:ring_tOp_closed,
simp add:ring_r_one, subst ring_tOp_commute, assumption+, simp)
apply (simp add:ext_cf_len)
apply (rule impI,
cut_tac subring,
cut_tac subring_Ring[of S],
frule_tac n = n in pol_coeff_pre[of _ "f"])
apply simp
apply (subst polyn_expr_split)
apply (cut_tac n = "n + j" and c = "ext_cf S j (Suc n, f)" in polyn_Suc,
simp add:ext_cf_len)
apply (subst ext_cf_len, assumption+, simp del:npow_suc add:add.commute[of j],
thin_tac "polyn_expr R X (Suc (n + j))
(Suc (n + j), snd (ext_cf S j (Suc n, f))) =
polyn_expr R X (n + j) (ext_cf S j (Suc n, f)) ±
snd (ext_cf S j (Suc n, f)) (Suc (n + j)) ⋅⇩r X^⇗R (Suc (n + j))⇖",
subst ext_cf_inductTl, assumption+, simp del:npow_suc,
thin_tac "polyn_expr R X (n + j) (ext_cf S j (n, f)) =
X^⇗R j⇖ ⋅⇩r polyn_expr R X n (n, f)")
apply (cut_tac c1 = "(Suc n, f)" and n1 = j in ext_cf_hi[THEN sym],
assumption+,
simp del:npow_suc add:add.commute[of j])
apply (cut_tac n = n and c = "(Suc n, f)" in polyn_Suc, simp,
simp del:npow_suc)
apply (frule_tac c = "(Suc n, f)" and k = n in polyn_mem, simp,
frule_tac c = "(Suc n, f)" and j = "Suc n" in pol_coeff_mem_R, simp,
simp del:npow_suc,
frule_tac x = "f (Suc n)" and y = "X^⇗R (Suc n)⇖" in ring_tOp_closed,
rule npClose, assumption,
subst ring_distrib1, assumption+)
apply (subst polyn_expr_restrict, assumption+)
apply (rule_tac a = "f (Suc n) ⋅⇩r X^⇗R (Suc (n + j))⇖ " and
b = "X^⇗R j⇖ ⋅⇩r (f (Suc n) ⋅⇩r X^⇗R (Suc n)⇖)" and
c = "X^⇗R j⇖ ⋅⇩r polyn_expr R X n (n, f)" in aGroup.ag_pOp_add_l,
assumption+,
rule ring_tOp_closed, assumption+, rule npClose, assumption,
(rule ring_tOp_closed, assumption+)+,
simp add:polyn_mem,
frule_tac n = "Suc n" in npClose[of X],
subst ring_tOp_assoc[THEN sym], assumption+,
subst ring_tOp_commute[of "X^⇗R j⇖"], assumption,
simp add:pol_coeff_mem,
subst ring_tOp_assoc, assumption+,
subst npMulDistr[of X], assumption, simp add:add.commute[of j])
apply simp
done
lemma (in PolynRg) low_deg_terms_zero:"pol_coeff S (n, f) ⟹
polyn_expr R X (n + j) (ext_cf S j (n, f)) =
(X^⇗R j⇖) ⋅⇩r (polyn_expr R X n (n, f))"
by (simp add:low_deg_terms_zeroTr)
lemma (in PolynRg) low_deg_terms_zero1:"pol_coeff S c ⟹
polyn_expr R X ((fst c) + j) (ext_cf S j c) =
(X^⇗R j⇖) ⋅⇩r (polyn_expr R X (fst c) c)"
by (cases c) (simp add: low_deg_terms_zeroTr)
lemma (in PolynRg) polyn_expr_tOpTr:"pol_coeff S (n, f) ⟹
∀g. (pol_coeff S (m, g) ⟶ (∃h. pol_coeff S ((n + m), h) ∧
h (n + m) = (f n) ⋅⇩r⇘S⇙ (g m) ∧
(polyn_expr R X (n + m) (n + m, h) =
(polyn_expr R X n (n, f)) ⋅⇩r (polyn_expr R X m (m, g)))))"
apply (cut_tac subring,
cut_tac X_mem_R,
frule subring_Ring[of S])
apply (induct_tac m)
apply (rule allI, rule impI, simp)
apply (simp add:polyn_expr_def [of R X 0])
apply (frule_tac c = "(0,g)" in pol_coeff_mem[of _ 0], simp, simp,
frule_tac c = "(0,g)" in pol_coeff_mem_R[of _ 0], simp, simp)
apply (simp add:ring_r_one,
frule_tac c = "(n, f)" and k = n in polyn_mem, simp,
simp only:ring_tOp_commute[of "polyn_expr R X n (n, f)"],
subst scalar_times_pol_expr, assumption+, simp)
apply (cut_tac f = "sp_cf S (g 0) (n, f)" in pol_coeff_split)
apply (simp add:sp_cf_len)
apply (cut_tac f = "sp_cf S (g 0) (n, f)" in polyn_expr_split[of n],
simp only:sp_cf_len, simp only:fst_conv,
frule_tac a = "g 0" in sp_cf_pol_coeff[of "(n, f)"], assumption+,
simp,
subgoal_tac "snd (sp_cf S (g 0) (n, f)) n = (f n) ⋅⇩r⇘S⇙ (g 0)", blast)
apply (thin_tac "pol_coeff S (n, snd (sp_cf S (g 0) (n, f)))",
thin_tac "polyn_expr R X n (sp_cf S (g 0) (n, f)) =
polyn_expr R X n (n, snd (sp_cf S (g 0) (n, f)))",
thin_tac "pol_coeff S (sp_cf S (g 0) (n, f))")
apply (subst sp_cf_val[of "(n, f)" n], assumption+, simp, assumption, simp,
frule_tac c = "(n,f)" in pol_coeff_mem[of _ n], simp, simp,
simp add:Ring.ring_tOp_commute)
apply (rule allI, rule impI)
apply (frule_tac n = na and f = g in pol_coeff_pre,
drule_tac a = g in forall_spec, assumption+)
apply (erule exE, (erule conjE)+)
apply (cut_tac n = na and c = "(Suc na, g)" in polyn_Suc, (simp del:npow_suc)+,
thin_tac "polyn_expr R X (Suc na) (Suc na, g) =
polyn_expr R X na (Suc na, g) ± g (Suc na) ⋅⇩r X^⇗R (Suc na)⇖",
subst polyn_expr_restrict, assumption)
apply (frule_tac c = "(n, f)" and k = n in polyn_mem,simp del:npow_suc,
frule_tac c = "(na, g)" and k = na in polyn_mem, simp del:npow_suc,
frule_tac c = "(Suc na, g)" in monomial_mem, simp del:npow_suc,
drule_tac a = "Suc na" in forall_spec, simp del:npow_suc)
apply (subst ring_distrib1, assumption+)
apply (rotate_tac 8, drule sym,
simp del:npow_suc)
apply (thin_tac "polyn_expr R X n (n, f) ⋅⇩r polyn_expr R X na (na, g) =
polyn_expr R X (n + na) (n + na, h)")
apply (frule_tac c = "(Suc na, g)" and j ="Suc na" in pol_coeff_mem_R, simp,
simp del:npow_suc,
frule_tac c = "(Suc na, g)" and j ="Suc na" in pol_coeff_mem, simp,
simp del:npow_suc)
apply (subst ring_tOp_commute, assumption+,
subst ring_tOp_assoc, assumption+, rule npClose, assumption+,
subst low_deg_terms_zero[THEN sym], assumption+)
apply (frule_tac c = "(n, f)" and n = "Suc na" in ext_cf_pol_coeff)
apply (frule_tac c = "ext_cf S (Suc na) (n, f)" and a = "g (Suc na)" in
sp_cf_pol_coeff, assumption)
apply (subst scalar_times_pol_expr, assumption+,
simp add:ext_cf_len,
cut_tac k = "n + Suc na" and
f = "sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))" in
polyn_expr_split,
simp only:sp_cf_len,
thin_tac "polyn_expr R X (n + Suc na)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))) =
polyn_expr R X (n + Suc na)
(fst (ext_cf S (Suc na) (n, f)),
snd (sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))))",
simp only:ext_cf_len, simp only:fst_conv,
simp add:add.commute[of _ n])
apply (subst polyn_add, assumption+,
cut_tac f = "sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))" in
pol_coeff_split, simp only:sp_cf_len, simp only:ext_cf_len,
simp add:add.commute[of _ n], simp add: max_def,
frule_tac c = "sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))"
in pol_coeff_cartesian,
simp only:sp_cf_len, simp only:ext_cf_len,
simp add:add.commute[of _ n],
thin_tac "(Suc (n + na),
snd (sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f)))) =
sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))",
frule_tac c = "(n + na, h)" and
d = "sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))" in
add_cf_pol_coeff, assumption)
apply (cut_tac k = "Suc (n + na)" and f = "add_cf S (n + na, h)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f)))" in polyn_expr_split)
apply (simp only: mp)
apply (
thin_tac "polyn_expr R X (Suc (n + na))
(add_cf S (n + na, h)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f)))) =
polyn_expr R X (Suc (n + na))
(fst (add_cf S (n + na, h)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f)))),
snd (add_cf S (n + na, h)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f)))))")
apply (subst add_cf_len)
apply assumption+
apply (simp add: sp_cf_len)
apply (simp add: ext_cf_len max_def)
apply (cut_tac f = "add_cf S (n + na, h)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f)))" in
pol_coeff_split)
apply (simp only: add_cf_len)
apply (simp only: sp_cf_len)
apply (simp add: ext_cf_len)
apply (thin_tac "pol_coeff S
(add_cf S (n + na, h)
(sp_cf S (g (Suc na)) (ext_cf S (Suc na) (n, f))))",
subgoal_tac "snd (add_cf S (n + na, h) (sp_cf S (g (Suc na))
(ext_cf S (Suc na) (n, f)))) (Suc (n + na)) = f n ⋅⇩r⇘S⇙ g (Suc na)",
simp add:add.commute[of _ n], blast)
apply (subst add_cf_def, simp add:sp_cf_len ext_cf_len,
subst sp_cf_def, simp add:ext_cf_len,
subst ext_cf_def, simp add:sliden_def,
frule pol_coeff_mem[of "(n, f)" n], simp,
simp add:Ring.ring_tOp_commute)
done
lemma (in PolynRg) polyn_expr_tOp:"⟦
pol_coeff S (n, f); pol_coeff S (m, g)⟧ ⟹ ∃e. pol_coeff S ((n + m), e) ∧
e (n + m) = (f n) ⋅⇩r⇘S⇙ (g m) ∧
polyn_expr R X (n + m)(n + m, e) =
(polyn_expr R X n (n, f)) ⋅⇩r (polyn_expr R X m (m, g))"
by (simp add:polyn_expr_tOpTr)
lemma (in PolynRg) polyn_expr_tOp_c:"⟦pol_coeff S c; pol_coeff S d⟧ ⟹
∃e. pol_coeff S e ∧ (fst e = fst c + fst d) ∧
(snd e) (fst e) = (snd c (fst c)) ⋅⇩r⇘S⇙ (snd d) (fst d) ∧
polyn_expr R X (fst e) e =
(polyn_expr R X (fst c) c) ⋅⇩r (polyn_expr R X (fst d) d)"
by (cases c, cases d) (simp add: polyn_expr_tOpTr)
section "The degree of a polynomial"
lemma (in PolynRg) polyn_degreeTr:"⟦pol_coeff S c; k ≤ (fst c)⟧ ⟹
(polyn_expr R X k c = 𝟬 ) = ({j. j ≤ k ∧ (snd c) j ≠ 𝟬⇘S⇙} = {})"
apply (subst coeff_0_pol_0[THEN sym, of c k], assumption+)
apply blast
done
lemma (in PolynRg) higher_part_zero:"⟦pol_coeff S c; k < fst c;
∀j∈nset (Suc k) (fst c). snd c j = 𝟬⇘S⇙⟧ ⟹
Σ⇩f R (λj. snd c j ⋅⇩r X^⇗R j⇖) (Suc k) (fst c) = 𝟬"
apply (cut_tac ring_is_ag,
rule aGroup.fSum_zero1[of R k "fst c" "λj. snd c j ⋅⇩r X^⇗R j⇖"],
assumption+)
apply (rule ballI,
drule_tac x = j in bspec, assumption, simp)
apply (cut_tac subring,
simp add:Subring_zero_ring_zero,
cut_tac X_mem_R,
frule_tac n = j in npClose[of X],
simp add:ring_times_0_x)
done
lemma (in PolynRg) coeff_nonzero_polyn_nonzero:"⟦pol_coeff S c; k ≤ (fst c)⟧
⟹ (polyn_expr R X k c ≠ 𝟬) = (∃j≤k. (snd c) j ≠ 𝟬⇘S⇙ )"
by (simp add:coeff_0_pol_0[THEN sym, of c k])
lemma (in PolynRg) pol_expr_unique:"⟦p ∈ carrier R; p ≠ 𝟬;
pol_coeff S c; p = polyn_expr R X (fst c) c; (snd c) (fst c) ≠ 𝟬⇘S⇙;
pol_coeff S d; p = polyn_expr R X (fst d) d; (snd d) (fst d) ≠ 𝟬⇘S⇙⟧ ⟹
(fst c) = (fst d) ∧ (∀j ≤ (fst c). (snd c) j = (snd d) j)"
apply (cut_tac ring_is_ag,
cut_tac subring, frule subring_Ring,
frule Ring.ring_is_ag[of S])
apply (frule m_cf_pol_coeff[of d])
apply (frule polyn_minus_m_cf[of d "fst d"], simp)
apply (drule sym, drule sym, simp)
apply (rotate_tac -2, drule sym, drule sym)
apply (frule_tac x = p in aGroup.ag_r_inv1[of R], assumption, simp,
thin_tac "p = polyn_expr R X (fst c) c",
thin_tac "polyn_expr R X (fst d) d = polyn_expr R X (fst c) c",
thin_tac "-⇩a (polyn_expr R X (fst c) c) =
polyn_expr R X (fst d) (m_cf S d)")
apply (frule polyn_add1[of c "m_cf S d"], assumption+, simp add:m_cf_len,
thin_tac "polyn_expr R X (fst c) c ± polyn_expr R X (fst d) (m_cf S d)
= polyn_expr R X (max (fst c) (fst d)) (add_cf S c (m_cf S d))",
thin_tac "polyn_expr R X (fst c) c ≠
polyn_expr R X (max (fst c) (fst d)) (add_cf S c (m_cf S d))")
apply (frule_tac add_cf_pol_coeff[of c "m_cf S d"], simp add:m_cf_len)
apply (cut_tac coeff_0_pol_0[THEN sym, of "add_cf S c (m_cf S d)"
"max (fst c) (fst d)"],
drule sym, simp,
thin_tac "polyn_expr R X (max (fst c) (fst d))
(add_cf S c (m_cf S d)) = 𝟬",
thin_tac "pol_coeff S (add_cf S c (m_cf S d))",
thin_tac "pol_coeff S (m_cf S d)")
apply (case_tac "fst c = fst d", simp)
apply (rule allI, rule impI,
drule_tac a = j in forall_spec, assumption)
apply (simp add:add_cf_def m_cf_def m_cf_len)
apply (frule_tac j = j in pol_coeff_mem[of c], simp,
frule_tac j = j in pol_coeff_mem[of d], simp)
apply (subst aGroup.ag_eq_diffzero[of S], assumption+)
apply (simp add:add_cf_def)
apply (case_tac "¬ (fst c) ≤ (fst d)", simp)
apply (simp add:m_cf_len)
apply (drule_tac a = "fst c" in forall_spec, simp, simp)
apply simp
apply (drule_tac a = "fst d" in forall_spec, simp, simp add:m_cf_len)
apply (case_tac "fst c ≠ fst d",
frule noteq_le_less[of "fst c" "fst d"], assumption, simp)
apply (simp add:m_cf_def)
apply (frule pol_coeff_mem[of d "fst d"], simp)
apply (frule Ring.ring_is_ag[of S],
frule aGroup.ag_inv_inv[of S "snd d (fst d)"], assumption)
apply (simp add:aGroup.ag_inv_zero)
apply simp
apply simp
apply (simp add:add_cf_len m_cf_len)
done
lemma (in PolynRg) pol_expr_unique2:"⟦pol_coeff S c; pol_coeff S d;
fst c = fst d⟧ ⟹
(polyn_expr R X (fst c) c = polyn_expr R X (fst d) d ) =
(∀j ≤ (fst c). (snd c) j = (snd d) j)"
apply (cut_tac ring_is_ag,
cut_tac subring, frule subring_Ring,
frule Ring.ring_is_ag[of S])
apply (rule iffI)
apply (frule m_cf_pol_coeff[of d])
apply (frule polyn_mem[of c "fst c"], simp,
frule polyn_mem[of d "fst d"], simp)
apply (frule aGroup.ag_eq_diffzero[of R "polyn_expr R X (fst c) c"
"polyn_expr R X (fst d) d"], assumption+,
simp,
simp only:polyn_minus_m_cf[of d "fst d"],
drule sym, simp)
apply (frule polyn_add1[of c "m_cf S d"], assumption+, simp add:m_cf_len)
apply (thin_tac "polyn_expr R X (fst c) d ± polyn_expr R X (fst c)
(m_cf S d) =
polyn_expr R X (fst c) (add_cf S c (m_cf S d))",
thin_tac "polyn_expr R X (fst c) c = polyn_expr R X (fst c) d",
thin_tac "polyn_expr R X (fst c) d ∈ carrier R",
drule sym)
apply (frule_tac add_cf_pol_coeff[of c "m_cf S d"], simp add:m_cf_len)
apply (frule coeff_0_pol_0[THEN sym, of "add_cf S c (m_cf S d)"
"fst c"],
simp add:add_cf_len, simp add:m_cf_len,
thin_tac "𝟬 = polyn_expr R X (fst d) (add_cf S c (m_cf S d))",
thin_tac "pol_coeff S (add_cf S c (m_cf S d))")
apply (simp add:add_cf_def m_cf_def)
apply (rule allI, rule impI)
apply (drule_tac a = j in forall_spec, assumption)
apply (frule_tac j = j in pol_coeff_mem[of c], simp,
frule_tac j = j in pol_coeff_mem[of d], simp)
apply (simp add:aGroup.ag_eq_diffzero[THEN sym])
apply simp
apply (rule polyn_exprs_eq[of c d "fst d"], assumption+)
apply (simp, assumption+)
done
lemma (in PolynRg) pol_expr_unique3:"⟦pol_coeff S c; pol_coeff S d;
fst c < fst d⟧ ⟹
(polyn_expr R X (fst c) c = polyn_expr R X (fst d) d ) =
((∀j ≤ (fst c). (snd c) j = (snd d) j) ∧
(∀j∈nset (Suc (fst c)) (fst d). (snd d) j = 𝟬⇘S⇙))"
apply (rule iffI)
apply (cut_tac ring_is_ag,
cut_tac subring, frule subring_Ring,
frule Ring.ring_is_ag[of S])
apply (frule m_cf_pol_coeff[of d])
apply (frule polyn_mem[of c "fst c"], simp,
frule polyn_mem[of d "fst d"], simp)
apply (frule aGroup.ag_eq_diffzero[of R "polyn_expr R X (fst c) c"
"polyn_expr R X (fst d) d"], assumption+,
simp,
simp only:polyn_minus_m_cf[of d "fst d"],
drule sym, simp)
apply (frule polyn_add1 [of c "m_cf S d"])
apply assumption+
apply (simp add: m_cf_len)
apply (thin_tac "polyn_expr R X (fst d) d = polyn_expr R X (fst c) c")
apply (thin_tac "polyn_expr R X (fst c) c ∈ carrier R", drule sym)
apply (frule_tac add_cf_pol_coeff[of c "m_cf S d"], simp add:m_cf_len)
apply (frule coeff_0_pol_0[THEN sym, of "add_cf S c (m_cf S d)"
"max (fst c) (fst d)"])
apply (simp add:add_cf_len m_cf_len, simp)
apply (thin_tac "pol_coeff S (add_cf S c (m_cf S d))")
apply (simp add:add_cf_def m_cf_def max_def)
apply (rule conjI)
apply (rule allI, rule impI,
frule_tac x = j and y = "fst c" and z = "fst d" in le_less_trans,
assumption+,
frule_tac x = j and y = "fst d" in less_imp_le)
apply (drule_tac a = j in forall_spec, simp, simp)
apply (frule_tac j = j in pol_coeff_mem[of c], simp,
frule_tac j = j in pol_coeff_mem[of d], simp)
apply (simp add:aGroup.ag_eq_diffzero[THEN sym])
apply (rule ballI, simp add:nset_def, erule conjE)
apply (cut_tac x = "fst c" and y = "Suc (fst c)" and z = j in
less_le_trans, simp, assumption)
apply (cut_tac m1 = "fst c" and n1 = j in nat_not_le_less[THEN sym], simp)
apply (drule_tac a = j in forall_spec, assumption, simp,
frule_tac j = j in pol_coeff_mem[of d], simp)
apply (frule_tac x = "snd d j" in aGroup.ag_inv_inv[of S], assumption,
simp add:aGroup.ag_inv_inv aGroup.ag_inv_zero)
apply (cut_tac polyn_n_m[of d "fst c" "fst d"])
apply (subst polyn_expr_split[of "fst d" d], simp,
thin_tac "polyn_expr R X (fst d) d =
polyn_expr R X (fst c) (fst c, snd d) ±
Σ⇩f R (λj. snd d j ⋅⇩r X^⇗R j⇖) (Suc (fst c)) (fst d)", erule conjE)
apply (subst higher_part_zero[of d "fst c"], assumption+)
apply (frule pol_coeff_le[of d "fst c"], simp add:less_imp_le,
frule polyn_mem[of "(fst c, snd d)" "fst c"], simp,
cut_tac ring_is_ag,
simp add:aGroup.ag_r_zero,
subst polyn_expr_short[THEN sym, of d "fst c"], assumption+,
simp add:less_imp_le)
apply (rule polyn_exprs_eq[of c d "fst c"], assumption+)
apply (simp, assumption+)
apply (simp add:less_imp_le)
done
lemma (in PolynRg) polyn_degree_unique:"⟦pol_coeff S c; pol_coeff S d;
polyn_expr R X (fst c) c = polyn_expr R X (fst d) d⟧ ⟹
c_max S c = c_max S d"
apply (cut_tac ring_is_ag,
cut_tac subring,
frule subring_Ring,
frule Ring.ring_is_ag[of S])
apply (case_tac "polyn_expr R X (fst d) d = 𝟬⇘R⇙")
apply (cut_tac coeff_0_pol_0[THEN sym, of d "fst d"], simp,
cut_tac coeff_0_pol_0[THEN sym, of c "fst c"], simp)
apply (simp add:c_max_def, assumption, simp, assumption, simp)
apply (frule polyn_mem[of c "fst c"], simp, frule polyn_mem[of d "fst d"],
simp)
apply (frule aGroup.ag_eq_diffzero[of "R" "polyn_expr R X (fst c) c"
"polyn_expr R X (fst d) d"], assumption+)
apply (simp only:polyn_minus_m_cf[of d "fst d"],
frule m_cf_pol_coeff [of d])
apply (frule polyn_add1[of c "m_cf S d"], assumption+,
simp only:m_cf_len)
apply (rotate_tac -1, drule sym, simp,
thin_tac "polyn_expr R X (fst d) d ±
polyn_expr R X (fst d) (m_cf S d) = 𝟬",
frule add_cf_pol_coeff[of c "m_cf S d"], assumption+)
apply (cut_tac coeff_0_pol_0[THEN sym, of "add_cf S c (m_cf S d)"
"fst (add_cf S c (m_cf S d))"],
simp add:add_cf_len m_cf_len,
thin_tac "polyn_expr R X (max (fst c) (fst d))
(add_cf S c (m_cf S d)) = 𝟬",
thin_tac "pol_coeff S (add_cf S c (m_cf S d))",
thin_tac "pol_coeff S (m_cf S d)")
apply (frule coeff_nonzero_polyn_nonzero[of d "fst d"], simp, simp)
apply (drule sym, simp)
apply (frule coeff_nonzero_polyn_nonzero[of c "fst c"], simp, simp)
apply (simp add:c_max_def, rule conjI, rule impI, blast,
rule conjI, rule impI, blast)
apply (rule n_max_eq_sets)
apply (rule equalityI)
apply (rule subsetI, simp)
apply (erule conjE)
apply (case_tac "fst c ≤ fst d")
apply (frule_tac i = x in le_trans[of _ "fst c" "fst d"], assumption+, simp)
apply (
rule contrapos_pp, simp+,
frule_tac i = x in le_trans[of _ "fst c" "fst d"], assumption+,
drule_tac a = x in forall_spec, assumption,
drule le_imp_less_or_eq[of "fst c" "fst d"],
erule disjE, simp add:add_cf_def m_cf_len m_cf_def,
frule_tac j = x in pol_coeff_mem[of c], assumption+,
simp add:aGroup.ag_inv_zero aGroup.ag_r_zero[of S])
apply (simp add:add_cf_def m_cf_len m_cf_def,
rotate_tac -1, drule sym, simp,
frule_tac j = x in pol_coeff_mem[of c], simp,
simp add:aGroup.ag_inv_zero aGroup.ag_r_zero[of S])
apply (simp add:nat_not_le_less)
apply (case_tac "¬ x ≤ (fst d)", simp,
simp add:nat_not_le_less,
frule_tac x = "fst d" and y = x and z = "fst c" in
less_le_trans, assumption+,
drule_tac x = x in spec, simp add:max_def,
simp add:add_cf_def m_cf_len m_cf_def)
apply (simp,
drule_tac x = x in spec, simp add:max_def,
rule contrapos_pp, simp+,
simp add:add_cf_def m_cf_len m_cf_def,
frule_tac j = x in pol_coeff_mem[of c],
frule_tac x = x and y = "fst d" and z = "fst c" in
le_less_trans, assumption+, simp add:less_imp_le,
simp add:aGroup.ag_inv_zero aGroup.ag_r_zero[of S])
apply (rule subsetI, simp, erule conjE,
case_tac "fst d ≤ fst c",
frule_tac i = x and j = "fst d" and k = "fst c" in le_trans,
assumption+, simp,
drule_tac x = x in spec, simp add:max_def,
rule contrapos_pp, simp+,
simp add:add_cf_def m_cf_len m_cf_def)
apply (case_tac "fst d = fst c", simp, rotate_tac -1, drule sym, simp,
frule_tac j = x in pol_coeff_mem[of d], assumption,
frule_tac x = "snd d x" in aGroup.ag_mOp_closed, assumption+,
simp add:aGroup.ag_l_zero,
frule_tac x = "snd d x" in aGroup.ag_inv_inv[of S],
assumption, simp add:aGroup.ag_inv_zero)
apply (drule noteq_le_less[of "fst d" "fst c"], assumption,
simp,
frule_tac j = x in pol_coeff_mem[of d], assumption,
frule_tac x = "snd d x" in aGroup.ag_mOp_closed, assumption+,
simp add:aGroup.ag_l_zero,
frule_tac x = "snd d x" in aGroup.ag_inv_inv[of S],
assumption, simp add:aGroup.ag_inv_zero)
apply (simp add:nat_not_le_less,
case_tac "¬ x ≤ fst c", simp,
simp add:nat_not_le_less,
drule_tac x = x in spec, simp add:max_def,
simp add:add_cf_def m_cf_len m_cf_def,
frule_tac j = x in pol_coeff_mem[of d], assumption,
frule_tac x = "snd d x" in aGroup.ag_mOp_closed, assumption+,
simp add:aGroup.ag_l_zero,
frule_tac x = "snd d x" in aGroup.ag_inv_inv[of S],
assumption, simp add:aGroup.ag_inv_zero)
apply (simp,
drule_tac x = x in spec, simp add:max_def,
rule contrapos_pp, simp+,
simp add:add_cf_def m_cf_len m_cf_def,
frule_tac x = x and y = "fst c" and z = "fst d" in le_less_trans,
assumption+, frule_tac x = x and y = "fst d" in less_imp_le,
frule_tac j = x in pol_coeff_mem[of d], assumption,
frule_tac x = "snd d x" in aGroup.ag_mOp_closed, assumption+,
simp add:aGroup.ag_l_zero,
frule_tac x = "snd d x" in aGroup.ag_inv_inv[of S],
assumption, simp add:aGroup.ag_inv_zero)
apply (thin_tac "∀j≤max (fst c) (fst d). snd (add_cf S c (m_cf S d)) j = 𝟬⇘S⇙")
apply (rotate_tac -1, drule sym, simp)
apply (simp add:coeff_0_pol_0[THEN sym, of c "fst c"])
apply blast
apply simp+
done
lemma (in PolynRg) ex_polyn_expr:"p ∈ carrier R ⟹
∃c. pol_coeff S c ∧ p = polyn_expr R X (fst c) c"
apply (cut_tac S_X_generate[of p], blast)
apply assumption
done
lemma (in PolynRg) c_max_eqTr0:"⟦pol_coeff S c; k ≤ (fst c);
polyn_expr R X k c = polyn_expr R X (fst c) c; ∃j≤k. (snd c) j ≠ 𝟬⇘S⇙⟧ ⟹
c_max S (k, snd c) = c_max S c"
apply (simp add:polyn_expr_short[of c k],
frule pol_coeff_le[of c k], assumption+,
rule polyn_degree_unique[of "(k, snd c)" c], assumption+,
simp)
done
definition
cf_sol :: "[('a, 'b) Ring_scheme, ('a, 'b1) Ring_scheme, 'a, 'a,
nat × (nat ⇒ 'a)] ⇒ bool" where
"cf_sol R S X p c ⟷ pol_coeff S c ∧ (p = polyn_expr R X (fst c) c)"
definition
deg_n ::"[('a, 'b) Ring_scheme, ('a, 'b1) Ring_scheme, 'a, 'a] ⇒ nat" where
"deg_n R S X p = c_max S (SOME c. cf_sol R S X p c)"
definition
deg ::"[('a, 'b) Ring_scheme, ('a, 'b1) Ring_scheme, 'a, 'a] ⇒ ant" where
"deg R S X p = (if p = 𝟬⇘R⇙ then -∞ else (an (deg_n R S X p)))"
lemma (in PolynRg) ex_cf_sol:"p ∈ carrier R ⟹
∃c. cf_sol R S X p c"
apply (unfold cf_sol_def)
apply (frule ex_polyn_expr[of p], (erule exE)+)
apply (cut_tac n = "fst c" in le_refl, blast)
done
lemma (in PolynRg) deg_in_aug_minf:"p ∈ carrier R ⟹
deg R S X p ∈ Z⇩-⇩∞"
apply (simp add:aug_minf_def deg_def an_def)
done
lemma (in PolynRg) deg_noninf:"p ∈ carrier R ⟹
deg R S X p ≠ ∞"
apply (cut_tac deg_in_aug_minf[of p], simp add:deg_def,
simp add:aug_minf_def)
apply (case_tac "p = 𝟬⇘R⇙", simp+)
done
lemma (in PolynRg) deg_ant_int:"⟦p ∈ carrier R; p ≠ 𝟬⟧
⟹ deg R S X p = ant (int (deg_n R S X p))"
by (simp add:deg_def an_def)
lemma (in PolynRg) deg_an:"⟦p ∈ carrier R; p ≠ 𝟬⟧
⟹ deg R S X p = an (deg_n R S X p)"
by (simp add:deg_def)
lemma (in PolynRg) pol_SOME_1:"p ∈ carrier R ⟹
cf_sol R S X p (SOME f. cf_sol R S X p f)"
apply (frule ex_cf_sol[of p])
apply (rule_tac P = "cf_sol R S X p" in someI_ex, assumption)
done
lemma (in PolynRg) pol_SOME_2:"p ∈ carrier R ⟹
pol_coeff S (SOME c. cf_sol R S X p c) ∧
p = polyn_expr R X (fst (SOME c. cf_sol R S X p c))
(SOME c. cf_sol R S X p c)"
apply (frule pol_SOME_1[of p])
apply (simp add:cf_sol_def)
done
lemma (in PolynRg) coeff_max_zeroTr:"pol_coeff S c ⟹
∀j. j ≤ (fst c) ∧ (c_max S c) < j ⟶ (snd c) j = 𝟬⇘S⇙"
apply (case_tac "∀j ≤ (fst c). (snd c) j = 𝟬⇘S⇙", rule allI, rule impI,
erule conjE, simp)
apply simp
apply (frule coeff_nonzero_polyn_nonzero[THEN sym, of c "fst c"], simp,
simp)
apply (rule allI, rule impI, erule conjE,
simp add:c_max_def,
simp add:polyn_degreeTr[of c "fst c"])
apply (subgoal_tac "{j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙} ⊆ {j. j ≤ (fst c)}",
frule n_max[of "{j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙}" "fst c"], blast)
apply (case_tac "∀x≤fst c. snd c x = 𝟬⇘S⇙ ", blast, simp)
apply (erule conjE)
apply (rule contrapos_pp, simp+,
thin_tac "∃x≤fst c. snd c x ≠ 𝟬⇘S⇙",
thin_tac "{j. j ≤ fst c ∧ snd c j ≠ 𝟬⇘S⇙} ⊆ {j. j ≤ fst c}",
thin_tac "snd c (n_max {j. j ≤ fst c ∧ snd c j ≠ 𝟬⇘S⇙}) ≠ 𝟬⇘S⇙",
drule_tac a = j in forall_spec, simp)
apply simp
apply (rule subsetI, simp)
done
lemma (in PolynRg) coeff_max_nonzeroTr:"⟦pol_coeff S c;
∃j ≤ (fst c). (snd c) j ≠ 𝟬⇘S⇙⟧ ⟹ (snd c) (c_max S c) ≠ 𝟬⇘S⇙"
apply (simp add:c_max_def)
apply (subgoal_tac "{j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙} ⊆ {j. j ≤ (fst c)}",
frule n_max[of "{j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙}" "fst c"], blast)
apply (erule conjE, simp)
apply (rule subsetI, simp)
done
lemma (in PolynRg) coeff_max_bddTr:"pol_coeff S c ⟹ c_max S c ≤ (fst c)"
apply (case_tac "∀j≤(fst c). (snd c) j = 𝟬⇘S⇙", simp add:c_max_def)
apply (simp add:c_max_def,
frule polyn_degreeTr[of c "fst c"], simp, simp,
subgoal_tac "{j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙} ⊆ {j. j ≤ (fst c)}",
frule n_max[of "{j. j ≤ (fst c) ∧ (snd c) j ≠ 𝟬⇘S⇙}" "fst c"],
blast, erule conjE, simp)
apply (rule subsetI, simp)
done
lemma (in PolynRg) pol_coeff_max:"pol_coeff S c ⟹
pol_coeff S ((c_max S c), snd c)"
apply (rule pol_coeff_le[of c "c_max S c"], assumption)
apply (simp add:coeff_max_bddTr)
done
lemma (in PolynRg) polyn_c_max:"pol_coeff S c ⟹
polyn_expr R X (fst c) c = polyn_expr R X (c_max S c) c"
apply (case_tac "(c_max S c) = (fst c)", simp)
apply (frule coeff_max_bddTr[of c],
frule noteq_le_less[of "c_max S c" "fst c"], assumption)
apply (subst polyn_n_m1[of c "c_max S c" "fst c"], assumption+, simp)
apply (frule_tac polyn_mem[of c "c_max S c"], assumption+)
apply (subst higher_part_zero[of c "c_max S c"], assumption+)
apply (frule coeff_max_zeroTr[of c],
rule ballI, simp add:nset_def)
apply (cut_tac ring_is_ag, simp add:aGroup.ag_r_zero)
done
lemma (in PolynRg) pol_deg_eq_c_max:"⟦p ∈ carrier R;
pol_coeff S c; p = polyn_expr R X (fst c) c⟧ ⟹
deg_n R S X p = c_max S c"
apply (cut_tac subring, frule subring_Ring)
apply (frule polyn_c_max[of c])
apply (frule pol_SOME_2[of p])
apply (subst deg_n_def, erule conjE)
apply (rule polyn_degree_unique[of "Eps (cf_sol R S X p)" "c"], simp,
assumption)
apply simp
done
lemma (in PolynRg) pol_deg_le_n:"⟦p ∈ carrier R; pol_coeff S c;
p = polyn_expr R X (fst c) c⟧ ⟹ deg_n R S X p ≤ (fst c)"
apply (frule pol_deg_eq_c_max[of p c], assumption+,
frule coeff_max_bddTr[of c])
apply simp
done
lemma (in PolynRg) pol_deg_le_n1:"⟦p ∈ carrier R; pol_coeff S c; k ≤ (fst c);
p = polyn_expr R X k c⟧ ⟹ deg_n R S X p ≤ k"
apply (simp add:deg_n_def, drule sym, simp)
apply (frule pol_SOME_2[of p], erule conjE)
apply (frule pol_coeff_le[of c k], assumption)
apply (simp only:polyn_expr_short[of c k])
apply (drule sym)
apply (subst polyn_degree_unique[of "SOME c. cf_sol R S X p c" "(k, snd c)"],
assumption+, simp)
apply (frule coeff_max_bddTr[of "(k, snd c)"], simp)
done
lemma (in PolynRg) pol_len_gt_deg:"⟦p ∈ carrier R; pol_coeff S c;
p = polyn_expr R X (fst c) c; deg R S X p < (an j); j ≤ (fst c)⟧
⟹ (snd c) j = 𝟬⇘S⇙"
apply (case_tac "p = 𝟬⇘R⇙", simp, drule sym)
apply (simp add:coeff_0_pol_0[THEN sym, of c "fst c"])
apply (simp add:deg_def, simp add:aless_natless)
apply (drule sym, simp)
apply (frule coeff_max_zeroTr[of c])
apply (simp add:pol_deg_eq_c_max)
done
lemma (in PolynRg) pol_diff_deg_less:"⟦p ∈ carrier R; pol_coeff S c;
p = polyn_expr R X (fst c) c; pol_coeff S d;
fst c = fst d; (snd c) (fst c) = (snd d) (fst d)⟧ ⟹
p ± (-⇩a (polyn_expr R X (fst d) d)) = 𝟬 ∨
deg_n R S X (p ± (-⇩a (polyn_expr R X (fst d) d))) < (fst c)"
apply (cut_tac ring_is_ag,
cut_tac subring, frule subring_Ring)
apply (case_tac "p ±⇘R⇙ (-⇩a⇘R⇙ (polyn_expr R X (fst d) d)) = 𝟬⇘R⇙", simp)
apply simp
apply (simp add:polyn_minus_m_cf[of d "fst d"],
frule m_cf_pol_coeff[of d])
apply (cut_tac polyn_add1[of c "m_cf S d"], simp add:m_cf_len,
thin_tac "polyn_expr R X (fst d) c ± polyn_expr R X (fst d) (m_cf S d)
= polyn_expr R X (fst d) (add_cf S c (m_cf S d))")
apply (frule add_cf_pol_coeff[of c "m_cf S d"], assumption+)
apply (cut_tac polyn_mem[of "add_cf S c (m_cf S d)" "fst d"],
frule pol_deg_le_n[of "polyn_expr R X (fst d) (add_cf S c (m_cf S d))"
"add_cf S c (m_cf S d)"], assumption+,
simp add:add_cf_len m_cf_len,
simp add:add_cf_len m_cf_len)
apply (rule noteq_le_less[of "deg_n R S X (polyn_expr R X (fst d)
(add_cf S c (m_cf S d)))" "fst d"], assumption)
apply (rule contrapos_pp, simp+)
apply (cut_tac pol_deg_eq_c_max[of "polyn_expr R X (fst d)
(add_cf S c (m_cf S d))" "add_cf S c (m_cf S d)"],
simp,
thin_tac "deg_n R S X (polyn_expr R X (fst d) (add_cf S c (m_cf S d)))
= fst d")
apply (frule coeff_nonzero_polyn_nonzero[of "add_cf S c (m_cf S d)" "fst d"],
simp add:add_cf_len m_cf_len, simp,
thin_tac "polyn_expr R X (fst d) (add_cf S c (m_cf S d)) ≠ 𝟬",
frule coeff_max_nonzeroTr[of "add_cf S c (m_cf S d)"],
simp add:add_cf_len m_cf_len,
thin_tac "∃j≤fst d. snd (add_cf S c (m_cf S d)) j ≠ 𝟬⇘S⇙",
thin_tac "pol_coeff S (m_cf S d)",
thin_tac "pol_coeff S (add_cf S c (m_cf S d))",
thin_tac "polyn_expr R X (fst d) (add_cf S c (m_cf S d)) ∈
carrier R", simp,
thin_tac "c_max S (add_cf S c (m_cf S d)) = fst d")
apply (simp add:add_cf_def m_cf_def,
frule pol_coeff_mem[of d "fst d"], simp,
frule Ring.ring_is_ag[of S],
simp add:aGroup.ag_r_inv1, assumption+,
simp add:add_cf_len m_cf_len, assumption,
simp add:add_cf_len m_cf_len, assumption+)
done
lemma (in PolynRg) pol_pre_lt_deg:"⟦p ∈ carrier R; pol_coeff S c;
deg_n R S X p ≤ (fst c); (deg_n R S X p) ≠ 0;
p = polyn_expr R X (deg_n R S X p) c ⟧ ⟹
(deg_n R S X (polyn_expr R X ((deg_n R S X p) - Suc 0) c)) < (deg_n R S X p)"
apply (frule polyn_expr_short[of c "deg_n R S X p"], assumption)
apply (cut_tac pol_deg_le_n[of "polyn_expr R X (deg_n R S X p - Suc 0) c"
"(deg_n R S X p - Suc 0, snd c)"], simp)
apply (rule polyn_mem[of c "deg_n R S X p - Suc 0"], assumption+,
arith,
rule pol_coeff_le[of c "deg_n R S X p - Suc 0"], assumption,
arith, simp)
apply (subst polyn_expr_short[of c "deg_n R S X p - Suc 0"],
assumption+, arith, simp)
done
lemma (in PolynRg) pol_deg_n:"⟦p ∈ carrier R; pol_coeff S c;
n ≤ fst c; p = polyn_expr R X n c; (snd c) n ≠ 𝟬⇘S⇙⟧ ⟹
deg_n R S X p = n"
apply (simp add:polyn_expr_short[of c n])
apply (frule pol_coeff_le[of c n], assumption+,
cut_tac pol_deg_eq_c_max[of p "(n, snd c)"],
drule sym, simp, simp add:c_max_def)
apply (rule conjI, rule impI, cut_tac le_refl[of n],
thin_tac "deg_n R S X p =
(if ∀x≤n. snd c x = 𝟬⇘S⇙ then 0
else n_max {j. j ≤ fst (n, snd c) ∧ snd (n, snd c) j ≠ 𝟬⇘S⇙})",
drule_tac a = n in forall_spec, assumption, simp)
apply (rule impI)
apply (cut_tac n_max[of "{j. j ≤ n ∧ snd c j ≠ 𝟬⇘S⇙}" n], erule conjE,
drule_tac x = n in bspec, simp, simp)
apply (rule subsetI, simp, blast,
drule sym, simp, assumption)
apply simp
done
lemma (in PolynRg) pol_expr_deg:"⟦p ∈ carrier R; p ≠ 𝟬⟧
⟹ ∃c. pol_coeff S c ∧ deg_n R S X p ≤ (fst c) ∧
p = polyn_expr R X (deg_n R S X p) c ∧
(snd c) (deg_n R S X p) ≠ 𝟬⇘S⇙"
apply (cut_tac subring,
frule subring_Ring)
apply (frule ex_polyn_expr[of p], erule exE, erule conjE)
apply (frule_tac c = c in polyn_c_max)
apply (frule_tac c = c in pol_deg_le_n[of p], assumption+)
apply (frule_tac c1 = c and k1 ="fst c" in coeff_0_pol_0[THEN sym], simp)
apply (subgoal_tac "p = polyn_expr R X (deg_n R S X p) c ∧
snd c (deg_n R S X p) ≠ 𝟬⇘S⇙", blast)
apply (subst pol_deg_eq_c_max, assumption+)+
apply simp
apply (cut_tac c = c in coeff_max_nonzeroTr, simp+)
done
lemma (in PolynRg) deg_n_pos:"p ∈ carrier R ⟹ 0 ≤ deg_n R S X p"
by simp
lemma (in PolynRg) pol_expr_deg1:"⟦p ∈ carrier R; d = na (deg R S X p)⟧ ⟹
∃c. (pol_coeff S c ∧ p = polyn_expr R X d c)"
apply (cut_tac subring, frule subring_Ring)
apply (case_tac "p = 𝟬⇘R⇙",
simp add:deg_def na_minf,
subgoal_tac "pol_coeff S (0, (λj. 𝟬⇘S⇙))",
subgoal_tac "𝟬 = polyn_expr R X d (0, (λj. 𝟬⇘S⇙))", blast,
cut_tac coeff_0_pol_0[of "(d, λj. 𝟬⇘S⇙)" d], simp+,
simp add:pol_coeff_def,
simp add:Ring.ring_zero)
apply (simp add:deg_def na_an,
frule pol_expr_deg[of p], assumption,
erule exE, (erule conjE)+,
unfold split_paired_all, simp, blast)
done
end