Theory Algebra2

(**                Algebra2  
                                  author Hidetsune Kobayashi
                                  Department of Mathematics
                                  Nihon University
                                  hikoba@math.cst.nihon-u.ac.jp
                                  May 3, 2004.
                                  April 6, 2007 (revised)

 chapter 2.  ordered set (continued)
   section 2    Pre elements 
   section 3    Transfinite induction
   section 4.   ordered_set2.  preliminary lemmas for Zorn's lemma 
   section 5.   Zorn's lemma

 chapter 3.  Group Theory. Focused on Jordan Hoelder theorem 
   section 1.    definition of a group 
   section 2.    subgroups
   section 3.    cosets
   section 4.    normal subgroups and quotient groups

  **)

theory Algebra2
imports Algebra1
begin

lemma (in Order) less_and_segment:"b  carrier D 
      (a.((a  b  a  carrier D)  (Q a))) = 
      (acarrier (Iod D (segment D b)).(Q a))"
apply (rule iffI)
 apply (rule ballI)
 apply (cut_tac segment_sub[of "b"], simp add:Iod_carrier,
        thin_tac "segment D b  carrier D",
        simp add:segment_def)
apply (rule allI, rule impI, erule conjE)
 apply (cut_tac segment_sub[of "b"], simp add:Iod_carrier,
        thin_tac "segment D b  carrier D",
        simp add:segment_def)
done

lemma (in Worder) Word_compare2:"Worder E; 
    ¬ (acarrier D. bcarrier E. ord_equiv (Iod D (segment D a)) 
                                             (Iod E (segment E b)))  
       ccarrier D. ord_equiv (Iod D (segment D c))  E"
apply simp 
apply (frule bex_nonempty_set[of "carrier D"],
       frule nonempty_set_sub[of "carrier D" _],
       thin_tac "acarrier D. bcarrier E.
           ¬ ord_equiv (Iod D (segment D a)) (Iod E (segment E b))")

apply  (insert ex_minimum,
      frule_tac a = "{x  carrier D. bcarrier E.
        ¬ ord_equiv (Iod D (segment D x)) (Iod E (segment E b))}" in 
        forall_spec, simp,
      thin_tac "{x  carrier D. bcarrier E.
       ¬ ord_equiv (Iod D (segment D x)) (Iod E (segment E b))}  {}",
      thin_tac "X. X  carrier D  X  {}  (x. minimum_elem D X x)",
      erule exE)
 apply (frule_tac X = "{x  carrier D. bcarrier E.
      ¬ ord_equiv (Iod D (segment D x)) (Iod E (segment E b))}" and a = x in 
       minimum_elem_mem, assumption, simp)
  apply (rename_tac d)
 apply (erule conjE, thin_tac "bcarrier E.
             ¬ ord_equiv (Iod D (segment D d)) (Iod E (segment E b))")
 apply (frule_tac d = d in less_minimum) apply simp

 apply (simp add:less_and_segment) 
 apply (cut_tac a = d in segment_Worder)
 apply (frule_tac D = "Iod D (segment D d)" in  Worder.well_ord_compare1 [of _ 
       "E"], assumption+)
 apply (auto simp add: minimum_elem_def Iod_segment_segment)
done

lemma (in Worder) Worder_equiv:"Worder E; 
      acarrier D. bcarrier E.  ord_equiv (Iod D (segment D a)) 
             (Iod E (segment E b));  
      ccarrier E. dcarrier D.  ord_equiv (Iod E (segment E c)) 
                    (Iod D (segment D d))  ord_equiv D E"
apply (frule well_ord_compare1 [of "E"], assumption+,
       erule disjE, assumption)
apply (erule bexE,
       insert Worder,
       frule_tac x = c in bspec, assumption+,
        thin_tac "ccarrier E. dcarrier D.
               ord_equiv (Iod E (segment E c)) (Iod D (segment D d))",
       erule bexE)

apply (cut_tac a = d in segment_Worder,
       cut_tac D = E and a = c in Worder.segment_Worder, assumption+,
       frule_tac D = "Iod D (segment D d)" in Worder.Order,
       frule_tac D = "Iod E (segment E c)" in Worder.Order,
       insert Order)
apply (frule_tac D = "D" and E = "Iod E (segment E c)" and 
       F = "Iod D (segment D d)" in Order.ord_equiv_trans, assumption+,
       frule_tac a = d in nonequiv_segment)
apply simp
done

lemma (in Worder) Worder_equiv1:"Worder E; ¬ ord_equiv D E 
      ¬ ((acarrier D. bcarrier E.  
         ord_equiv (Iod D (segment D a)) (Iod E (segment E b)))  
         (ccarrier E. dcarrier D.  
         ord_equiv (Iod E (segment E c)) (Iod D (segment D d))))"
apply (rule contrapos_pp, simp+) apply (erule conjE)
apply (frule Worder_equiv [of "E"], assumption+)
apply simp
done 

lemma (in Worder) Word_compare:"Worder E 
 (acarrier D. ord_equiv (Iod D (segment D a)) E)  ord_equiv D E  
 (bcarrier E. ord_equiv D (Iod E (segment E b)))"
apply (frule Worder.Order[of "E"],
       case_tac "ord_equiv D E", simp)
 apply (frule Worder_equiv1 [of "E"], assumption+)
 apply simp
 apply (erule disjE) 
 apply (frule Word_compare2 [of  "E"], simp) 
 apply blast 
 apply (cut_tac  Worder.Word_compare2 [of "E" "D"])
apply (thin_tac "ccarrier E. dcarrier D.
           ¬ ord_equiv (Iod E (segment E c)) (Iod D (segment D d))")
 apply (erule bexE,
        cut_tac a = c in Worder.segment_Worder[of "E"], assumption+, 
        frule_tac D = "Iod E (segment E c)" in Worder.Order,
        insert Order,
        frule_tac D = "Iod E (segment E c)" and E = D in Order.ord_equiv_sym,
        assumption+, blast)
 apply assumption apply (simp add:Worder)
 apply simp
done
      
lemma (in Worder) Word_compareTr1:"Worder E;
      acarrier D. ord_equiv (Iod D (segment D a)) E; ord_equiv D E   
     False"
apply (erule bexE,
       cut_tac a = a in segment_Worder,
       frule_tac D = E in Worder.Order,
       frule_tac D = "Iod D (segment D a)" in Worder.Order,
       frule_tac D = "Iod D (segment D a)" and E = E in Order.ord_equiv_sym,
       assumption+)
apply (insert Order,
       frule_tac D = D and E = E and F = "Iod D (segment D a)" in 
       Order.ord_equiv_trans, assumption+)
 apply (frule_tac a = a in nonequiv_segment, simp)
done  

lemma (in Worder) Word_compareTr2:"Worder E; ord_equiv D E; 
      bcarrier E. ord_equiv D (Iod E (segment E b))  False"
apply (erule bexE)
apply (cut_tac a = b in Worder.segment_Worder [of "E"], assumption+)
apply (cut_tac Worder,
       frule Worder.Order[of "E"])
apply (frule_tac D = "Iod E (segment E b)" in Worder.Order)
apply (frule_tac E = E in ord_equiv_sym, assumption)
apply (meson Worder Worder.Word_compareTr1 ord_equiv_sym)
done

lemma (in Worder) Word_compareTr3:"Worder E; 
      bcarrier E. ord_equiv D (Iod E (segment E b)); 
      acarrier D. ord_equiv (Iod D (segment D a)) E  False"  
apply (erule bexE)+
 apply (simp add:ord_equiv_def[of "D"], erule exE)
 (** ord_isom_segment_segment **)
 apply (frule Worder.Torder[of "E"])
 apply (cut_tac a = b in Worder.segment_Worder [of "E"], assumption+,
        frule_tac D = "Iod E (segment E b)" in Worder.Torder,
        frule_tac D = "Iod E (segment E b)" in Worder.Order)
 apply (frule_tac E = "Iod E (segment E b)" and f = f and a = a in 
        ord_isom_segment_segment, assumption+) 
 apply (frule_tac f = f and a = a and E = "Iod E (segment E b)" in 
        ord_isom_mem, assumption+,
        frule Worder.Order[of "E"], 
        frule_tac b = b and a = "f a" in Order.Iod_segment_segment[of "E"],
        assumption+, simp,
        thin_tac "Iod (Iod E (segment E b)) (segment (Iod E (segment E b)) 
        (f a)) =  Iod E (segment E (f a))")

 apply (frule_tac D = "E" and a = b in Order.segment_sub)
        apply (simp add:Order.Iod_carrier[of "E"])
        apply (frule_tac c = "f a" and A = "segment E b" and B = "carrier E"
               in subsetD, assumption+)
  apply (cut_tac a = a in segment_Worder,
         frule_tac D = "Iod D (segment D a)" in Worder.Order,
         cut_tac a = "f a" in Worder.segment_Worder [of "E"], assumption+,
         frule_tac D = "Iod E (segment E (f a))" in Worder.Order) 
apply (
         frule_tac D = "Iod D (segment D a)" and E = "Iod E (segment E (f a))" in Order.ord_equiv, assumption, simp)
 apply (frule_tac D = "Iod D (segment D a)" and E = E in 
                                            Order.ord_equiv_sym, assumption+)
 apply (frule_tac D = E and E = "Iod D (segment D a)" and 
        F = "Iod E (segment E (f a))" in Order.ord_equiv_trans, assumption+)

 apply (simp add:Worder.nonequiv_segment[of "E"])
done 

lemma (in Worder) subset_equiv_segment:"S  carrier D  
      ord_equiv D (Iod D S)  
      (acarrier D. ord_equiv (Iod D S) (Iod D (segment D a)))"
apply (frule subset_Worder [of "S"])
 apply (frule Word_compare [of "Iod D S"])

 apply (erule disjE)
 apply (erule bexE)
 apply (cut_tac a = a in segment_Worder,
        frule_tac D = "Iod D (segment D a)" in Worder.Order,
        frule Worder.Order[of "Iod D S"],
        frule_tac D = "Iod D (segment D a)" in Order.ord_equiv_sym[of _ 
                 "Iod D S"], assumption+, blast)

apply (erule disjE) apply simp
 apply (erule bexE)
 apply (frule Worder.Order[of "Iod D S"],
        frule_tac D = "Iod D S" and a = b in Order.segment_sub)
 apply (frule_tac S = "segment (Iod D S) b" in Order.Iod_sub_sub[of "Iod D S" _ "S"])
 apply (simp add:Iod_carrier) apply (simp add:Iod_carrier)
 apply (simp add:Iod_sub_sub[of "S" "S"])
 apply (simp add:Iod_carrier)
 apply (frule_tac S = "segment (Iod D S) b" in Iod_sub_sub[of _ "S"],
         assumption+, simp,
        thin_tac "Iod (Iod D S) (segment (Iod D S) b) = 
                                          Iod D (segment (Iod D S) b)")
 (** to_subset **)
 apply (simp add:ord_equiv_def, erule exE)
 apply (frule_tac A = "segment (Iod D S) b" and B = S and C = "carrier D" in
         subset_trans, assumption+,
        frule_tac c = b in subsetD[of "S" "carrier D"], assumption+)
 apply (frule_tac T = "segment (Iod D S) b" and f = f in to_subset,
         assumption+,
        frule_tac a = b in forall_spec, assumption, 
        thin_tac "a. a  carrier D  a  f a",
        frule_tac T = "segment (Iod D S) b" in Iod_Order,
        cut_tac D = "Iod D S" and a = b in Worder.segment_Worder) 
 apply (simp add:Iod_carrier) 
 apply (frule_tac S = "segment (Iod D S) b" in Iod_sub_sub[of _ "S"],
         assumption+, simp,
        thin_tac "Iod (Iod D S) (segment (Iod D S) b) = 
                                          Iod D (segment (Iod D S) b)")
 apply (insert Order,
        frule_tac E = "Iod D (segment (Iod D S) b)" and f = f and a = b in 
        ord_isom_mem, assumption+,
        simp add:Iod_carrier,
        frule_tac c = "f b" and A = "segment (Iod D S) b" in 
               subsetD[of _ "S"], assumption+,
        simp add:segment_def[of "Iod D S"],
        simp add:Iod_carrier,
        simp add:Iod_less)
 apply (frule_tac c = b in subsetD[of "S" "carrier D"], assumption+,
        frule_tac c = "f b" in subsetD[of "S" "carrier D"], assumption+,
        frule_tac a1 = "f b" and b1 = b in not_less_le[THEN sym], assumption+)
 apply simp
done

definition
  ordinal_number :: "'a Order   'a Order set" where
  "ordinal_number S = {X. Worder X  ord_equiv X S}"

definition
  ODnums :: "'a Order set set" where
  "ODnums = {X. S. Worder S  X = ordinal_number S}"

definition
  ODord :: "['a Order set, 'a Order set]  bool" (infix  60) where
  "X  Y  (x  X. y  Y. (ccarrier y. ord_equiv x (Iod y (segment y c))))"

definition
  ODord_le :: "['a Order set, 'a Order set]  bool" (infix  60) where
  "X  Y  X = Y  ODord X Y"

definition
  ODrel :: "((('a Order) set) * (('a Order) set)) set" where
  "ODrel = {Z. Z  ODnums × ODnums  ODord_le (fst Z) (snd Z)}" 

definition
  ODnods :: "('a Order set) Order" where
  "ODnods = carrier = ODnums, rel = ODrel "

lemma Worder_ord_equivTr:"Worder S; Worder T 
       ord_equiv S T = (f. ord_isom S T f)"
by (frule Worder.Order[of "S"], frule Worder.Order[of "T"],
    simp add:ord_equiv_def)

lemma Worder_ord_isom_mem:"Worder S; Worder T; ord_isom S T f; a  carrier S
      f a  carrier T"
by (frule Worder.Order[of "S"], frule Worder.Order[of "T"],
    simp add:Order.ord_isom_mem)

lemma Worder_refl:"Worder S  ord_equiv S S"
apply (frule_tac Worder.Order [of "S"])
apply (rule Order.ord_equiv_reflex [of "S"], assumption+)
done

lemma Worder_sym:"Worder S; Worder T; ord_equiv S T   ord_equiv T S"
apply (frule_tac Worder.Order [of "S"])
apply (frule_tac Worder.Order [of "T"])
apply (rule Order.ord_equiv_sym [of "S" "T"], assumption+)
done

lemma Worder_trans:"Worder S; Worder T; Worder U; ord_equiv S T; ord_equiv T U  ord_equiv S U" 
apply (frule Worder.Order [of "S"],
       frule Worder.Order [of "T"],
       frule Worder.Order [of "U"])
apply (rule Order.ord_equiv_trans [of "S" "T" "U"], assumption+)
done  

lemma ordinal_inc_self:"Worder S  S  ordinal_number S"
by (simp add:ordinal_number_def, simp add:Worder_refl)

lemma ordinal_number_eq:"Worder D; Worder E 
               (ord_equiv D E) = (ordinal_number D = ordinal_number E)"
apply (rule iffI)
 apply (simp add:ordinal_number_def)
 apply (rule equalityI)
 apply (rule subsetI) apply simp apply (erule conjE)
 apply (rule_tac S = x and T = D and U = E in Worder_trans,
                       assumption+)
 apply (rule subsetI, simp, erule conjE)
apply (rule_tac S = x and T = E and U = D in Worder_trans,
                       assumption+)  
 apply (rule Worder_sym, assumption+)
apply (simp add:ordinal_number_def)
apply (frule Worder_refl[of "D"],
       frule Worder_refl[of "E"])
apply blast
done

lemma mem_ordinal_number_equiv:"Worder D; 
           X  ordinal_number D  ord_equiv X D"
by (simp add:ordinal_number_def)

lemma mem_ordinal_number_Worder:"Worder D; 
           X  ordinal_number D  Worder X"
by (simp add:ordinal_number_def)

lemma mem_ordinal_number_Worder1:"x  ODnums; X  x  Worder X"
apply (simp add:ODnums_def, erule exE, erule conjE, simp)
apply (rule mem_ordinal_number_Worder, assumption+)
done

lemma mem_ODnums_nonempty:"X  ODnums  x. x  X"
apply (simp add:ODnums_def, simp add:ordinal_number_def,
       erule exE, erule conjE)
apply (frule_tac S = S in Worder_refl, blast)
done

lemma carr_ODnods:"carrier ODnods = ODnums"
by (simp add:ODnods_def)

lemma ordinal_number_mem_carrier_ODnods:
     "Worder D  ordinal_number D  carrier ODnods"
by (simp add:ODnods_def ODnums_def, blast)

lemma ordinal_number_mem_ODnums: 
      "Worder D  ordinal_number D  ODnums"
by (simp add:ODnums_def, blast)

lemma ODordTr1:" Worder D; Worder E  
       (ODord (ordinal_number D) (ordinal_number E)) =
       (b carrier E. ord_equiv D (Iod E (segment E b)))"
apply (rule iffI)
 apply (simp add:ODord_def)
 apply ((erule bexE)+, simp add:ordinal_number_def, (erule conjE)+)
 apply (rename_tac X Y c)

apply (frule_tac S = Y and T = E in Worder_ord_equivTr, assumption,
       simp, erule exE)
apply (frule_tac D = Y in Worder.Order,
       frule_tac D = E in Worder.Order,
       frule_tac D = Y and E = E and f = f and a = c in 
                 Order.ord_isom_segment_segment, assumption+,
       frule_tac S = Y and T = E and f = f and a = c in 
                 Worder_ord_isom_mem, assumption+)
apply (cut_tac D = Y and a = c in Worder.segment_Worder, assumption,
       cut_tac D = E and a = "f c" in Worder.segment_Worder, assumption)
apply (frule_tac S1 = "Iod Y (segment Y c)" and T1 = "Iod E (segment E (f c))" 
       in Worder_ord_equivTr[THEN sym], assumption+)
apply (frule_tac S = X and T = D in Worder_sym, assumption+,
       thin_tac "ord_equiv X D",
       frule_tac S = D and T = X and U = "Iod Y (segment Y c)" in 
                 Worder_trans, assumption+,
       frule_tac S = D and T = "Iod Y (segment Y c)" and 
           U = "Iod E (segment E (f c))" in Worder_trans, assumption+)
apply blast apply blast 

apply (simp add:ODord_def)  
apply (frule ordinal_inc_self[of "D"],
       frule ordinal_inc_self[of "E"], blast)
done

lemma ODord:" Worder D; d  carrier D  
       ODord (ordinal_number (Iod D (segment D d))) (ordinal_number D)"
apply (cut_tac Worder.segment_Worder[of "D" "d"], 
       subst ODordTr1[of "Iod D (segment D d)" "D"], assumption+,
       frule Worder_refl[of "Iod D (segment D d)"], blast, assumption)
done

lemma ord_less_ODord:"Worder D; c  carrier D; d  carrier D; 
           a = ordinal_number (Iod D (segment D c));
           b = ordinal_number (Iod D (segment D d)) 
                         c Dd =  a  b"
apply (rule iffI)
apply (frule Worder.Order[of "D"])
apply (simp add:Order.segment_inc) 
apply (frule Order.Iod_carr_segment[THEN sym, of "D" "d"],
       frule eq_set_inc[of "c" "segment D d" "carrier (Iod D (segment D d))"],
       assumption+,
       thin_tac "segment D d = carrier (Iod D (segment D d))",
       thin_tac "c  segment D d")
apply (cut_tac Worder.segment_Worder[of "D" "d"], 
       frule ODord[of "Iod D (segment D d)" "c"], assumption+,
       simp add:Order.Iod_segment_segment, assumption)

apply simp
 apply (frule Worder.segment_Worder[of D c],
        frule Worder.segment_Worder[of D d])
 apply (simp add:ODordTr1[of "Iod D (segment D c)" "Iod D (segment D d)"],
        thin_tac "a = ordinal_number (Iod D (segment D c))",
        thin_tac "b = ordinal_number (Iod D (segment D d))")
 apply (erule bexE)
 apply (frule Worder.Order[of D])

 apply (simp add:Order.Iod_segment_segment)
 apply (simp add:Order.Iod_carr_segment,
        frule Order.segment_sub[of D d],
        frule_tac c = b in subsetD[of "segment D d" "carrier D"], assumption+)
 apply (frule_tac b = b in Worder.segment_unique[of D c], assumption+, simp)
 apply (simp add:Order.segment_inc[THEN sym])
done

lemma ODord_le_ref:"X  ODnums; Y  ODnums; ODord_le X Y; Y  X  
                               X = Y"
apply (simp add:ODnums_def)
 apply ((erule exE)+, (erule conjE)+, rename_tac S T)
 apply (simp add:ODord_le_def)
 apply (erule disjE, simp)
 apply (erule disjE, simp)
 
 apply (simp add:ODordTr1)
 apply (frule_tac D = T and E = S in Worder.Word_compareTr3, assumption+)
 apply (erule bexE)
 apply (frule_tac D = T and a = b in Worder.segment_Worder)
 apply (frule_tac S = S and T = "Iod T (segment T b)" in Worder_sym,
         assumption+) apply blast
 
 apply simp
done

lemma ODord_le_trans:"X  ODnums; Y  ODnums; Z  ODnums; X  Y; Y  Z 
                       X  Z" 
apply (simp add:ODord_le_def)
 apply (erule disjE, simp)
 apply (erule disjE, simp)

 apply (simp add:ODnums_def, (erule exE)+, (erule conjE)+)
 apply (rename_tac A B C, simp)
 apply (simp add:ODordTr1,
        thin_tac "X = ordinal_number A",
        thin_tac "Y = ordinal_number B",
        thin_tac "Z = ordinal_number C")
 apply (erule bexE)+

 (* going to apply ord_isom_segment_segment *)
 apply (frule_tac D = B in Worder.Order,
        frule_tac D = C in Worder.Order,
        frule_tac D = C and a = ba in Worder.segment_Worder,
        frule_tac D = "Iod C (segment C ba)" in Worder.Order,
        frule_tac D = B and E = "Iod C (segment C ba)" in 
                  Order.ord_equiv_isom, assumption+, erule exE)
 apply (frule_tac D = B and E = "Iod C (segment C ba)" and f = f in 
         Order.ord_isom_segment_segment, assumption+,
        frule_tac D = B and E = "Iod C (segment C ba)" and f = f and a = b in
         Order.ord_isom_mem, assumption+) 
        (** ord_isom_segment_segment applied **)
 
 apply (simp add:Order.Iod_segment_segment) 
 apply (frule_tac D = B and a = b in Worder.segment_Worder,
        frule_tac D = "Iod B (segment B b)" in Worder.Order,
        frule_tac D = C and a = "f b" in Worder.segment_Worder,
        frule_tac D = "Iod C (segment C (f b))" in Worder.Order)
 apply (frule_tac D = "Iod B (segment B b)" and E = "Iod C (segment C (f b))"
         in  Order.ord_equiv, assumption+)
 apply (frule_tac S = A and T = "Iod B (segment B b)" and 
                  U = "Iod C (segment C (f b))" in Worder_trans, assumption+)
 apply (simp add:Order.Iod_carr_segment)
 apply (frule_tac D = C and a = ba in Order.segment_sub,
        frule_tac c = "f b" and A = "segment C ba" and B = "carrier C" in
        subsetD, assumption+)
 apply blast
done

lemma ordinal_numberTr1:" X  carrier ODnods  D. Worder D  D  X"
apply (simp add:ODnods_def, simp add:ODnums_def) 
apply (erule exE, erule conjE)
 apply (simp add:ordinal_number_def)
 apply (frule_tac S = S in Worder_refl, blast) 
done

lemma ordinal_numberTr1_1:" X  ODnums  D. Worder D  D  X"
apply (simp add:ODnums_def, erule exE, erule conjE, 
       simp add:ordinal_number_def)
 apply (frule_tac S = S in Worder_refl, blast) 
done

lemma ordinal_numberTr1_2:"x  ODnums; S  x; T  x 
                              ord_equiv S T"
by (simp add:ODnums_def, erule exE, erule conjE,
       simp add:ordinal_number_def, (erule conjE)+,
       frule_tac S = T and T = Sa in Worder_sym, assumption, assumption,
       rule_tac S = S and T = Sa and U = T in Worder_trans, assumption+)

lemma ordinal_numberTr2:"Worder D; x = ordinal_number D 
            D  x"
by (simp add:ordinal_inc_self)

lemma ordinal_numberTr3:"Worder D; Worder F; ord_equiv D F; 
        x = ordinal_number D  x = ordinal_number F"
apply (simp add:ordinal_number_def,
        thin_tac "x = {X. Worder X  ord_equiv X D}")
apply (rule equalityI)
 apply (rule subsetI, simp, erule conjE)
 apply (rule_tac S = x and T = D and U = F in Worder_trans, assumption+)
apply (rule subsetI, simp, erule conjE)
 apply (frule Worder_sym [of "D" "F"], assumption+,
        rule_tac S = x and T = F and U = D in Worder_trans, assumption+)
done

lemma ordinal_numberTr4:"Worder D; X  carrier ODnods; D  X  
            X = ordinal_number D"
apply (simp add:ODnods_def ODnums_def, erule exE, erule conjE)
apply simp
apply (frule_tac D = S in mem_ordinal_number_equiv[of _ "D"], assumption+,
       frule_tac D = D and E = S in ordinal_number_eq, assumption+)
apply simp
done

lemma ordinal_numberTr5:"x  ODnums; D  x  x = ordinal_number D"
apply (frule mem_ordinal_number_Worder1[of x D], assumption+)
apply (rule ordinal_numberTr4[of D x], assumption,
       simp add:ODnods_def, assumption)
done

lemma ordinal_number_ord:" X  carrier ODnods; Y  carrier ODnods 
                             ODord X Y  X = Y  ODord Y X"
apply (simp add:ODord_def)
 apply (frule ordinal_numberTr1 [of "X"],
        frule ordinal_numberTr1 [of "Y"], (erule exE)+, rename_tac D E)
 apply (erule conjE)+ 
 apply (frule_tac D = D and E = E in Worder.Word_compare, assumption+)
 apply (erule disjE)+
 apply (erule bexE,
        cut_tac D = D and a = a in Worder.segment_Worder, assumption+,
        frule_tac S = "Iod D (segment D a)" and T = E in Worder_sym, 
        assumption+, blast)

apply (erule disjE) 
 apply (frule_tac D = D and X = X in ordinal_numberTr4, assumption+,
        frule_tac D = E and X = Y in ordinal_numberTr4, assumption+,
        frule_tac D = D and E = E in ordinal_number_eq, assumption+)
 apply simp

apply blast
done 

lemma ODnum_subTr:"Worder D; x = ordinal_number D; y ODnums; y  x; Y  y
                    ccarrier D. ord_equiv Y (Iod D (segment D c))"
apply simp
 apply (thin_tac "x = ordinal_number D")
 apply (simp add:ODnums_def, erule exE, erule conjE, simp,
        thin_tac "y = ordinal_number S")
 apply (frule_tac D = S and X = Y in mem_ordinal_number_Worder, 
                                                      assumption+)
 apply (frule_tac D = Y and X = "ordinal_number S" in ordinal_numberTr4,
        simp add:ODnods_def ODnums_def, blast, simp)
 apply simp
 apply (thin_tac "Y  ordinal_number Y",
        thin_tac "ordinal_number S = ordinal_number Y")
 apply (simp add:ODordTr1[of "Y" "D"])
done

lemma ODnum_segmentTr:"Worder D; x = ordinal_number D; y ODnums; y  x  
        c. ccarrier D  (Yy. ord_equiv Y (Iod D (segment D c)))"
apply (frule ordinal_numberTr1_1[of "y"], erule exE, erule conjE,
       frule_tac x = x and y = y and Y = Da in ODnum_subTr[of "D" ],
        assumption+, erule bexE)
apply (rule ex_conjI, simp+)

apply (rule ballI)
 apply (frule_tac D = D and a = c in Worder.segment_Worder)
 apply (frule_tac X = Y in mem_ordinal_number_Worder1[of y], assumption)
 apply (subst ordinal_number_eq, assumption+)
 apply (simp add:ordinal_number_eq)
 apply (subst ordinal_numberTr5[THEN sym, of y], assumption+)
 apply (frule_tac D = Da in ordinal_numberTr5[of y], assumption, simp)
done

lemma ODnum_segmentTr1:"Worder D; x = ordinal_number D; y  ODnums; y  x
         c. c  carrier D  (y = ordinal_number (Iod D (segment D c)))"
apply (frule ODnum_segmentTr[of D x y], assumption+, erule exE, erule conjE)
apply (frule mem_ODnums_nonempty[of y], erule exE,
       frule_tac x = xa in bspec, assumption,
       thin_tac "Yy. ord_equiv Y (Iod D (segment D c))")
 (** going to apply ordinal_number_eq **)
 apply (frule_tac D = xa in ordinal_numberTr5[of y], assumption, simp,
        frule_tac a = c in Worder.segment_Worder[of D],
        rotate_tac -2, frule sym, thin_tac "y = ordinal_number xa", simp,
        frule_tac X = xa in mem_ordinal_number_Worder1[of y], assumption+)
 apply (simp add:ordinal_number_eq) apply blast
done

lemma ODnods_less:"x  carrier ODnods; y  carrier ODnods 
                       x ODnodsy =  x  y"
apply (simp add:ODnods_def ole_def oless_def ODrel_def ODord_le_def)
apply (rule iffI)
 apply (erule conjE, erule disjE, simp, assumption, simp)
 apply (simp add:ODord_def, (erule bexE)+)
 apply (rule contrapos_pp, simp+,
        frule_tac x = y and S = ya and T = xa in ordinal_numberTr1_2,
         assumption+)

 apply (simp add:ODnums_def, erule exE, erule conjE, simp,
        frule_tac D = S and X = xa in mem_ordinal_number_Worder, assumption+,
        frule_tac D = S and X = ya in mem_ordinal_number_Worder, assumption+,
        cut_tac D = ya and a = c in Worder.segment_Worder, assumption+)

 apply (frule_tac S = ya and T = xa and U = "Iod ya (segment ya c)" in
        Worder_trans, assumption+,
        frule_tac D = ya and a = c in Worder.nonequiv_segment, assumption+)
 apply simp
done

lemma ODord_less_not_eq:"x  carrier ODnods; y  carrier ODnods; x  y 
                          x  y"
apply (rule contrapos_pp, simp+)
apply (frule ordinal_numberTr1[of y], erule exE, erule conjE,
       simp add:ODnods_def)
   (* going to see ord_equiv D (Iod D (segment D c)) for some c,
      at first show ordinal_number D = ordinal_number (Iod D (segment D c)) *)
apply (frule_tac D = D in ordinal_numberTr5[of y], assumption+,
       frule_tac D = D and x = y and y = y in ODnum_segmentTr1, assumption+,
       erule exE, erule conjE, simp,
       frule_tac a = c and D = D in Worder.segment_Worder) (* equality got *)
apply (rotate_tac -4, frule sym, 
       thin_tac "ordinal_number (Iod D (segment D c)) = ordinal_number D",
       simp add:ordinal_number_eq[THEN sym]) (* ord_equiv got *)
apply (frule_tac D = D and a = c in Worder.nonequiv_segment, assumption)
       (**** this is the key lemma ****)
apply simp
done

lemma not_ODord:"a  ODnums; b  ODnums; a  b  ¬ (b  a)"
apply (rule contrapos_pp, simp+)

apply (simp add:ODord_le_def)
apply (cut_tac x = a and y = b in ODord_less_not_eq,
          simp add:ODnods_def, simp add:ODnods_def, assumption)
apply (erule disjE) apply simp
 (** Show that ord_equiv to segment each other does not happen **) 
 apply (frule ordinal_numberTr1_1[of a],
        frule ordinal_numberTr1_1[of b], (erule exE)+, (erule conjE)+)
 apply (frule_tac D = D in ordinal_numberTr5[of a], assumption,
        frule_tac D = Da in ordinal_numberTr5[of b], assumption, simp)
 apply (frule_tac D = D and E = Da in ODordTr1, assumption+,
        frule_tac D = Da and E = D in ODordTr1, assumption+, simp)
 apply (frule_tac D = D and E = Da in Worder.Word_compareTr3, assumption+)
 apply (erule bexE)+
 apply (frule_tac D = D and a = baa in Worder.segment_Worder,
        frule_tac S = Da and T = "Iod D (segment D baa)" in Worder_sym,
        assumption+) apply blast
 apply assumption
done

lemma Order_ODnods:"Order ODnods"
apply (rule Order.intro)
 apply (simp add:ODnods_def ODrel_def)

 apply (simp add:ODnods_def ODrel_def, simp add:ODord_le_def)
 
 apply (simp add:ODnods_def ODrel_def, simp add:ODord_le_def)
 apply (erule disjE, assumption)
 apply (erule disjE, rule sym, assumption)
 apply (frule_tac a = a and b = b in not_ODord, assumption+)
 apply (simp add:ODord_le_def)

 apply (simp add:ODnods_def ODrel_def)
 apply (rule_tac X = a and Y = b and Z = c in ODord_le_trans, assumption+)
done

lemma Torder_ODnods:"Torder ODnods" 
apply (rule Torder.intro)
apply (cut_tac Order_ODnods, assumption)

 (*** tordered set ***)
 apply (simp add:Torder_axioms_def)
  apply ((rule allI, rule impI)+) 
apply (cut_tac Order_ODnods) 
apply (subst Order.le_imp_less_or_eq[of "ODnods"], assumption+,
       subst Order.le_imp_less_or_eq[of "ODnods"], assumption+)  
apply (simp add:ODnods_less,
       frule_tac X = a and Y = b in ordinal_number_ord, assumption+,
         blast)
done

definition
  ODNmap :: "'a Order  ('a Order) set  'a" where
  "ODNmap D y = (SOME z. (z  carrier D  
                        (Yy. ord_equiv Y (Iod D (segment D z)))))" 

lemma ODNmap_mem:"Worder D; x = ordinal_number D; y  ODnums; ODord y x  
      ODNmap D y  carrier D  
             (Yy. ord_equiv Y (Iod D (segment D (ODNmap D y))))" 
apply (frule ODnum_segmentTr [of "D" "x" "y"], assumption+)
apply (simp add:ODNmap_def)
apply (rule someI2_ex, assumption+)
done 

lemma ODNmapTr1:"Worder D; x = ordinal_number D; y  ODnums; ODord y x  
                  y = ordinal_number (Iod D (segment D (ODNmap D y)))"
apply (frule ODNmap_mem [of "D" "x" "y"], assumption+, erule conjE,
       frule ODnum_segmentTr1 [of "D" "x" "y"], assumption+)
 apply (erule exE, erule conjE,
        cut_tac D = D and a = c in Worder.segment_Worder, assumption+,
        frule_tac D = "Iod D (segment D c)" and x = y in ordinal_numberTr2,
            assumption+,
        frule_tac x = "Iod D (segment D c)" in bspec, assumption,
         thin_tac "Yy. ord_equiv Y (Iod D (segment D (ODNmap D y)))",
        cut_tac a = "ODNmap D y" in Worder.segment_Worder[of "D"],
         assumption+)
 apply (frule_tac D = "Iod D (segment D c)" and E = "Iod D (segment D (ODNmap D y))" in ordinal_number_eq, assumption+) apply simp
done

lemma ODNmap_self:"Worder D; c  carrier D;
       a = ordinal_number (Iod D (segment D c))  ODNmap D a = c"
apply (simp add:ODNmap_def)
apply (rule someI2_ex, rule ex_conjI, simp)
 apply (rule ballI, 
        cut_tac Worder.segment_Worder[of "D" "c"], 
        rule_tac X = Y in mem_ordinal_number_equiv[of "Iod D (segment D c)"],
        assumption+)

 apply (erule conjE)
 apply (cut_tac Worder.segment_Worder[of "D" "c"], 
        frule ordinal_inc_self[of "Iod D (segment D c)"],
        frule_tac x = "Iod D (segment D c)" in bspec, assumption)
 apply (frule_tac b = x in Worder.segment_unique[of "D" "c" _], assumption+,
        rule sym, assumption, assumption)
done

lemma ODord_ODNmap_less:"Worder D; c  carrier D;
      a = ordinal_number (Iod D (segment D c)); d  carrier D; 
      b = ordinal_number (Iod D (segment D d)); a  b   
      ODNmap D a D(ODNmap D b)"
apply (frule ODNmap_self [of "D" "c" "a"], assumption+,
       frule ODNmap_self [of "D" "d" "b"], assumption+)
apply simp
apply (subst ord_less_ODord[of D c d a b], assumption+)
 apply simp
done

lemma ODNmap_mem1:" Worder D; y  segment ODnods (ordinal_number D)
          ODNmap D y  carrier D"
apply (frule_tac D = D and x = "ordinal_number D" and y = y in ODNmap_mem,
       simp, 
       frule ordinal_number_mem_carrier_ODnods[of "D"],
       simp add:ODnods_def segment_def) 
 apply (simp add:segment_def,
        frule ordinal_number_mem_carrier_ODnods[of "D"], simp,
        erule conjE, simp add:ODnods_def oless_def ole_def ODrel_def)
 apply (simp add:ODord_le_def, blast, simp)
done

lemma ODnods_segment_inc_ODord:"Worder D; 
       y  segment ODnods (ordinal_number D)  ODord y (ordinal_number D)"
 apply (simp add:segment_def,
        frule ordinal_number_mem_carrier_ODnods[of "D"], simp,
        erule conjE, simp add:ODnods_def oless_def ole_def ODrel_def)
 apply ((erule conjE)+, simp add:ODord_le_def)
done

lemma restict_ODNmap_func:"Worder D; x = ordinal_number D 
      restrict (ODNmap D) (segment ODnods (ordinal_number D))
                segment ODnods (ordinal_number D)  carrier D"
apply (cut_tac Order_ODnods,
       frule Order.Iod_carr_segment[of "ODnods" "ordinal_number D"],
       frule Order.segment_sub[of "ODnods" "ordinal_number D"])
apply (rule Pi_I, simp,
        (frule Order.Iod_carr_segment[of ODnods "ordinal_number D"], 
         simp,
         thin_tac "carrier (Iod ODnods (segment ODnods (ordinal_number D))) =
                            segment ODnods (ordinal_number D) "),
        rule ODNmap_mem1[of D], assumption+)
done

lemma ODNmap_ord_isom:"Worder D; x = ordinal_number D   
             ord_isom (Iod ODnods (segment ODnods x)) D 
      (λx(carrier (Iod ODnods (segment ODnods x))). (ODNmap D x))"
apply (cut_tac Order_ODnods,
       frule Order.Iod_carr_segment[of "ODnods" "ordinal_number D"],
       frule ordinal_number_mem_carrier_ODnods[of D],
       frule Order.segment_sub[of "ODnods" "ordinal_number D"])
       (* above items are preliminary *)
apply (simp add:ord_isom_def)
 apply (rule conjI)
 apply (simp add:ord_inj_def)
 apply (simp add:restict_ODNmap_func[of D x])
 apply (rule conjI)
 apply (subst inj_on_def)  (* show inj_on *)
 apply ((rule ballI)+, rule impI) (* show xa and y is the ordinal_number of
        segments of D *)
  apply (thin_tac "carrier (Iod ODnods (segment ODnods (ordinal_number D))) =
        segment ODnods (ordinal_number D)")
  apply (frule_tac y = xa in ODnods_segment_inc_ODord[of D], assumption+,
         frule_tac y = y in ODnods_segment_inc_ODord[of D], assumption+)
  apply (frule_tac y = y in ODNmapTr1[of D x], assumption+)
  apply (frule_tac c = y in subsetD[of "segment ODnods (ordinal_number D)"
                  "carrier ODnods"], assumption+, simp add:carr_ODnods,
                   simp)
  apply (frule_tac y = xa in ODNmapTr1[of D x], assumption+)
  apply (frule_tac c = xa in subsetD[of "segment ODnods (ordinal_number D)"
                   "carrier ODnods"], assumption+, simp add:carr_ODnods,
                   simp, simp)
  apply (rule ballI)+
   apply (thin_tac "carrier (Iod ODnods (segment ODnods (ordinal_number D))) =
        segment ODnods (ordinal_number D)")
  apply (frule_tac y = a in ODnods_segment_inc_ODord[of D], assumption+,
         frule_tac y = b in ODnods_segment_inc_ODord[of D], assumption+)
  apply (frule_tac y = a in ODNmapTr1[of D x], assumption+)
  apply (frule_tac c = a in subsetD[of "segment ODnods (ordinal_number D)"
                  "carrier ODnods"], assumption+, simp add:carr_ODnods,
                   simp)
  apply (frule_tac y = b in ODNmapTr1[of D x], assumption+)
  apply (frule_tac c = b in subsetD[of "segment ODnods (ordinal_number D)"
                   "carrier ODnods"], assumption+, simp add:carr_ODnods,
                   simp)
  apply (frule_tac c = "ODNmap D a" and d = "ODNmap D b" and a = a and b = b in
             ord_less_ODord[of D],
         frule_tac  x = x and y = a in ODNmap_mem[of D], assumption, 
         frule_tac c = a in subsetD[of "segment ODnods (ordinal_number D)"
                  "carrier ODnods"], assumption+, simp add:carr_ODnods,   
         simp, simp)
  apply (frule_tac  x = x and y = b in ODNmap_mem[of D], assumption, 
         frule_tac c = b in subsetD[of "segment ODnods (ordinal_number D)"
                  "carrier ODnods"], assumption+, simp add:carr_ODnods,   
         simp, simp) apply simp+
   apply (frule_tac c = a in subsetD[of "segment ODnods (ordinal_number D)"
                  "carrier ODnods"], assumption+,
          frule_tac c = b in subsetD[of "segment ODnods (ordinal_number D)"
                  "carrier ODnods"], assumption+) 
  apply (simp add:Order.Iod_less[of "ODnods"])
   apply (simp add:ODnods_less)  (** order_preserving proved **)

 apply (rule surj_to_test) (* show surj_to *)
    apply (simp add:restict_ODNmap_func)
    apply (rule ballI,
           cut_tac D = D and a = b in Worder.segment_Worder, assumption+,
           frule_tac D = "Iod D (segment D b)" in 
                                 ordinal_number_mem_carrier_ODnods,
           frule_tac c = b and a = "ordinal_number (Iod D (segment D b))"
            in ODNmap_self, assumption, simp,
           frule_tac d = b in ODord[of D], assumption,
           frule_tac a = "ordinal_number (Iod D (segment D b))" in 
            Order.segment_inc[of "ODnods" _ "ordinal_number D"], assumption+,
           cut_tac x = "ordinal_number (Iod D (segment D b))" in 
                         ODnods_less[of _ "ordinal_number D"], assumption+,
           simp)
    apply (frule_tac c = b and a = "ordinal_number (Iod D (segment D b))" in
            ODNmap_self[of D], assumption)
     apply simp
    apply  blast
done 

lemma ODnum_equiv_segment:"Worder D; x = ordinal_number D   
         ord_equiv (Iod ODnods (segment ODnods x)) D"
apply (simp add: ord_equiv_def)  
apply (frule ODNmap_ord_isom[of "D" "x"], assumption+, blast)
done

lemma ODnods_sub_carrier:"S  ODnums  carrier (Iod ODnods S) = S"
by (simp add:Iod_def)

lemma ODnum_sub_well_ordered:"S  ODnums  Worder (Iod ODnods S)"
apply (cut_tac Torder_ODnods,
       cut_tac Order_ODnods)
 apply (frule Torder.Iod_Torder[of "ODnods" S], 
        simp add:carr_ODnods)
apply intro_locales
 apply (simp add:Torder_def, simp add:Torder_def)

 apply (simp add:Worder_axioms_def,
        rule allI, rule impI, erule conjE)  

(** show existence of the minimum_element of X **)
 apply (frule Order.Iod_carrier[of ODnods S],
        simp add:carr_ODnods, simp)
 apply (frule_tac A = X in nonempty_ex, erule exE)
 apply (frule_tac c = x and A = X and B = S in subsetD, assumption+,
        frule_tac c = x and A = S and B = ODnums in subsetD, assumption+)
 apply (frule_tac X = x in ordinal_numberTr1_1, erule exE, erule conjE)
 apply (frule_tac D = D and x = x in ODnum_equiv_segment) 
 apply (rule ordinal_numberTr4, assumption+, simp add:carr_ODnods, assumption)
 apply (frule_tac D = D and T = "Iod ODnods (segment ODnods x)" in
        Worder.equiv_Worder1,
        rule Order.Iod_Order[of ODnods], assumption,
        rule Order.segment_sub, assumption+)
 apply (frule_tac D = "Iod ODnods (segment ODnods x)" in Worder.ex_minimum)
 apply (case_tac "(segment ODnods x)  X  {}")
 apply (frule_tac a = "segment ODnods x  X" in forall_spec)
  apply (simp add:Order.Iod_carr_segment)
  apply (thin_tac "X. X  carrier (Iod ODnods (segment ODnods x))  X  {}
           (xa. minimum_elem (Iod ODnods (segment ODnods x)) X xa)")
  apply (erule exE)
 
 apply (simp add:carr_ODnods[THEN sym])
 apply (frule_tac A = X and B = S and C = "carrier ODnods" in subset_trans,
        assumption+)
apply (frule_tac d = x and m = xa and X = X in 
        Torder.segment_minimum_minimum[of ODnods], assumption+,
        simp add:Int_commute, 
        simp add:Order.minimum_elem_sub[of ODnods S], blast)
 apply (simp,
       thin_tac "X. X  carrier (Iod ODnods (segment ODnods x))  X  {} 
            (xa. minimum_elem (Iod ODnods (segment ODnods x)) X xa)")
 apply (frule_tac A = "segment ODnods x" and B = X in no_meet2)
 apply (simp add:carr_ODnods[THEN sym])
 apply (frule_tac A = X and B = S and C = "carrier ODnods" in subset_trans,
        assumption+)
 apply (frule_tac A = X and B = S and C = "carrier ODnods" in subset_trans,
        assumption+)
 apply (simp add:Order.segment_inc[THEN sym, of ODnods])
 apply (rule contrapos_pp, simp+)
 apply (frule_tac x = x in spec,
        thin_tac "x. ¬ minimum_elem (Iod ODnods S) X x")
 apply (simp add:minimum_elem_def, erule bexE)
 apply (frule_tac x = xa in bspec, assumption,
        thin_tac "aX. a  segment ODnods x",
        frule_tac c = xa and A = X and B = "carrier ODnods" in subsetD,
        assumption+)
 apply (simp add:Order.segment_inc[of ODnods, THEN sym],
        frule_tac c = xa and A = X and B = S in subsetD, assumption+)
 apply (simp add:Order.Iod_le[of ODnods S])
 apply (simp add:Torder.not_le_less)
done

section "Pre elements"  

definition
  ExPre :: "_  'a  bool" where
  "ExPre D a  (x. x  carrier D  x Da 
                       ¬ (ycarrier D. x Dy  y Da))" 
     (* exists pre element *)

definition
  Pre :: "[_ ,  'a]  'a" where
  "Pre D a = (SOME x. x  carrier D  
                           x Da 
                         ¬ (ycarrier D. x Dy  y Da))"
     (* Pre element of a *)

lemma (in Order) Pre_mem:"a  carrier D; ExPre D a 
                Pre D a  carrier D"
apply (simp add:ExPre_def)
 apply (subst Pre_def, rule someI2_ex, blast, simp)
done

lemma (in Order) Not_ExPre:"a  carrier D  ¬ ExPre (Iod D {a}) a"
apply (simp add:ExPre_def,
       rule allI, rule impI, rule impI,
       frule singleton_sub[of "a" "carrier D"])
apply (simp add:Iod_less Iod_carrier)
done

lemma (in Worder) UniquePre:"a  carrier D; ExPre D a;
 a1  carrier D  a1  a  ¬ (ycarrier D. (a1  y  y  a))  
 Pre D a = a1"
apply (simp add:ExPre_def)
apply (subst Pre_def)        (* definition *)
apply (rule someI2_ex, blast)
apply (erule conjE)+
 apply (thin_tac "x. x  carrier D  x  a 
                           (ycarrier D. x  y  ¬ y  a)",
        rename_tac z)
 apply (rule contrapos_pp, simp+) 
 apply (frule_tac a = z and b = a1 in less_linear, assumption+,
        simp)
 apply (erule disjE)
 apply (rotate_tac -4,
        frule_tac x = a1 in bspec, assumption+,
        thin_tac "ycarrier D. z  y  ¬ y  a",
        thin_tac "ycarrier D. a1  y  ¬ y  a", simp)

 apply (frule_tac x = z in bspec, assumption+, simp)
done

lemma (in Order) Pre_element:"a  carrier D; ExPre D a  
      Pre D a  carrier D  (Pre D a)  a 
            ¬ (ycarrier D. ((Pre D a)  y  y  a))"
apply (simp add:ExPre_def)
apply (subst Pre_def)+
apply (rule someI2_ex)
apply simp+
done

lemma (in Order) Pre_in_segment:"a  carrier D; ExPre D a  
                  Pre D a  segment D a"
by (frule Pre_element[of "a"], assumption+, (erule conjE)+,
    simp add:segment_inc) 

lemma (in Worder) segment_forall:"a  segment D b; b  carrier D; 
      x  segment D b; x  a; ysegment D b. x  y  ¬ y  a  
      ycarrier D. x  y  ¬ y  a"
apply (cut_tac segment_sub[of b])
apply (rule ballI, rule impI) 
 apply (case_tac "y  segment D b",
         frule_tac x = y in bspec, assumption+, simp)
(***  
        ------------------a---------------b---------------y----------
***)
 apply (thin_tac "ysegment D b. x  y  ¬ y  a",
         frule subsetD[of "segment D b" "carrier D" "a"], assumption+,
         frule_tac c = x in subsetD[of "segment D b" "carrier D"], assumption+,
         thin_tac "segment D b  carrier D",
         thin_tac "x  segment D b")
 apply (simp add:segment_inc[THEN sym, of _ "b"]) apply (
         simp add:not_less_le)
 apply (frule_tac c = y in less_le_trans[of a b], assumption+)
 apply (simp add:less_imp_le)
done

lemma (in Worder) segment_Expre:"a  segment D b 
                   ExPre (Iod D (segment D b)) a = ExPre D a"
apply (case_tac "b  carrier D")
 apply (simp add:segment_def Iod_self[THEN sym])

apply simp
apply (cut_tac segment_sub[of "b"],
       frule subsetD[of "segment D b" "carrier D" a], assumption+)
apply (rule iffI)
 apply (simp add:ExPre_def, erule exE, (erule conjE)+)
 apply (simp add:Iod_carrier Iod_less) 
 apply (frule_tac x = x in segment_forall[of "a" "b"], assumption+)
 apply blast

 apply (simp add:ExPre_def, erule exE, (erule conjE)+)
  apply (frule_tac a = a in segment_inc[of _ b], assumption, simp)
  apply (rule contrapos_pp, simp+)  
  apply (frule_tac x = x in spec,
         thin_tac "x. x Iod D (segment D b)a 
             x  carrier (Iod D (segment D b)) 
             (ycarrier (Iod D (segment D b)).
                 x Iod D (segment D b)y  y Iod D (segment D b)a)",
         frule_tac a = x in less_trans[of _ a b], assumption+,
         frule_tac a = x in segment_inc[of _ b], assumption+, simp)
  apply (simp add:Iod_carrier Iod_less)
  apply (erule bexE, erule conjE,
       frule_tac c = y in subsetD[of "segment D b" "carrier D"], assumption+) 
  apply (frule_tac x = y in bspec, assumption,
         thin_tac "ycarrier D. x  y  ¬ y  a", simp)
done

lemma  (in Worder) Pre_segment:"a  segment D b; 
        ExPre (Iod D (segment D b)) a  
        ExPre D a  Pre D a = Pre (Iod D (segment D b)) a"
apply (frule segment_Expre[of "a" "b"], simp)
apply (case_tac "b  carrier D")
      apply (simp add:segment_def, simp add:Iod_self[THEN sym])
      apply simp

apply (cut_tac segment_sub[of "b"],
       frule subsetD[of "segment D b" "carrier D" "a"], assumption+)
     apply (frule_tac a = a and ?a1.0 = "Pre (Iod D (segment D b)) a" in 
            UniquePre, assumption+)
     apply simp
 apply (cut_tac segment_Worder[of "b"]) 
 apply (frule_tac D = "Iod D (segment D b)" in Worder.Order) 
 apply (frule Order.Pre_element[of "Iod D (segment D b)" a],
        simp add:Iod_carrier, assumption, erule conjE, 
        simp add:Iod_carrier, simp add:subsetD, simp add:Iod_less)
 apply (erule conjE, rule ballI)
 apply (case_tac "y  segment D b",
        frule_tac x = y in bspec, assumption,
        thin_tac "ysegment D b. Pre (Iod D (segment D b)) a  y 
                   ¬ y  a",
        simp)
  apply (rule impI)
  apply (frule subsetD[of "segment D b" "carrier D" a], assumption+)
  apply (frule_tac a = y in segment_inc[of _ b], assumption+, simp,
         frule segment_inc[of a b], assumption+, simp)
  apply (simp add:not_less_le)
  apply (frule_tac c = y in less_le_trans[of a b], assumption+,
         simp add:less_imp_le)
  apply assumption
done

lemma (in Worder) Pre2segment:"a  carrier D; b  carrier D; b  a; 
                 ExPre D b  ExPre (Iod D (segment D a)) b"
apply (frule segment_inc [of b a], assumption+, simp)
apply (simp add:segment_Expre[of b a])
done

lemma (in Worder) ord_isom_Pre1:"Worder E; a  carrier D; ExPre D a; 
                  ord_isom D E f  ExPre E (f a)"
apply (simp add:ExPre_def) 
apply (erule exE,
       frule Worder.Order[of "E"],
       erule conjE,
       frule_tac a = x in ord_isom_mem[of "E" "f"], assumption+,
       frule_tac a = a in ord_isom_mem[of "E" "f"], assumption+,
       erule conjE)
 apply (frule_tac a = x in ord_isom_less[of "E" "f" _ "a"], assumption+, simp)
 apply (frule ord_isom_less_forall[of "E" "f"], assumption+)
 apply (frule_tac x = x and a = a in ord_isom_convert[of "E" "f"],
                             assumption+, simp) apply blast
done      (** Here, ord_isom_convert transforms the inequality **)

lemma (in Worder) ord_isom_Pre11:"Worder E; a  carrier D; ord_isom D E f 
        ExPre D a = ExPre E (f a)"
apply (rule iffI)
 apply (simp add:ord_isom_Pre1)
 apply (frule Worder.Order[of "E"],
        frule ord_isom_sym[of "E" "f"], assumption+)
 apply (cut_tac Worder)
  apply (frule Worder_ord_isom_mem[of "D" "E" "f" "a"], assumption+,
         frule Worder.ord_isom_Pre1[of "E" "D" "f a" 
              "invfun (carrier D) (carrier E) f"], assumption+)
 apply (frule ord_isom_func[of "E" "f"], assumption+)
 apply (simp add:ord_isom_def[of "D" "E" "f"] ord_inj_def, (erule conjE)+,
        thin_tac "acarrier D. bcarrier D. a  b = f a Ef b")
 apply (simp add:invfun_l)
done

lemma (in Worder) ord_isom_Pre2:"Worder E; a  carrier D; ExPre D a; 
       ord_isom D E f  f (Pre D a) = Pre E (f a)" 
apply (frule_tac E = E and a = a and f = f in ord_isom_Pre1, assumption+,
       frule_tac a = a in Pre_element, assumption+, (erule conjE)+)
 apply (frule Worder.Order[of "E"], 
        frule  ord_isom_mem[of "E" "f" "a"], assumption+,
        frule  ord_isom_mem[of "E" "f" "Pre D a"], assumption+,
        simp add:ord_isom_less[of "E" "f" "Pre D a" "a"]) 
 apply (simp add:ord_isom_convert[of E f "Pre D a" a])
 apply (rule Worder.UniquePre[THEN sym, of "E" "f a" "f (Pre D a)"],
        assumption+, simp) 
done

section "Transfinite induction"

lemma (in Worder) transfinite_induction:"minimum_elem D (carrier D) s0; P s0; tcarrier D. ((u segment D t. P u)  P t)  xcarrier D. P x" 
apply (rule contrapos_pp, simp+)
 apply (frule bex_nonempty_set[of "carrier D"],
        frule nonempty_set_sub[of "carrier D"])
 apply (cut_tac ex_minimum)
 apply (frule_tac a = "{x  carrier D. ¬ P x}" in forall_spec,
        simp,
        thin_tac "X. X  carrier D  X  {}  (x. minimum_elem D X x)")
  apply (thin_tac "xcarrier D. ¬ P x")
  apply (erule exE)
  apply (frule_tac d = x in less_minimum)
  apply (frule_tac X = "{x  carrier D. ¬ P x}" and a = x in minimum_elem_mem,
         assumption+)
  apply (frule_tac c = x and A = "{x  carrier D. ¬ P x}" and B = "carrier D"
          in subsetD, assumption+) 
  apply (frule_tac x = x in bspec, assumption+,
         thin_tac "tcarrier D. (usegment D t. P u)  P t")
  apply (simp add:minimum_elem_def, (erule conjE)+) 
  apply (erule bexE, simp add:segment_def)
done

section Ordered_set2›. Lemmas to prove Zorn's lemma.›
 
definition
  adjunct_ord ::"[_ , 'a]  _" where
  "adjunct_ord D a = D carrier := carrier D  {a},
                       rel := {(x,y). (x, y)  rel D  
                                     (x  (carrier D  {a})  y = a)} " 

lemma (in Order) carrier_adjunct_ord:
        "carrier (adjunct_ord D a) = carrier D  {a}"
by (simp add:adjunct_ord_def)

lemma (in Order) Order_adjunct_ord:"a  carrier D  
                                    Order (adjunct_ord D a)"
apply (cut_tac closed)
apply (rule Order.intro)
 apply (rule subsetI)
 apply (unfold split_paired_all)
 apply simp
 apply (simp add:adjunct_ord_def insert_absorb)
 apply blast

 apply (simp add:carrier_adjunct_ord)
 apply (erule disjE)
 apply (simp add:adjunct_ord_def)
 apply (simp add:adjunct_ord_def)
 apply (simp add:refl)

 apply (simp add:adjunct_ord_def)
  apply (erule disjE)+
  apply simp+
  apply (erule disjE) 
  apply (frule_tac c = "(a, b)" in subsetD[of "rel D" "carrier D × carrier D"],
         assumption+)
  apply blast
  apply simp

  apply (erule disjE)+
  apply (cut_tac closed, simp+)
  apply (frule_tac c = "(a, aa)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+, simp)
  apply (frule_tac c = "(aa, b)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+, simp)

  apply (erule disjE)
  apply (frule_tac c = "(b, aa)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+)
  apply simp+

  apply (erule disjE)+
  apply (rule antisym, assumption+)

  apply (frule_tac c = "(aa, b)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+)
    apply simp 
 
  apply (erule disjE)
  apply (frule_tac c = "(b, aa)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+,
         simp, simp)  

apply (simp add:adjunct_ord_def)
 apply (erule disjE)+
 apply blast
 apply blast
 apply blast

apply (erule disjE)
 apply simp
 apply (erule disjE)
 apply (frule_tac c = "(b, c)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+)
       apply simp apply blast
 apply (erule disjE, blast)
 apply (erule disjE) 
 apply simp
 apply (erule disjE)
 apply (frule_tac c = "(a, b)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+, simp)
 apply (frule_tac c = "(a, b)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+, simp)
 apply (erule disjE, simp) apply blast
 apply (erule disjE) apply simp
 apply (erule disjE) apply blast
 apply (erule disjE) 
 apply (frule_tac c = "(a, c)" in subsetD[of "rel D" 
                              "carrier D × carrier D"], assumption+, simp)
 apply blast
 apply (erule disjE)+
 apply blast apply blast apply blast
 apply (erule disjE)
 apply (erule disjE)
 apply (frule_tac a = aa and b = b and c = c in trans, assumption+)
         apply simp
   apply blast
 apply (erule disjE) apply simp apply blast
done

lemma (in Order) adjunct_ord_large_a:"Order D; a  carrier D  
                             xcarrier D. x adjunct_ord D aa"
apply (rule ballI)          
apply (subst oless_def)
apply (rule conjI)
apply (simp add:ole_def adjunct_ord_def)
apply (rule contrapos_pp, simp+)
done  

lemma carr_Ssegment_adjunct_ord:"Order D; a  carrier D  
                 carrier D = (Ssegment (adjunct_ord D a) a)" 
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp add:Ssegment_def Order.carrier_adjunct_ord)
 apply (simp add:Order.adjunct_ord_large_a)
 
apply (rule subsetI)
 apply (simp add:Ssegment_def Order.carrier_adjunct_ord)
 apply (erule conjE)
 apply (erule disjE, simp add:oless_def)
 apply assumption
done

lemma (in Order) adjunct_ord_selfD:"a  carrier D 
          D = Iod (adjunct_ord D a) (carrier D)"
apply (simp add:Iod_def)
apply (simp add:adjunct_ord_def)
apply (subgoal_tac "rel D = {(aa, b).
              ((aa, b)  rel D  (aa = a  aa  carrier D)  b = a) 
              aa  carrier D  b  carrier D}")
apply simp
apply (rule equalityI)
 apply (rule subsetI)
 apply (cut_tac closed,
        frule_tac c = x in subsetD[of "rel D" "carrier D × carrier D"],
        assumption+)
apply auto
done

lemma Ssegment_adjunct_ord:"Order D; a  carrier D  
          D = SIod (adjunct_ord D a) (Ssegment (adjunct_ord D a) a)" 
apply (simp add: carr_Ssegment_adjunct_ord[THEN sym, of "D" "a"])
apply (frule Order.Order_adjunct_ord[of "D" "a"], assumption+)
apply (cut_tac Order.carrier_adjunct_ord[THEN sym, of "D" "a"])
apply (cut_tac Un_upper1[of "carrier D" "{a}"], simp)
apply (subst SIod_self_le[THEN sym, of "adjunct_ord D a" "D"],
        assumption+)
apply (rule ballI)+
apply (frule_tac c = aa in subsetD[of "carrier D" "carrier (adjunct_ord D a)"],
        assumption,
       frule_tac c = b in subsetD[of "carrier D" "carrier (adjunct_ord D a)"],
        assumption)
apply (simp add:Order.le_rel[of "adjunct_ord D a"])
apply (subst adjunct_ord_def, simp)
 apply (case_tac "b = a", simp) apply simp
 apply (simp add:Order.le_rel[of "D"])
apply simp+
done

lemma (in Order) Torder_adjunction:"X  carrier D; a  carrier D; 
      xX. x  a; Torder (Iod D X)  Torder (Iod D (X  {a}))"
apply (frule insert_sub[of "X" "carrier D" "a"], assumption)
apply (subst Torder_def)
apply (frule singleton_sub[of "a" "carrier D"],
       frule Un_least[of "X" "carrier D" "{a}"], assumption) 

apply (rule conjI)
 apply (simp add:Iod_Order[of "insert a X"])
 
 apply (subst Torder_axioms_def)
 apply ((rule allI)+, (rule impI)+)
 apply (simp only:Iod_carrier, simp add:Iod_le)
 apply (erule disjE, simp) apply (erule disjE, simp)
 apply (simp add:le_refl) apply blast
 apply (erule disjE, simp)
 apply (simp add:Torder_def, simp add:Torder_axioms_def)
 apply (simp add:Iod_carrier, erule conjE)
 apply (frule_tac a = aa in forall_spec, assumption,
        thin_tac "a. a  X  (b. b  X  a Iod D Xb  b Iod D Xa)",
        frule_tac a = b in forall_spec, assumption,
        thin_tac "b. b  X  aa Iod D Xb  b Iod D Xaa",
        simp add:Iod_le)
done

lemma Torder_Sadjunction:"Order D; X  carrier D; a  carrier D; 
      xX. x Da; Torder (SIod D X)  Torder (SIod D (X  {a}))"
apply (frule insert_sub[of "X" "carrier D" "a"], assumption)
apply (subst Torder_def)
apply (frule singleton_sub[of "a" "carrier D"],
       frule Un_least[of "X" "carrier D" "{a}"], assumption) 

apply (rule conjI)
 apply (simp add:SIod_Order[of _ "insert a X"])
 
 apply (subst Torder_axioms_def)
 apply ((rule allI)+, (rule impI)+)
 apply (simp only:SIod_carrier, simp add:SIod_le)
 apply (erule disjE, simp) apply (erule disjE, simp)
 apply (simp add:Order.le_refl) apply blast
 apply (erule disjE, simp)
 apply (simp add:Torder_def, simp add:Torder_axioms_def)
 apply (simp add:SIod_carrier, erule conjE)
 apply (frule_tac a = aa in forall_spec, assumption,
       thin_tac "a. a  X  (b. b  X  a SIod D Xb  b SIod D Xa)",
       frule_tac a = b in forall_spec, assumption,
       thin_tac "b. b  X  aa SIod D Xb  b SIod D Xaa",
        simp add:SIod_le)
done

lemma (in Torder) Torder_adjunct_ord:"a  carrier D  
                                       Torder (adjunct_ord D a)"
apply (frule Order_adjunct_ord[of "a"],
       cut_tac carrier_adjunct_ord[THEN sym, of a],
       cut_tac Un_upper1[of "carrier D" "{a}"], simp,
       frule Order.Torder_adjunction[of "adjunct_ord D a" "carrier D" a],
       assumption+)
 apply (simp add:carrier_adjunct_ord)
 apply (cut_tac adjunct_ord_large_a[of a],
        rule ballI, 
        frule_tac x = x in bspec, assumption,
              thin_tac "xcarrier D. x adjunct_ord D aa",
        cut_tac insertI1[of a "carrier D"], simp,
        frule_tac c = x in subsetD[of "carrier D" "carrier (adjunct_ord D a)"],
         assumption+,
        simp add:Order.less_imp_le, rule Order,
        assumption+)
 apply (simp add:adjunct_ord_selfD[THEN sym])
prefer 2
 apply (simp add:Order.Iod_self[THEN sym, of "adjunct_ord D a"])
apply (unfold_locales) 
done

lemma (in Order) well_ord_adjunction:"X  carrier D; a  carrier D; 
      xX. x  a; Worder (Iod D X)  Worder (Iod D (X  {a}))"
apply (frule insert_sub[of "X" "carrier D" "a"], assumption)
apply (subst Worder_def)
 apply (simp add:Iod_Order)
 apply (frule_tac Torder_adjunction[of X a], assumption+)
 apply (simp add:Worder.Torder)
 apply (simp add:Torder_def)

apply (subst Worder_axioms_def)
 apply (rule allI, rule impI, erule conjE)
 apply (simp add:Iod_carrier)
 apply (cut_tac insert_inc1[of "X" "a"])

 apply (case_tac "Xa  X")
 apply (simp only:Worder_def, (erule conjE)+) apply (
        simp only:Worder_axioms_def)
 apply (frule_tac a = Xa in forall_spec,
        thin_tac "Xa. Xa  carrier (Iod D X)  Xa  {} 
               (x. minimum_elem (Iod D X) Xa x)",
        simp add:Iod_carrier)
 apply (thin_tac "Xa. Xa  carrier (Iod D X)  Xa  {} 
               (x. minimum_elem (Iod D X) Xa x)",
        erule exE)
 apply (frule_tac X = Xa and a = x in Order.minimum_elem_sub[of 
         "Iod D (insert a X)" "X"])
  apply (cut_tac insert_inc1[of "X" "a"], simp add:Iod_carrier, assumption+)
 apply (cut_tac insert_inc1[of "X" "a"],
        simp add:Iod_sub_sub) apply blast
 apply (erule conjE,
       frule_tac A = Xa in insert_diff[of _ "a" "X"])
 apply (case_tac "Xa - {a} = {}")
 apply (frule_tac A = Xa in nonempty_ex, erule exE, simp, 
        frule_tac c = x and A = Xa and B = "{a}" in subsetD, assumption+,
        simp, 
        frule_tac A = Xa in singleton_sub[of "a"],
        frule_tac A = Xa and B = "{a}" in equalityI, assumption+, simp)
 apply (simp add:minimum_elem_def)
 apply (cut_tac insert_inc2[of "a" "X"],
        simp add:Iod_le le_refl)

 apply (simp only:Worder_def, (erule conjE)+,
        simp only:Worder_axioms_def)
 apply (frule_tac a = "Xa - {a}" in forall_spec, 
        thin_tac "Xa. Xa  carrier (Iod D X)  Xa  {} 
               (x. minimum_elem (Iod D X) Xa x)", simp add:Iod_carrier)
 apply (thin_tac "Xa. Xa  carrier (Iod D X)  Xa  {} 
               (x. minimum_elem (Iod D X) Xa x)", erule exE)
 apply (frule_tac Y = Xa and x = x in augmented_set_minimum[of "X" "a"],
        assumption+, blast)
done

lemma well_ord_Sadjunction:"Order D; X  carrier D; a  carrier D; 
      xX. x Da; Worder (SIod D X)  Worder (SIod D (X  {a}))"
apply (frule insert_sub[of "X" "carrier D" "a"], assumption)
apply (subst Worder_def)
 apply (simp add:SIod_Order)
 apply (frule Torder_Sadjunction[of D X a], assumption+)
 apply (simp add:Worder.Torder)
 apply (simp add:Torder_def)

 apply (subst Worder_axioms_def)
 apply (rule allI, rule impI, erule conjE)
 apply (simp add:SIod_carrier)
 apply (cut_tac insert_inc1[of "X" "a"])

 apply (case_tac "Xa  X")
 apply (simp only:Worder_def, (erule conjE)+) apply (
        simp only:Worder_axioms_def)
 apply (frule_tac a = Xa in forall_spec,
        thin_tac "Xa. Xa  carrier (SIod D X)  Xa  {} 
               (x. minimum_elem (SIod D X) Xa x)",
        simp add:SIod_carrier)
 apply (thin_tac "Xa. Xa  carrier (SIod D X)  Xa  {} 
               (x. minimum_elem (SIod D X) Xa x)",
        erule exE)
 apply (frule_tac X = Xa and a = x in minimum_elem_Ssub[of 
         "SIod D (insert a X)" "X"])
  apply (cut_tac insert_inc1[of "X" "a"], simp add:SIod_carrier, assumption+)
 apply (cut_tac insert_inc1[of "X" "a"],
        simp add:SIod_sub_sub) apply blast

 apply (erule conjE, frule_tac A = Xa in insert_diff[of _ "a" "X"])
 apply (case_tac "Xa - {a} = {}")
 apply (frule_tac A = Xa in nonempty_ex, erule exE, simp, 
        frule_tac c = x and A = Xa and B = "{a}" in subsetD, assumption+,
        simp, 
        frule_tac A = Xa in singleton_sub[of "a"],
        frule_tac A = Xa and B = "{a}" in equalityI, assumption+, simp)
 apply (simp add:minimum_elem_def)
 apply (cut_tac insert_inc2[of "a" "X"],
        simp add:SIod_le Order.le_refl)

 apply (simp only:Worder_def, (erule conjE)+,
        simp only:Worder_axioms_def)
 apply (frule_tac a = "Xa - {a}" in forall_spec, 
        thin_tac "Xa. Xa  carrier (SIod D X)  Xa  {} 
               (x. minimum_elem (SIod D X) Xa x)", simp add:SIod_carrier)
 apply (thin_tac "Xa. Xa  carrier (SIod D X)  Xa  {} 
               (x. minimum_elem (SIod D X) Xa x)", erule exE)
 apply (frule_tac Y = Xa and x = x in augmented_Sset_minimum[of "D" "X" "a"],
        assumption+, blast) 
done

lemma (in Worder) Worder_adjunct_ord:"a  carrier D  
                                       Worder (adjunct_ord D a)"
apply (frule Torder_adjunct_ord[of a])
 apply (intro_locales)
 apply (simp add:Torder_def)
 apply (simp add:Torder_def)

 apply (cut_tac carrier_adjunct_ord[THEN sym, of a],
       cut_tac Un_upper1[of "carrier D" "{a}"], simp)
 apply (simp add:Torder_def, erule conjE) 
 apply (cut_tac insertI1[of a "carrier D" ])
 apply (frule Order.well_ord_adjunction[of "adjunct_ord D a" "carrier D" a],
        assumption+)
 apply (frule sym, thin_tac "insert a (carrier D) = carrier (adjunct_ord D a)",
        simp)
 apply (cut_tac adjunct_ord_large_a[of a],
        rule ballI, 
        frule_tac x = x in bspec, assumption,
              thin_tac "xcarrier D. x adjunct_ord D aa",
        cut_tac insertI1[of a "carrier D"], simp,
        frule_tac c = x in subsetD[of "carrier D" "carrier (adjunct_ord D a)"],
         assumption+,
        simp add:Order.less_imp_le, rule Order,
        assumption+)
  apply (simp add:adjunct_ord_selfD[THEN sym])
  prefer 2
  apply (simp add:Order.Iod_self[THEN sym, of "adjunct_ord D a"] Worder_def)
  apply unfold_locales
done
 
section "Zorn's lemma"

definition
  Chain :: "_  'a set  bool" where
  "Chain D C  C  carrier D  Torder (Iod D C)" 

definition
  upper_bound :: "[_, 'a set, 'a]  bool"
    ((3ubı/ _/ _) [100,101]100) where
  "ubDS b  b  carrier D  (sS. s Db)" 

definition
  "inductive_set" :: "_  bool" where
  "inductive_set D  (C. (Chain D C  (b. ubDC b)))"

definition
  maximal_element :: "[_, 'a]  bool"  ((maximalı/ _) [101]100) where
  "maximalDm  m  carrier D  (bcarrier D. m Db  m = b)"

definition
  upper_bounds::"[_, 'a set]  'a set" where
  "upper_bounds D H = {x. ubDH x}"

definition
  Sup :: "[_, 'a set]  'a" where
  "Sup D X = (THE x. minimum_elem D (upper_bounds D X) x)"

definition
  S_inductive_set :: "_  bool" where
  "S_inductive_set D  (C. Chain D C  
    (xcarrier D. minimum_elem D (upper_bounds D C) x))" 

lemma (in Order) mem_upper_bounds:"X  carrier D; b  carrier D; 
                 xX. x  b  ub X b"
apply (simp add:upper_bounds_def upper_bound_def)
done  

lemma (in Order) Torder_Chain:"X  carrier D; Torder (Iod D X)
        Chain D X"
apply (simp add:Chain_def Torder_def) 
done

lemma (in Order) Chain_Torder:"Chain D X  
                                   Torder (Iod D X)"
apply (simp add:Chain_def) 
done

lemma (in Order) Chain_sub:"Chain D X  X  carrier D"
apply (simp add:Chain_def)
done

lemma (in Order) Chain_sub_Chain:"Chain D X; Y  X   Chain D Y"
apply (frule Chain_sub[of "X"],
       frule Chain_Torder[of "X"],
       frule Torder.Iod_Torder[of "Iod D X" "Y"], simp add:Iod_carrier)
apply (simp add:Iod_sub_sub[of "Y" "X"],
       frule subset_trans[of "Y" "X" "carrier D"], assumption+)
apply (simp add:Torder_Chain[of "Y"])
done

lemma (in Order) upper_bounds_sub:"X  carrier D  
                           upper_bounds D X  carrier D"
by (rule subsetI, simp add:upper_bounds_def upper_bound_def)


lemma (in Order) Sup:"X  carrier D; minimum_elem D (upper_bounds D X) a                         Sup D X = a"
apply (subst Sup_def)
apply (rule the_equality, assumption,
       rule_tac ?a1.0 = x in minimum_elem_unique[of "upper_bounds D X" _ "a"])
 apply (rule subsetI, thin_tac "minimum_elem D (upper_bounds D X) a",
        thin_tac "minimum_elem D (upper_bounds D X) x",
        simp add:upper_bounds_def upper_bound_def)
 apply assumption+
done 

lemma (in Worder) Sup_mem:"X  carrier D; b. ub X b  
                  Sup D X  carrier D"
apply (frule upper_bounds_sub[of "X"],
       frule minimum_elem_mem[of "upper_bounds D X" "Sup D X"],
       simp add:Sup_def, rule theI')
 apply (rule ex_ex1I)
apply (cut_tac ex_minimum)
apply (frule_tac a = "upper_bounds D X" in forall_spec,
        thin_tac "X. X  carrier D  X  {}  (x. minimum_elem D X x)",
        simp, erule exE)
 apply (rule_tac x = b in nonempty[of _ "upper_bounds D X"],
       simp add:upper_bounds_def, assumption,
       rule_tac ?a1.0 = x and ?a2.0 = y in minimum_elem_unique[of 
         "upper_bounds D X"], assumption+,
       simp add:upper_bounds_def upper_bound_def)
done 

lemma (in Order) S_inductive_sup:"S_inductive_set D; Chain D X 
                             minimum_elem D (upper_bounds D X) (Sup D X)"
 apply (simp add:S_inductive_set_def) 
 apply (frule_tac a = X in forall_spec, assumption,
        thin_tac "C. Chain D C  (xcarrier D. minimum_elem D 
                     (upper_bounds D C) x)")
 apply (erule bexE)
 apply (frule Chain_sub[of "X"])
 apply (frule_tac a = x in  Sup[of "X" ], assumption+)
 apply simp
done 

lemma (in Order) adjunct_Chain:"Chain D X; b  carrier D; xX. x  b 
                 Chain D (insert b X)" 
apply (simp add:Chain_def, erule conjE)
apply (frule Torder_adjunction[of X b], assumption+)
apply simp
done

lemma (in Order) S_inductive_sup_mem:"S_inductive_set D; Chain D X 
                             Sup D X  carrier D"
apply (frule_tac  X = X in S_inductive_sup, assumption)
apply (simp add:minimum_elem_def, (erule conjE)+,
       simp add:upper_bounds_def, simp add:upper_bound_def)
done

lemma (in Order) S_inductive_Sup_min_bounds:"S_inductive_set D; Chain D X;
       ub X b   Sup D X  b"
apply (frule S_inductive_sup[of "X"], assumption+,
       simp add:minimum_elem_def, erule conjE)
apply (frule_tac x = b in bspec,
       simp add:upper_bounds_def, assumption)
done

lemma (in Order) S_inductive_sup_bound:"S_inductive_set D; Chain D X 
                                        xX. x  (Sup D X)"
apply (frule_tac X = X in S_inductive_sup, assumption+) 
apply (rule ballI)
apply (simp add:minimum_elem_def) apply (erule conjE)
 apply (thin_tac "xupper_bounds D X.  Sup D X  x")
 apply (simp add:upper_bounds_def upper_bound_def) 
done

lemma (in Order) S_inductive_Sup_in_ChainTr:
 "S_inductive_set D; Chain D X; c  carrier (Iod D (insert (Sup D X) X)); 
  Sup D X  X;
   ycarrier (Iod D (insert (Sup D X) X)). 
    c Iod D (insert (Sup D X) X)y  ¬ y Iod D (insert (Sup D X) X)Sup D X  
    c  upper_bounds D X"
apply (subst upper_bounds_def, simp add:upper_bound_def)
apply (frule Chain_sub[of X],
       frule S_inductive_sup_mem[of X], assumption+,
       frule insert_sub[of X "carrier D" "Sup D X"], assumption)
apply (rule conjI)
 apply (simp add:Iod_carrier,
       frule Chain_sub[of X],
       frule insert_sub[of X "carrier D" "Sup D X"], assumption,
       erule disjE, simp, simp add:subsetD)

apply (rule ballI)
 apply (simp add:Iod_carrier, (erule conjE)+,
        frule S_inductive_sup_bound[of X], assumption+)
 apply (erule disjE, simp)
 apply (frule_tac x = s in bspec, assumption,
        thin_tac "yX. c Iod D (insert (Sup D X) X)y 
               ¬ y Iod D (insert (Sup D X) X)Sup D X",
        frule_tac x = s in bspec, assumption,
        thin_tac "xX. x  Sup D X") 
 apply (frule insert_sub[of X "carrier D" "Sup D X"], assumption+,
        cut_tac subset_insertI[of X "Sup D X"],
        frule_tac c = s in subsetD[of X "insert (Sup D X) X"], assumption+,
        frule_tac c = c in subsetD[of X "insert (Sup D X) X"], assumption+,
        frule Iod_Order[of "insert (Sup D X) X"])
 apply (subst Iod_le[THEN sym, of "insert (Sup D X) X"], assumption+,
        rule contrapos_pp, (simp del:insert_subset)+)
 apply (frule Torder_adjunction [of "X" "Sup D X"], assumption+,
        rule S_inductive_sup_bound[of X], assumption+, simp add:Chain_Torder)
 apply (frule_tac a = s and b = c in 
                  Torder.not_le_less[of "Iod D (X  {Sup D X})"])
 apply (simp add:Iod_carrier, simp add:subsetD,
        simp add:Iod_carrier)
 apply (thin_tac "c Iod D (insert (Sup D X) X)Sup D X 
         ¬ Sup D X Iod D (insert (Sup D X) X)Sup D X")
 apply (simp del:insert_sub,
        frule_tac a = s in 
        Torder.not_less_le[of "Iod D (insert (Sup D X) X)" _ "Sup D X"])
 apply (frule insert_sub[of X "carrier D" "Sup D X"], assumption, 
        simp add:Iod_carrier subsetD,
        frule insert_sub[of X "carrier D" "Sup D X"], assumption,
        simp add:Iod_carrier)
 apply simp
 apply (simp add:Iod_le)
 apply (frule_tac c = s in subsetD[of X "carrier D"], assumption+,
        frule_tac a = s and b = "Sup D X" in le_antisym, assumption+)
 apply simp
done   

lemma (in Order) S_inductive_Sup_in_Chain:"S_inductive_set D; Chain D X;
       ExPre (Iod D (insert (Sup D X) X)) (Sup D X)  Sup D X  X"
apply (frule S_inductive_sup_mem[of X], assumption+)
apply (frule Chain_sub[of X],
       frule insert_sub[of X "carrier D" "Sup D X"], assumption)
apply (rule contrapos_pp, (simp del:insert_subset)+)
 apply (frule Iod_Order[of "insert (Sup D X) X"])
 apply (frule Order.Pre_element[of "Iod D (insert (Sup D X) X)" "Sup D X"])
  apply (simp add:Iod_carrier) apply assumption
  apply ((erule conjE)+, simp del:insert_subset)
  apply (frule S_inductive_Sup_in_ChainTr[of X 
               "Pre (Iod D (insert (Sup D X) X)) (Sup D X)"], assumption+)
  apply (simp add:upper_bounds_def)
  apply (frule S_inductive_Sup_min_bounds[of X 
               "Pre (Iod D (insert (Sup D X) X)) (Sup D X)"], assumption+,
         thin_tac "ycarrier (Iod D (insert (Sup D X) X)).
        Pre (Iod D (insert (Sup D X) X)) (Sup D X) Iod D (insert (Sup D X) X)y   ¬ y Iod D (insert (Sup D X) X)Sup D X")
  apply (frule Order.less_le_trans[of "Iod D (insert (Sup D X) X)" 
      "Pre (Iod D (insert (Sup D X) X)) (Sup D X)"
      "Sup D X" "Pre (Iod D (insert (Sup D X) X)) (Sup D X)"])
  apply assumption+
  
  apply (frule insert_sub[of X "carrier D" "Sup D X"], assumption,
        simp add:Iod_carrier) apply assumption+
   apply (frule insert_sub[of X "carrier D" "Sup D X"], assumption,
        simp add:Iod_carrier Iod_le) 
   apply (simp add:oless_def)
done

lemma (in Order) S_inductive_bounds_compare:"S_inductive_set D; Chain D X1;
       Chain D X2; X1  X2  upper_bounds D X2  upper_bounds D X1 " 
apply (rule subsetI,
       simp add:upper_bounds_def upper_bound_def,
       erule conjE, rule ballI,
       frule_tac c = s in subsetD[of "X1" "X2"], assumption+) 
 apply simp
done

lemma (in Order) S_inductive_sup_compare:"S_inductive_set D; Chain D X1;
       Chain D X2; X1  X2  Sup D X1   Sup D X2" 
 apply (frule S_inductive_bounds_compare[of "X1" "X2"], assumption+,
        frule Chain_sub[of "X1"], frule Chain_sub[of "X2"],
        frule upper_bounds_sub[of "X1"], frule upper_bounds_sub[of "X2"])
 apply (rule_tac s = "Sup D X2" and t = "Sup D X1" in 
       compare_minimum_elements[of "upper_bounds D X2" "upper_bounds D X1"],
       assumption+,
       simp add:S_inductive_sup, simp add:S_inductive_sup)
done

definition
  Wa :: "[_, 'a set, 'a  'a, 'a]  bool" where
  "Wa D W g a  W  carrier D  Worder (Iod D W)  a  W  (xW. a Dx)  
    (xW. (if (ExPre (Iod D W) x) then  g (Pre (Iod D W) x) = x else
    (if a  x then Sup D (segment (Iod D W) x) = x else a = a)))"

definition 
  WWa :: "[_, 'a  'a, 'a]  'a set set" where
  "WWa D g a = {W. Wa D W g a}"
 
lemma (in Order) mem_of_WWa:"W  carrier D; Worder (Iod D W); a  W;
  (xW. a  x); 
  (xW. (if (ExPre (Iod D W) x) then  g (Pre (Iod D W) x) = x else
  (if a  x then Sup D (segment (Iod D W) x) = x else a = a))) 
       W  WWa D g a"
by (simp add:WWa_def, simp add:Wa_def)

lemma (in Order) mem_WWa_then:"W  WWa D g a  W  carrier D  
  Worder (Iod D W)  a  W  (xW. a  x)  
  (xW. (if (ExPre (Iod D W) x) then  g (Pre (Iod D W) x) = x else
  (if a  x then Sup D (segment (Iod D W) x) = x else a = a)))" 
by (simp add:WWa_def Wa_def)
    
lemma (in Order) mem_wwa_Worder:"W  WWa D g a  Worder (Iod D W)"
by (simp add:WWa_def Wa_def)

lemma (in Order) mem_WWa_sub_carrier:"W  WWa D g a  W  carrier D"
by (simp add:WWa_def Wa_def)

lemma (in Order) Union_WWa_sub_carrier:" (WWa D g a)  carrier D"
by (rule Union_least[of "WWa D g a" "carrier D"], simp add:mem_WWa_sub_carrier)

lemma (in Order) mem_WWa_inc_a:"W  WWa D g a  a  W"
by (simp add:WWa_def Wa_def)

lemma (in Order) mem_WWa_Chain:"W  WWa D g a  Chain D W"
apply (simp add:Chain_def)
 apply (simp add:mem_WWa_sub_carrier)
 apply (frule mem_wwa_Worder[of "W"])
 apply (simp add:Worder.Torder)
done

lemma (in Order) Sup_adjunct_Sup:"S_inductive_set D; 
      f  carrier D  carrier D; a  carrier D; xcarrier D. x  f x; 
      W  WWa D f a; Sup D W  W
       Sup D (insert (Sup D W) W) = Sup D W"
(** use 
             le_antisym
At first applying le_antisym, we see following four items should be proved.
             Sup D W ∈ carrier D
             Sup D (insert (Sup D W) W) ∈ carrier D
             Sup D W ≼ Sup D (insert (Sup D W) W)
             Sup D (insert (Sup D W) W) ≼ Sup D W
To show Sup D W ∈ carrier D, we apply S_inductive_Sup_mem.     
 **)
apply (frule mem_WWa_Chain[of "W"],
       frule S_inductive_sup_bound[of "W"], assumption,
       frule mem_wwa_Worder[of "W"],
       frule mem_WWa_sub_carrier[of "W"],
       frule S_inductive_sup_mem[of "W"], assumption+) 
apply (frule well_ord_adjunction[of "W" "Sup D W"], assumption+, simp,
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+,
       frule Worder.Torder[of "Iod D (insert (Sup D W) W)"],
          frule Torder_Chain[of "insert (Sup D W) W"], assumption+,
       frule S_inductive_sup_mem[of "insert (Sup D W) W"], assumption+)
apply (rule le_antisym[of "Sup D (insert (Sup D W) W)" "Sup D W"], assumption+,
       rule S_inductive_Sup_min_bounds[of "insert (Sup D W) W" "Sup D W"],
             assumption+,
       simp add:upper_bound_def, simp add:le_refl)
apply (rule S_inductive_sup_compare[of "W" "insert (Sup D W) W"], assumption+)
apply (simp add:subset_insertI[of "W" "Sup D W"])
done

lemma (in Order) BNTr1:"a  carrier D  Worder (Iod D {a})"
apply intro_locales
apply (frule singleton_sub[of "a" "carrier D"],
       rule Iod_Order[of "{a}"], assumption)
 apply (simp add:Torder_axioms_def)
 apply (rule allI, rule impI)+
 apply (simp add:Iod_carrier, simp add:Iod_le le_refl)
apply (simp add:Worder_axioms_def)
 apply (rule allI, rule impI, erule conjE, simp add:Iod_carrier) 
 apply (frule_tac A = X in nonempty_ex, erule exE,
        frule_tac c = x and A = X and B = "{a}" in subsetD, assumption+,
        simp, 
        frule_tac A = X in singleton_sub[of "a"],
        frule_tac A = X and B = "{a}" in equalityI, assumption+, simp)
apply (simp add:minimum_elem_def Iod_le le_refl)
done
 
lemma (in Order) BNTr2:"f  carrier D  carrier D;  a  carrier D; 
                         xcarrier D. x  (f x)  {a}  WWa D f a"
apply (simp add:WWa_def Wa_def) 
apply (simp add:Not_ExPre[of "a"])
 apply (simp add:BNTr1 le_refl)
done
 
lemma (in Order) BNTr2_1:"f  carrier D  carrier D;  a  carrier D; 
       xcarrier D. x  (f x); W  WWa D f a  xW. a  x"
by (rule ballI, simp add:WWa_def Wa_def)
     
lemma (in Order) BNTr3:"f  carrier D  carrier D; a  carrier D; 
       xcarrier D. x  (f x); W  WWa D f a  minimum_elem (Iod D W) W a"
(** a ∈ W is required by minimum_elem_def and Iod_le *)
apply (frule mem_WWa_inc_a[of W])
apply (subst minimum_elem_def)
 apply simp
 apply (rule ballI)
 apply (frule mem_WWa_sub_carrier[of W f a])
 apply (frule BNTr2_1[of f a W], assumption+)
 apply (simp add:Iod_le)
done

lemma (in Order) Adjunct_segment_sub:"S_inductive_set D; Chain D X 
       segment (Iod D (insert (Sup D X) X)) (Sup D X)   X"
 apply (frule S_inductive_sup_mem[of "X"], assumption+,
        frule Chain_sub[of "X"],
        frule insert_sub[of "X" "carrier D" "Sup D X"], assumption)
apply (rule subsetI)
 apply (simp add:segment_def)
 apply (case_tac "Sup D X  carrier (Iod D (insert (Sup D X) X))", simp)
 apply (simp add:Iod_carrier)
 
 apply (simp add:Iod_carrier, erule conjE, simp add:oless_def)
done

lemma (in Order) Adjunct_segment_eq:"S_inductive_set D; Chain D X;
                Sup D X  X 
       segment (Iod D (insert (Sup D X) X)) (Sup D X) = X"
apply (frule Chain_sub[of "X"],
       frule Adjunct_segment_sub[of "X"], assumption)
apply (rule equalityI, assumption)
apply (frule S_inductive_sup_mem[of "X"], assumption+,
       frule insert_sub[of "X" "carrier D" "Sup D X"], assumption+,
       rule subsetI,
       simp add:segment_def Iod_carrier,
       cut_tac subset_insertI[of "X" "Sup D X"],
       cut_tac insertI1[of "Sup D X" "X"],
       frule_tac c = x in subsetD[of "X" "insert (Sup D X) X"], assumption+)
apply (simp add:Iod_less[of "insert (Sup D X) X"],
       frule S_inductive_sup_bound[of "X"], assumption+,
       frule_tac x = x in bspec, assumption+,
       thin_tac "xX. x  Sup D X",
       simp add:oless_def)
apply (rule contrapos_pp, simp+)
done

definition
  fixp :: "['a  'a, 'a]  bool" where
  "fixp f a  f a = a"    (** a is a fixed point of f **)

lemma (in Order) fixp_same:"W1  carrier D; W2  carrier D; t  W1; 
 b  carrier D; ord_isom (Iod D W1) (Iod (Iod D W2) (segment (Iod D W2) b)) g;
 usegment (Iod D W1) t. fixp g u  
          segment (Iod D W1) t = segment (Iod D W2) (g t)"

 apply (frule Iod_Order[of "W1"],
        frule Iod_Order[of "W2"],
        frule Order.segment_sub[of "Iod D W1" "t"],
        frule Order.segment_sub[of "Iod D W2" "b"],
        frule Order.Iod_Order[of "Iod D W2" "segment (Iod D W2) b"], 
        assumption+)
 apply (frule Order.ord_isom_segment_segment[of "Iod D W1" 
               "Iod (Iod D W2) (segment (Iod D W2) b)" g t], assumption+)
       apply (simp add:Iod_carrier, simp add:Iod_carrier)
       apply (frule Order.ord_isom_mem[of "Iod D W1" 
              "Iod (Iod D W2) (segment (Iod D W2) b)" g t], assumption+,
               simp add:Iod_carrier)
       apply (frule Order.Iod_segment_segment[of "Iod D W2" "g t" b],
                           assumption, simp)
       apply (simp add:Iod_sub_sub[of "segment (Iod D W1) t" W1])
       apply (frule Order.segment_sub [of "Iod (Iod D W2) 
                                        (segment (Iod D W2) b)" "g t"])
       apply (simp add:Iod_sub_sub)
       apply (frule subset_trans[of "segment (Iod D W2) b" W2 "carrier D"],
                     assumption+)
       apply (simp add:Iod_carrier)
       apply (frule Order.segment_sub[of "Iod D W2" "g t"], 
              simp add:Iod_carrier[of W2])
       apply (simp add:Iod_sub_sub[of "segment (Iod D W2) (g t)" W2],
              thin_tac "Iod (Iod D (segment (Iod D W2) b))
                       (segment (Iod D (segment (Iod D W2) b)) (g t)) =
                        Iod D (segment (Iod D W2) (g t))")
       apply (frule subset_trans[of "segment (Iod D W1) t" W1 "carrier D"],
              assumption+,
              frule subset_trans[of "segment (Iod D W2) (g t)" W2 "carrier D"],
              assumption+,
              frule Iod_Order[of "segment (Iod D W1) t"],
              frule Iod_Order[of "segment (Iod D W2) (g t)"])
       apply (thin_tac "segment (Iod D (segment (Iod D W2) b)) (g t) 
                          segment (Iod D W2) b",
              thin_tac "segment (Iod D W2) b  carrier D",
              thin_tac "segment (Iod D W2) (g t)  W2",
              thin_tac "ord_isom (Iod D W1) (Iod D (segment (Iod D W2) b)) g")
apply (rule equalityI)
 apply (rule subsetI) 
 apply (frule_tac a = x in Order.ord_isom_mem[of "Iod D (segment (Iod D W1) t)"
       "Iod D (segment (Iod D W2) (g t))" 
         "restrict g (carrier (Iod D (segment (Iod D W1) t)))"], assumption+,
        simp add:Iod_carrier, simp add:Iod_carrier, simp add:fixp_def)
apply (metis Order.Iod_carrier [OF Order_axioms])
 apply (rule subsetI)
 apply (frule_tac b = x in Order.ord_isom_surj[of 
         "Iod D (segment (Iod D W1) t)" "Iod D (segment (Iod D W2) (g t))" 
         "restrict g (carrier (Iod D (segment (Iod D W1) t)))"]) 
apply assumption
apply (metis Order.Iod_carrier [OF Order_axioms])
apply (metis Order.Iod_carrier [OF Order_axioms] Order.segment_free [OF Order_axioms])
apply (metis Order.Iod_carrier [OF Order_axioms] fixp_def restrict_apply)
done

lemma (in Order) BNTr4_1:"f  carrier D  carrier D;  a  carrier D; 
     b  carrier D; xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a;
     ord_isom (Iod D W1) (Iod D (segment (Iod D W2) b)) g  
     xW1. g x = x"
 apply (frule mem_wwa_Worder[of "W1" "f" "a"],
        frule mem_wwa_Worder[of "W2" "f" "a"],
        frule Worder.Order[of "Iod D W2"],
        frule mem_WWa_sub_carrier[of "W2" "f" "a"],
        frule mem_WWa_sub_carrier[of "W1" "f" "a"],
        cut_tac  Worder.segment_Worder[of "Iod D W2" "b"],
        simp add:Worder.Order)
  apply (cut_tac Order.segment_sub[of "Iod D W2" "b"],
                   simp add:Iod_carrier,
         frule subset_trans[of "segment (Iod D W2) b" "W2" "carrier D"],
                   assumption+,
         frule Iod_Order[of "segment (Iod D W2) b"])
  apply (frule Worder.Order[of "Iod D W1"],
         frule Order.ord_isom_onto[of "Iod D W1" 
                      "Iod D (segment (Iod D W2) b)" "g"], assumption+)
  (** transfinite induction **)
  apply (frule Order.ord_isom_minimum[of "Iod D W1" 
         "Iod D (segment (Iod D W2) b)" "g" "W1" "a"], assumption+,
         simp add:Iod_carrier, simp add:Iod_carrier mem_WWa_inc_a,
         simp add:BNTr3)
 apply (frule Order.ord_isom_onto[of "Iod D W1" 
                      "Iod D (segment (Iod D W2) b)" "g"], assumption+,
        simp add:Iod_carrier, frule Worder.Torder[of "Iod D W2"])
 apply (simp add:minimum_elem_sub[THEN sym, of "segment (Iod D W2) b" 
                           "segment (Iod D W2) b"])
      
 apply (simp add:minimum_elem_sub[of "W2" "segment (Iod D W2) b"])
 apply (frule Torder.minimum_segment_of_sub[of "Iod D W2" "W2" "b" "g a"],
        simp add:Iod_carrier, cut_tac subset_self[of "W2"],
        simp add:Iod_sub_sub[of "W2" "W2"],
         thin_tac "minimum_elem (Iod D W2) (segment (Iod D W2) b) (g a)",
        frule BNTr3[of "f" "a" "W2"], assumption+) 
apply (frule Worder.Order[of "Iod D W2"],
        frule Order.minimum_elem_unique[of "Iod D W2" "W2" "g a" "a"],
         simp add:Iod_carrier, assumption+)
 
 apply (simp add:Iod_sub_sub[THEN sym, of "segment (Iod D W2) b" "W2"],
        frule Worder.transfinite_induction[of "Iod D W1" "a" "fixp g"],
        simp add:Iod_carrier, simp add:BNTr3, simp add:fixp_def,
        rule ballI, rule impI)

 apply (frule_tac a = t in Worder_ord_isom_mem[of "Iod D W1" 
          "Iod (Iod D W2) (segment (Iod D W2) b)" "g"], assumption+,
        frule Iod_carrier[THEN sym, of "W2"],
        frule subset_trans[of "segment (Iod D W2) b" "W2" 
                        "carrier (Iod D W2)"], simp,
        thin_tac "W2 = carrier (Iod D W2)",
        simp add:Order.Iod_carrier[of "Iod D W2" "segment (Iod D W2) b"],
        frule_tac c = "g t" in subsetD[of "segment (Iod D W2) b" 
                                   "carrier (Iod D W2)"], assumption+,
        simp add:Iod_carrier)
 apply (case_tac "t = a")
  apply (simp add:fixp_def)
  apply (case_tac "ExPre (Iod D W1) t",
        frule_tac a = t in Worder.ord_isom_Pre1[of "Iod D W1" 
                  "Iod (Iod D W2) (segment (Iod D W2) b)" _ "g"], assumption+,
        simp add:Iod_carrier, assumption+)
  apply (frule_tac a = t in Worder.ord_isom_Pre2[of "Iod D W1"
            "Iod (Iod D W2) (segment (Iod D W2) b)" _ "g"], assumption+,
       simp add:Iod_carrier, assumption+)
  apply (frule_tac a = t in Order.Pre_in_segment[of "Iod D W1"],
        simp add:Iod_carrier, assumption)
  apply (frule_tac x = "Pre (Iod D W1) t" in bspec, assumption,
        thin_tac "usegment (Iod D W1) t. fixp g u") 
       apply (simp add:fixp_def)
  apply (frule_tac a = "g t" in Worder.Pre_segment[of "Iod D W2" _ "b"],
        simp add:Iod_carrier, assumption+)

 apply (rotate_tac -2, frule sym, thin_tac "Pre (Iod D W1) t =
         Pre (Iod (Iod D W2) (segment (Iod D W2) b)) (g t)", simp,
        thin_tac "Pre (Iod (Iod D W2) (segment (Iod D W2) b)) (g t) =
         Pre (Iod D W1) t")
 apply (erule conjE)
 apply (simp add:WWa_def Wa_def, (erule conjE)+,
        thin_tac "xW1. a  x", thin_tac "xW2. a  x",
        thin_tac "xcarrier D. x  f x")
 apply (frule_tac x = t in bspec, assumption+,
        thin_tac "xW1.
            if ExPre (Iod D W1) x then f (Pre (Iod D W1) x) = x
            else if a  x then Sup D (segment (Iod D W1) x) = x else a = a",
        frule_tac x = "g t" in bspec, assumption+,
        thin_tac "xW2.
            if ExPre (Iod D W2) x then f (Pre (Iod D W2) x) = x
            else if a  x then Sup D (segment (Iod D W2) x) = x else a = a")
        apply simp
 apply (frule_tac a = t in Worder.ord_isom_Pre11[of "Iod D W1"
                 "Iod (Iod D W2) (segment (Iod D W2) b)" _ "g"], assumption+,
        simp add:Iod_carrier, assumption, simp)

 apply (frule_tac a = "g t" in Worder.segment_Expre[of "Iod D W2" _ "b"],
        assumption, simp,
        thin_tac "¬ ExPre (Iod (Iod D W2) (segment (Iod D W2) b)) (g t)")
 apply (simp add:WWa_def Wa_def, (erule conjE)+)
 apply (rotate_tac -3,
        frule_tac x = t in bspec, assumption,
        thin_tac "xW1.
            if ExPre (Iod D W1) x then f (Pre (Iod D W1) x) = x
            else if a  x then Sup D (segment (Iod D W1) x) = x else a = a")
 apply (rotate_tac 1,
        frule_tac x = "g t" in bspec, assumption,
        thin_tac "xW2.
            if ExPre (Iod D W2) x then f (Pre (Iod D W2) x) = x
            else if a  x then Sup D (segment (Iod D W2) x) = x else a = a",
        simp)   
 apply (frule_tac t = t and s = a in not_sym, thin_tac " t  a")
 apply (frule_tac b = t in Order.ord_isom_inj[of "Iod D W1" 
                "Iod (Iod D W2) (segment (Iod D W2) b)" "g" "a"], assumption+,
                simp add:Iod_carrier, simp add:Iod_carrier, simp)
 apply (frule_tac t1 = t in fixp_same[THEN sym, of "W1" "W2" _ "b" "g"], 
        assumption+, simp, simp add:fixp_def)
 apply (rule ballI,
        frule_tac x = x in bspec,
        simp add:subsetD[of "W1" "carrier D"], 
        simp add:Iod_carrier fixp_def)
 apply (simp add:Worder.Order, assumption)
done

lemma (in Order) BNTr4_2:"f  carrier D  carrier D;  a  carrier D; 
       b  carrier D; xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a;
       ord_equiv (Iod D W1) (Iod D (segment (Iod D W2) b))  
       W1 = segment (Iod D W2) b" 
apply (simp add:ord_equiv_def,
       erule exE)
 apply (rename_tac g)
 apply (frule mem_wwa_Worder[of "W1" "f" "a"],
        frule mem_wwa_Worder[of "W2" "f" "a"],
        frule Worder.Order[of "Iod D W2"],
        frule mem_WWa_sub_carrier[of "W2" "f" "a"],
        frule mem_WWa_sub_carrier[of "W1" "f" "a"],
        cut_tac a = b in Worder.segment_Worder[of "Iod D W2"], assumption)
 apply (frule Worder.Order[of "Iod D W1"])
 apply (frule_tac D = "Iod (Iod D W2) (segment (Iod D W2) b)" in  Worder.Order)
 apply (frule Worder.Order[of "Iod D W2"])
 apply (frule_tac a = b in Order.segment_sub[of "Iod D W2"], 
        simp add:Iod_carrier)
 apply (frule_tac A = "segment (Iod D W2) b" in subset_trans[of _ "W2"
         "carrier D"], assumption+)
 apply (frule_tac T = "segment (Iod D W2) b" in Iod_Order)
 apply (frule_tac E = "Iod D (segment (Iod D W2) b)" and f = g in  
        Order.ord_isom_func[of "Iod D W1" ], assumption+)
 apply (frule_tac f = g in Order.ord_isom_onto[of "Iod D W1" 
                            "Iod D (segment (Iod D W2) b)"], assumption+)
 apply (simp only:Iod_carrier)
 apply (frule_tac b = b and g = g in BNTr4_1[of "f" "a" _ "W1" "W2"],
                  assumption+)
 apply (simp add:image_def)
done

lemma (in Order) BNTr4:"f  carrier D  carrier D;  a  carrier D; 
       xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a; 
       bcarrier D. ord_equiv (Iod D W1) (Iod D (segment (Iod D W2) b))  
       W1  W2" 
apply (erule bexE)
 apply (rename_tac b) 
 apply (frule_tac b = b in BNTr4_2[of "f" "a" _ "W1" "W2"], assumption+)
 apply (frule mem_WWa_sub_carrier[of "W2" "f" "a"],
        frule Iod_Order[of "W2"]) 
 apply (frule_tac a = b in Order.segment_sub[of "Iod D W2"],
        simp add:Iod_carrier)
done

lemma (in Order) Iod_same:"A = B  Iod D A = Iod D B"
by simp

lemma (in Order) eq_ord_equivTr:"ord_equiv D E; E = F  ord_equiv D F"
by simp

lemma (in Order) BNTr5:"f  carrier D  carrier D; a  carrier D; 
      xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a;
      ord_equiv (Iod D W1) (Iod D W2)  W1  W2 " 
 apply (frule mem_WWa_sub_carrier[of "W1" "f" "a"], 
        frule mem_WWa_sub_carrier[of "W2" "f" "a"]) 
 apply (case_tac "W2 = carrier D")
  apply simp
 apply (frule not_sym, thin_tac "W2  carrier D")
 apply (frule sets_not_eq[of "carrier D" "W2"], assumption, erule bexE)
 apply (frule Iod_Order[of "W2"], 
        frule Iod_Order[of "W1"],
        frule Iod_carrier[THEN sym, of "W2"])
        apply (frule_tac a = aa and A = W2 and B = "carrier (Iod D W2)" in 
              eq_set_not_inc, assumption)
        apply (thin_tac "W2 = carrier (Iod D W2)")
  apply (frule_tac a = aa in Order.segment_free[of "Iod D W2"],
          assumption, simp add:Iod_carrier)
  apply (rule BNTr4[of f a W1 W2], assumption+) (** key **)
  apply (frule_tac a = aa in Order.segment_free[of "Iod D W2"])
         apply (simp add:Iod_carrier)
  apply (simp only:Iod_carrier, 
         rotate_tac -1, frule sym, thin_tac "segment (Iod D W2) aa = W2")
  apply (frule_tac B = "segment (Iod D W2) aa" in 
                   Iod_same[of W2])
  apply (frule_tac F = "Iod D (segment (Iod D W2) aa)" in 
         Order.eq_ord_equivTr[of "Iod D W1" "Iod D W2"], assumption+)
  apply blast
done

lemma (in Order) BNTr6:"f  carrier D  carrier D; a  carrier D;
xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a; W1  W2  
 (bcarrier (Iod D W2). ord_equiv (Iod D W1) (Iod D (segment (Iod D W2) b)))"
apply (frule mem_wwa_Worder[of "W1" "f" "a"],
       frule mem_wwa_Worder[of "W2" "f" "a"])
 apply (frule_tac D = "Iod D W1" and E = "Iod D W2" in Worder.Word_compare, 
        assumption+) (** key 1 **)
 apply (erule disjE)
  apply (erule bexE,
         frule_tac a = aa in Worder.segment_Worder[of "Iod D W1"],
         frule_tac S = "Iod (Iod D W1) (segment (Iod D W1) aa)" in
           Worder_sym[of _ "Iod D W2"], assumption+,
     thin_tac "ord_equiv (Iod (Iod D W1) (segment (Iod D W1) aa)) (Iod D W2)",
         frule BNTr4[of "f" "a" "W2" "W1"], assumption+,
         frule mem_WWa_sub_carrier[of "W1"],
         simp add:Iod_carrier,
         frule_tac c = aa in subsetD[of "W1" "carrier D"], assumption+,
         frule Iod_Order[of "W1"],
         frule_tac a = aa in Order.segment_sub[of "Iod D W1"],
                  simp add:Iod_carrier)
 apply (frule_tac S = "segment (Iod D W1) aa" and T = W1 in Iod_sub_sub,
                  assumption+, simp, blast)
 apply (simp add:subset_contr[of "W1" "W2"])

apply (erule disjE)
 apply (frule Worder_sym[of "Iod D W1" "Iod D W2"], assumption+,
          thin_tac "ord_equiv (Iod D W1) (Iod D W2)",
        frule BNTr5[of "f" "a" "W2" "W1"], assumption+)
  apply (simp add:subset_contr[of "W1" "W2"])

apply (erule bexE,
       frule mem_WWa_sub_carrier[of "W2"],
       simp add:Iod_carrier,
       frule_tac c = b in subsetD[of "W2" "carrier D"], assumption+,
       frule Iod_Order[of "W2"],
       frule_tac a = b in Order.segment_sub[of "Iod D W2"],
       simp add:Iod_carrier,
       frule_tac S = "segment (Iod D W2) b" and T = W2 in Iod_sub_sub,
                  assumption+, simp) 
 apply blast
done

lemma (in Order) BNTr6_1:"f  carrier D  carrier D; a  carrier D;
xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a; W1  W2  
 (bcarrier (Iod D W2). W1 = (segment (Iod D W2) b))"
by (frule_tac BNTr6[of "f" "a" "W1" "W2"], assumption+, erule bexE,
       frule mem_WWa_sub_carrier[of "W2"], simp add:Iod_carrier,
       frule_tac c = b in subsetD[of "W2" "carrier D"], assumption+,
       frule_tac b = b in BNTr4_2[of "f" "a" _ "W1" "W2"], assumption+,
       blast)

lemma (in Order) BNTr7:"f  carrier D  carrier D; a  carrier D;
      xcarrier D. x  (f x); W1  WWa D f a; W2  WWa D f a  
                W1  W2  W2  W1"
apply (frule mem_wwa_Worder[of "W1" "f" "a"],
       frule mem_wwa_Worder[of "W2" "f" "a"])
 apply (frule_tac D = "Iod D W1" and E = "Iod D W2" in Worder.Word_compare, 
        assumption+)
 apply (erule disjE, erule bexE)  
apply (frule mem_WWa_sub_carrier[of "W1"],
       frule mem_WWa_sub_carrier[of "W2"],
       frule Iod_Order[of "W1"],
       frule Iod_Order[of "W2"],
       frule_tac a = aa in Order.segment_sub[of "Iod D W1"],
                  simp add:Iod_carrier,
       frule_tac S = "segment (Iod D W1) aa" and T = W1 in Iod_sub_sub,
                  assumption+, simp,
       thin_tac "Iod (Iod D W1) (segment (Iod D W1) aa) =
          Iod D (segment (Iod D W1) aa)",
       frule_tac A = "segment (Iod D W1) aa" in subset_trans[of _ "W1" 
          "carrier D"], assumption+,
       frule_tac T = "segment (Iod D W1) aa" in Iod_Order)
      
 apply (frule_tac D = "Iod D (segment (Iod D W1) aa)" in 
           Order.ord_equiv_sym[of _ "Iod D W2"], assumption+)      
 apply (frule_tac c = aa in subsetD[of "W1" "carrier D"], assumption+)
 apply (frule BNTr4[of "f" "a" "W2" "W1"], assumption+, blast, simp)

apply (erule disjE)
 apply (simp add:BNTr5)
 
apply (frule mem_WWa_sub_carrier[of "W2"], simp add:Iod_carrier)
apply (frule BNTr4[of "f" "a" "W1" "W2"], assumption+)
apply (erule bexE,
       frule mem_WWa_sub_carrier[of "W2"],
       simp add:Iod_carrier,
       frule_tac c = b in subsetD[of "W2" "carrier D"], assumption+,
       frule Iod_Order[of "W2"],
       frule_tac a = b in Order.segment_sub[of "Iod D W2"],
       simp add:Iod_carrier,
       frule_tac S = "segment (Iod D W2) b" and T = W2 in Iod_sub_sub,
          assumption+, simp,
       frule_tac c = b in subsetD[of "W2" "carrier D"], assumption+)
apply blast
apply simp
done  

lemma (in Order) BNTr7_1:"f  carrier D  carrier D; a  carrier D; 
       xcarrier D. x  f x; x  W; W  WWa D f a; xa   (WWa D f a);
         xa Iod D ( (WWa D f a))x  xa  W"
apply (cut_tac Union_WWa_sub_carrier[of "f" "a"],
       frule_tac X = W and C = "WWa D f a" and A = x in UnionI, assumption+,
       simp del:Union_iff add:Iod_less)

 apply (simp only:Union_iff[of "xa" "WWa D f a"], erule bexE, rename_tac W')
 apply (frule_tac ?W1.0 = W and ?W2.0 = W' in BNTr7[of "f" "a"],
           assumption+)
 apply (case_tac "W'  W", simp add:subsetD[of _ "W"])

apply (simp del:Union_iff)
 apply (frule_tac B = W' in psubsetI[of "W"])
 apply (rule not_sym, assumption)
 apply (thin_tac "W  W'", thin_tac "W'  W")
 apply (frule_tac ?W2.0 = W' in BNTr6_1[of "f" "a" "W"], assumption+)
 apply (erule bexE)
apply (frule_tac W = W' in mem_WWa_sub_carrier)
       apply (simp add:Iod_carrier)
       apply (frule_tac c = b and A = W' in subsetD[of _ "carrier D"], 
                            assumption+)
  apply (frule_tac W = W' and a = b and y = xa and x = x in segment_inc_less,
          assumption+)
done

lemma (in Order) BNTr7_1_1:"f  carrier D  carrier D; a  carrier D; 
       xcarrier D. x  f x; x  W; W  WWa D f a; xa   (WWa D f a);
         xa  x  xa  W" 
apply (cut_tac Union_WWa_sub_carrier[of "f" "a"],
       frule Iod_Order[of " (WWa D f a)"],
       frule Iod_less[THEN sym, of " (WWa D f a)" "xa" "x"], assumption+,
       rule UnionI[of "W" "WWa D f a" "x"], assumption+)
apply (simp del:Union_iff, rule BNTr7_1, assumption+)
done

lemma (in Order) BNTr7_2:" f  carrier D  carrier D; a  carrier D;
    xcarrier D. x  f x; x  (WWa D f a); ExPre (Iod D ((WWa D f a))) x 
   WWWa D f a. (x  W  ExPre (Iod D W) x )"
apply (cut_tac Union_WWa_sub_carrier[of "f" "a"])
apply (rule ballI, rule impI)
apply (simp only:ExPre_def)
 apply (erule exE, (erule conjE)+)
 apply (simp only:Iod_carrier)
 apply (frule_tac X = W and C = "WWa D f a" and A = x in UnionI, assumption+)
 apply (simp del:Union_iff)
 apply (frule_tac x = W in bspec, assumption,
        thin_tac "yWWa D f a.
           yy. xa Iod D ((WWa D f a))y  ¬ y Iod D ((WWa D f a))x")
 apply (frule_tac W = W and xa = xa in BNTr7_1[of "f" "a" "x"], assumption+,
        frule_tac W = W in mem_WWa_sub_carrier)
 apply (simp del:Union_iff add:Iod_less)
 apply (subgoal_tac "yW. xa Iod D Wy  ¬ y Iod D Wx")
 apply (simp only:Iod_carrier)
 apply (subgoal_tac "xa Iod D Wx", blast) 
 apply (simp add:Iod_less)

 apply (rule ballI, rule impI)
 apply (frule_tac x = y in bspec, assumption,
        thin_tac "yW. xa Iod D ((WWa D f a))y  ¬ y Iod D ((WWa D f a))x",
        frule_tac X = W and C = "WWa D f a" and A = y in UnionI, assumption+)
 apply (simp add:Iod_less)
done

lemma (in Order) BNTr7_3:" f  carrier D  carrier D; a  carrier D;
    xcarrier D. x  f x; x  (WWa D f a); ExPre (Iod D ((WWa D f a))) x 
   WWWa D f a. (x  W  Pre (Iod D ((WWa D f a))) x = Pre (Iod D W) x)"
apply (rule ballI)
apply (rule impI)
 apply (rule_tac s = "Pre (Iod D W) x" in 
                   sym[of _ "Pre (Iod D ((WWa D f a))) x"],
        frule_tac W = W in mem_wwa_Worder,
        frule_tac W = W in mem_WWa_sub_carrier,
        frule BNTr7_2[of "f" "a" "x"], assumption+,
        frule_tac x = W in bspec, assumption,
        thin_tac "WWWa D f a. x  W  ExPre (Iod D W) x",
        simp) 
 
 apply (rule_tac D = "Iod D W" and a = x and 
        ?a1.0 = "Pre (Iod D ((WWa D f a))) x" in Worder.UniquePre,
        assumption,
        simp add:Iod_carrier, assumption, simp add:Iod_carrier) 
  apply (frule_tac D = "Iod D W" in Worder.Order,
         frule_tac D = "Iod D W" and a = x in Order.Pre_element,
         simp add:Iod_carrier, assumption,
         (erule conjE)+, simp add:Iod_carrier)  
  apply (cut_tac Union_WWa_sub_carrier[of "f" "a"],
         frule Iod_Order[of "(WWa D f a)"],
         frule_tac X = W and A = x in UnionI[of _ "WWa D f a"], assumption+,
         frule_tac D = "Iod D ((WWa D f a))" and a = x in Order.Pre_element,
         simp del:Union_iff add:Iod_carrier, assumption)
 apply (erule conjE)+
 apply (frule_tac W = W and xa = "Pre (Iod D ((WWa D f a))) x" in 
        BNTr7_1[of "f" "a" "x"], assumption+,
        simp only:Iod_carrier, assumption,
        simp del:Union_iff)
 
apply (rule conjI,
       simp del:Union_iff add:Iod_carrier Iod_less,
       rule ballI,
       frule_tac X = W and A = y in UnionI[of _ "WWa D f a"], assumption+,
       thin_tac "yW. Pre (Iod D W) x Iod D Wy  ¬ y Iod D Wx")
 apply (simp only:Iod_carrier,
        frule_tac x = y in bspec, assumption,
        thin_tac "y(WWa D f a).
              Pre (Iod D ((WWa D f a))) x Iod D ((WWa D f a))y 
              ¬ y Iod D ((WWa D f a))x")
 apply (simp del:Union_iff add:Iod_less)
done

lemma (in Order) BNTr7_4:"f  carrier D  carrier D; a  carrier D;
         xcarrier D. x  f x; x  W;  W  WWa D f a  
         ExPre (Iod D ((WWa D f a))) x = ExPre (Iod D W) x"
apply (rule iffI) 
 apply (frule BNTr7_2[of "f" "a" "x"], assumption+)
 apply (frule_tac X = W and A = x in UnionI[of _ "WWa D f a"], assumption+,
        simp)
 
apply (simp only:ExPre_def, erule exE, (erule conjE)+)
apply (cut_tac Union_WWa_sub_carrier[of "f" "a"])
apply (frule mem_WWa_sub_carrier[of "W"], simp only:Iod_carrier,
       frule Iod_Order[of "W"]) apply (
       frule Iod_Order[of "(WWa D f a)"]) apply (
       simp only:Iod_less)
apply (frule_tac X = W and A = xa in UnionI[of _ "WWa D f a"], assumption+,
       frule_tac X = W and A = x in UnionI[of _ "WWa D f a"], assumption+)
 apply (frule_tac T1 = "(WWa D f a)" and a1 = xa and b1 = x in 
                                Iod_less[THEN sym], assumption+)
 apply (subgoal_tac " ¬ (y(WWa D f a).
                       xa Iod D ((WWa D f a))y  y Iod D ((WWa D f a))x)")
 apply blast

 apply (rule contrapos_pp, (simp del:Union_iff)+)
 apply (erule bexE, rename_tac xa W', erule bexE, erule conjE,
        frule_tac X = W' and A = y in UnionI[of _ "WWa D f a"], assumption+)
 apply (frule_tac xa = y in BNTr7_1[of "f" "a" "x" "W"], assumption+)
 apply (frule_tac x = y in bspec, assumption+,
        thin_tac "yW. xa Iod D Wy  ¬ y Iod D Wx")
 apply (simp add:Iod_less)
done

lemma (in Order) BNTr7_5:" f  carrier D  carrier D; a  carrier D;
           xcarrier D. x  f x; x  W; W  WWa D f a
           (segment (Iod D ((WWa D f a))) x) = segment (Iod D W) x"
apply (cut_tac Union_WWa_sub_carrier[of "f" "a"])
apply (frule_tac W = W in mem_WWa_sub_carrier)
apply (frule Iod_Order[of "(WWa D f a)"],
       frule Iod_Order[of "W"])
apply (rule equalityI)
 apply (rule subsetI,
       frule Order.segment_sub[of "Iod D ((WWa D f a))" "x"],
       frule_tac c = xa in subsetD[of "segment (Iod D ((WWa D f a))) x" 
                            "carrier (Iod D ((WWa D f a)))"], assumption+,
       frule_tac X = W and A = x in UnionI[of _ "WWa D f a"], assumption+)
 apply (frule_tac a1 = xa in Order.segment_inc[THEN sym, 
                             of "Iod D ((WWa D f a))" _ "x"],
        assumption, simp add:Iod_carrier, simp del:Union_iff,
        frule_tac xa = xa in BNTr7_1[of "f" "a" "x"], assumption+,
        simp only:Iod_carrier, assumption, simp only:Iod_carrier,
        simp only:Iod_less,
        frule_tac a1 = xa in Iod_less[THEN sym, of "W" _ "x"], 
                   assumption+, simp del:Union_iff,
        subst Order.segment_inc[THEN sym, of "Iod D W" _ "x"], assumption+,
        simp add:Iod_carrier, simp add:Iod_carrier, assumption) 

 apply (rule subsetI,
        frule_tac a1 = xa in Order.segment_inc[THEN sym, of "Iod D W" _ "x"])
 apply (frule Order.segment_sub[of "Iod D W" "x"],
      rule_tac c = xa in subsetD[of "segment (Iod D W) x" "carrier (Iod D W)"],
       assumption+, simp only:Iod_carrier,
      frule_tac W = W in mem_WWa_sub_carrier, frule Iod_Order[of "W"],
      frule Order.segment_sub[of "Iod D W" "x"], simp only:Iod_carrier,
      frule_tac c = xa in subsetD[of "segment (Iod D W) x" "W"],
             simp add:Iod_less)

  apply (frule_tac X = W and A = xa in UnionI[of _ "WWa D f a"], assumption+,
         frule_tac X = W and A = x in UnionI[of _ "WWa D f a"], assumption+,
         subst Order.segment_inc[THEN sym, of "Iod D ((WWa D f a))" _ "x"],
         assumption+, simp only:Iod_carrier, simp only:Iod_carrier,
         simp only:Iod_less)
done

lemma (in Order) BNTr7_6:"f  carrier D  carrier D; 
      a  carrier D; xcarrier D. x  (f x)   a  (WWa D f a)"
apply (frule BNTr2[of "f" "a"], assumption+,
       frule UnionI[of "{a}" "WWa D f a" "a"]) 
apply (simp, assumption)
done 

lemma (in Order) BNTr7_7:"S_inductive_set D; f  carrier D  carrier D; 
      a  carrier D; xcarrier D. x  (f x); xa. Wa D xa f a  x  xa  
      x  (WWa D f a)"
apply (subst Union_iff[of "x" "WWa D f a"])
apply (subst WWa_def, blast)
done

lemma (in Order) BNTr7_8:"S_inductive_set D; f  carrier D  carrier D; a  carrier D; xcarrier D. x  (f x); xa. Wa D xa f a  x  xa  x  carrier D"
apply (erule exE) apply (rename_tac W, erule conjE)
 apply (rule_tac A = W and B = "carrier D" and c = x in subsetD,
        rule_tac W = W in mem_WWa_sub_carrier[of _ "f" "a"])
 apply (simp add:WWa_def, assumption)
done 


lemma (in Order) BNTr7_9:"f  carrier D  carrier D; a  carrier D; 
           xcarrier D. x  (f x); x  (WWa D f a)   x  carrier D" 
by (cut_tac Union_WWa_sub_carrier[of "f" "a"],
       rule subsetD[of "(WWa D f a)" "carrier D" "x"], assumption+)

lemma (in Order) BNTr7_10:"S_inductive_set D; f  carrier D  carrier D; 
      a  carrier D; xcarrier D. x  (f x); W  WWa D f a; Sup D W  W 
                ¬ ExPre (Iod D (insert (Sup D W) W)) (Sup D W)"
apply (frule mem_WWa_sub_carrier[of "W" "f" "a"])
apply (frule mem_WWa_Chain[of "W" "f" "a"],
       frule S_inductive_sup_mem[of "W"], assumption+,
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+,
       cut_tac insertI1[of "Sup D W" "W"],
       cut_tac subset_insertI[of "W" "Sup D W"],
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+)
apply (rule contrapos_pp, simp+)
apply (simp add:ExPre_def)
apply (erule exE, (erule conjE)+)
apply (frule forball_contra[of "carrier (Iod D (insert (Sup D W) W))" _ _ _
       "(=) (Sup D W)"],
       thin_tac "ycarrier (Iod D (insert (Sup D W) W)).
            x Iod D (insert (Sup D W) W)y 
            ¬ y Iod D (insert (Sup D W) W)Sup D W")
apply (frule well_ord_adjunction[of "W" "Sup D W"], assumption+,
       simp add:S_inductive_sup_bound[of "W"],
       simp add:mem_wwa_Worder[of "W"],
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+,
              frule Worder.Torder[of "Iod D (W  {Sup D W})"], simp,
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+,
              frule Torder_Chain[of "insert (Sup D W) W"], assumption+,
       frule S_inductive_sup_bound[of "insert (Sup D W) W"], assumption+)
       apply (simp only:Iod_carrier)
apply (rule ballI)
apply (rotate_tac -2,
       frule_tac x = y in bspec, assumption+,
       thin_tac "xinsert (Sup D W) W. x  Sup D (insert (Sup D W) W)",
       cut_tac insertI1[of "Sup D W" "W"],
       simp only:Iod_less)
apply (simp add:Sup_adjunct_Sup, erule disjE)
      apply (frule sym, thin_tac "y = Sup D W", simp)
      apply (frule_tac c = y in subsetD[of "W" "carrier D"], assumption+)  
apply (frule_tac a = y and b = "Sup D W" in le_imp_less_or_eq, assumption+,
       simp) apply (
       thin_tac "y  Sup D W",
       thin_tac "x = Sup D W  x  W")
       apply (erule disjE, simp, simp)

apply (thin_tac "ycarrier (Iod D (insert (Sup D W) W)).
            x Iod D (insert (Sup D W) W)y 
            ¬ y Iod D (insert (Sup D W) W)Sup D W")
apply (frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+,
       cut_tac insertI1[of "Sup D W" "W"],
       simp only:Iod_carrier Iod_less) 
apply (frule mem_wwa_Worder[of "W"],
       frule S_inductive_sup_bound[of "W"], assumption+,
       frule well_ord_adjunction[of "W" "Sup D W"], assumption+,
       frule Worder.Torder[of "Iod D (W  {Sup D W})"], simp)
apply (frule forball_contra1,
       thin_tac "yW. x Iod D (insert (Sup D W) W)y  Sup D W = y")
apply (rule ballI)
 apply (rule contrapos_pp, simp+)
 apply (frule_tac b = x in S_inductive_Sup_min_bounds[of "W"], assumption+)
 apply (simp add:upper_bound_def)
 apply (erule disjE, simp add:oless_def)
 apply (simp add:subsetD[of "W" "carrier D"])
 apply (rule ballI)
 apply (thin_tac "xcarrier D. x  f x",
        thin_tac "xW. x  Sup D W")
 apply (frule_tac x = s in bspec, assumption+,
        thin_tac "yW. ¬ x Iod D (insert (Sup D W) W)y")
 apply (frule_tac c = x in subsetD[of "W" "insert (Sup D W) W"], assumption+,
        frule_tac c = s in subsetD[of "W" "insert (Sup D W) W"], assumption+)
 apply (simp add:Iod_not_less_le Iod_le)
 apply (erule disjE, simp add:oless_def,
        frule_tac c = x in subsetD[of "W" "insert (Sup D W) W"], assumption+,
        cut_tac insertI1[of "Sup D W" "W"],
        frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+)
 apply (frule_tac a1 = "Sup D W" and b1 = x in Iod_le[THEN sym, 
                   of "insert (Sup D W) W"], assumption+, simp)
 apply (frule_tac c = x in subsetD[of "W" "insert (Sup D W) W"], assumption+,
        cut_tac insertI1[of "Sup D W" "W"],
        frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+)
 apply (simp only:Iod_not_less_le[THEN sym])
 apply (frule_tac c = x in subsetD[of "W" "insert (Sup D W) W"], assumption+,
        cut_tac insertI1[of "Sup D W" "W"],
        frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+)
 apply (simp add:Iod_less)
done 

lemma (in Order) BNTr7_11:"S_inductive_set D; f  carrier D  carrier D; 
 a  carrier D; b  carrier D; xcarrier D. x  f x; W  WWa D f a; 
 xW. x  b; x  W 
 ExPre (Iod D (insert b W)) x = ExPre (Iod D W) x"
apply (case_tac "b  W",
         simp add:insert_absorb[of "b" "W"])
apply (frule mem_WWa_sub_carrier[of "W"],
       frule subsetD[of "W" "carrier D" "x"], assumption+,
       frule mem_wwa_Worder[of "W"],
       frule mem_WWa_Chain[of "W" "f" "a"],
       frule well_ord_adjunction[of "W" "b"], assumption+,
       frule insert_sub[of "W" "carrier D" "b"], assumption+,
       cut_tac insertI1[of "b" "W"],
       cut_tac subset_insertI[of "W" "b"])
apply (simp del:insert_iff insert_subset add:Un_commute,
       frule Worder.Torder[of "Iod D (insert b W)"])
apply (rule iffI)
 apply (frule subsetD[of "W" "insert b W" "x"], assumption+,
        frule Iod_Order[of "insert b W"],
        unfold ExPre_def)
 apply (erule exE, (erule conjE)+)
 apply (rule contrapos_pp, (simp del:insert_iff insert_subset)+)
 apply (frule_tac a = xa in forall_spec,
        thin_tac "xa. xa Iod D Wx  xa  carrier (Iod D W) 
               (ycarrier (Iod D W). xa Iod D Wy  y Iod D Wx)")
 apply (simp only:Iod_carrier)
 apply (simp del:insert_subset) apply (cut_tac insertI1[of "b" "W"])
 apply (erule disjE) apply (simp del:insert_iff insert_subset)
 apply (thin_tac "xcarrier D. x  f x")
 apply (frule_tac x = x in bspec, assumption,
        thin_tac "xW. x  b")
 apply (frule subsetD[of "W" "insert b W" "x"], assumption+,
        frule Iod_carrier[THEN sym, of "insert b W"], 
        frule eq_set_inc[of "x" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
        frule eq_set_inc[of "b" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
        frule Torder.not_le_less[THEN sym, of "Iod D (insert b W)" "x" "b"], 
                      assumption+,
        thin_tac "insert b W = carrier (Iod D (insert b W))")
  apply (simp del:insert_iff insert_subset add:Iod_le)
  apply (frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+,
         frule subsetD[of "W" "insert b W" "x"], assumption+,
         simp only:Iod_less, simp only:Iod_carrier)
  apply (cut_tac a = xa in insert_iff[of _ "b" "W"],
          simp del:insert_iff insert_subset)
  apply (erule disjE)
  apply (frule Iod_carrier[THEN sym, of "insert b W"])
  apply (frule_tac a = b in eq_set_inc[of _ "insert b W" 
                     "carrier (Iod D (insert b W))"], assumption+,
         frule_tac a = x in eq_set_inc[of _ "insert b W" 
                     "carrier (Iod D (insert b W))"], assumption+,
         thin_tac "insert b W = carrier (Iod D (insert b W))")
  apply (simp del:insert_iff insert_subset add:Torder.not_le_less[THEN sym, 
           of "Iod D (insert b W)" "x" "b"])
  apply (rotate_tac 5,
         frule_tac x = x in bspec, assumption,
         thin_tac "xW. x  b", simp add:Iod_le)
  apply (thin_tac "xa  insert b W", erule conjE,
         simp del:insert_iff insert_subset,
         thin_tac "xa. xa Iod D Wx 
               xa  W  (yW. xa Iod D Wy  y Iod D Wx)")
  apply (erule bexE, erule conjE)
  apply (thin_tac "xcarrier D. x  f x",
         thin_tac "xW. x  b",
         frule_tac x = y in bspec, assumption,
         thin_tac "yW. xa Iod D (insert b W)y  ¬ y Iod D (insert b W)x",
         frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+,
         frule_tac c = y in subsetD[of "W" "insert b W"], assumption+)
  apply (simp del:insert_iff insert_subset add:Iod_less)

apply (erule exE, (erule conjE)+)
 apply (rule contrapos_pp, (simp del:insert_iff insert_subset)+)
 apply (frule_tac a = xa in forall_spec,
        simp only:Iod_carrier,
        frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+,
        frule_tac c = x in subsetD[of "W" "insert b W"], assumption+,
        simp add:Iod_less)
 apply (simp only:Iod_carrier,
        frule_tac c = xa in subsetD[of "W" "insert b W"], assumption,
        simp del:insert_iff insert_subset add:Iod_less)
 apply (erule disjE, erule conjE) apply (
        frule_tac a = xa in forall_spec,
        thin_tac "xa. xa Iod D (insert b W)x  xa  insert b W 
       xa  b  b Iod D (insert b W)x  (yW. xa  y  y Iod D (insert b W)x)")
 apply (thin_tac "xcarrier D. x  f x",
        frule_tac x = x in bspec, assumption,
        thin_tac "xW. x  b",
        frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+, 
        frule_tac c = x in subsetD[of "W" "insert b W"], assumption+,
        simp only:Iod_less)
 apply (thin_tac "xa. xa Iod D (insert b W)x  xa  insert b W 
       xa  b  b Iod D (insert b W)x  (yW. xa  y  y Iod D (insert b W)x)")
 apply (simp del:insert_iff insert_subset)
 apply (thin_tac "xcarrier D. x  f x",
        frule_tac x = x in bspec, assumption,
        thin_tac "xW. x  b",
        frule_tac subsetD[of "W" "insert b W" "x"], assumption+,
        frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+,
        frule Iod_carrier[THEN sym, of "insert b W"], 
        frule eq_set_inc[of "x" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
        frule eq_set_inc[of "b" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
        frule Torder.not_le_less[THEN sym, of "Iod D (insert b W)" "x" "b"], 
                      assumption+,
        thin_tac "insert b W = carrier (Iod D (insert b W))",
        simp add:Iod_le,
        thin_tac "xa. xa Iod D (insert b W)x  xa  insert b W 
      xa  b  b Iod D (insert b W)x  (yW. xa  y  y Iod D (insert b W)x)")
 apply (erule bexE, erule conjE,
        thin_tac "xW. x  b",
        frule_tac x = y in bspec, assumption,
        thin_tac "yW. xa  y  ¬ y  x",
        frule_tac c = y in subsetD[of "W" "insert b W"], assumption+,
        frule_tac c = x in subsetD[of "W" "insert b W"], assumption+,
        simp add:Iod_less)
done

lemma (in Order) BNTr7_12:"S_inductive_set D; f  carrier D  carrier D; 
 a  carrier D; b  carrier D; xcarrier D. x  f x; W  WWa D f a; 
 xW. x  b; x  W; ExPre (Iod D W) x  
        Pre (Iod D (insert b W)) x = Pre (Iod D W) x"
apply (case_tac "b  W", simp only:insert_absorb)
apply (frule mem_WWa_Chain[of "W"], 
       frule mem_wwa_Worder[of "W"],
       frule mem_WWa_sub_carrier[of "W"],
       frule well_ord_adjunction[of "W" "b"], assumption+,
       simp add:Un_commute[of "W" "{b}"],
       frule insert_sub[of "W" "carrier D" "b"], assumption+,
       cut_tac subset_insertI[of "W" "b"],
       frule subsetD[of "W" "insert b W" "x"], assumption+,
       cut_tac insertI1[of "b" "W"])
apply (rule Worder.UniquePre[of "Iod D (insert b W)" "x" 
                    "Pre (Iod D W) x"], assumption+,
       simp add:Iod_carrier,
       subst BNTr7_11[of "f" "a" "b" "W" "x"], assumption+,
       frule Worder.Order[of "Iod D W"]) 
apply (frule Order.Pre_element[of "Iod D W" "x"],
       simp add:Iod_carrier, assumption)
apply (erule conjE)+
apply (rule conjI)
apply (simp add:Iod_carrier) 
apply (rule conjI)
 apply (simp only:Iod_carrier,
        frule subsetD[of "W" "insert b W" "x"], assumption+,
        frule subsetD[of "W" "insert b W" "Pre (Iod D W) x"], 
        assumption+)
 apply (simp only:Iod_less)
apply (rule contrapos_pp, (simp del:insert_iff insert_subset)+)
 apply (erule bexE) 
 apply (simp only:Iod_carrier,
        frule subsetD[of "W" "insert b W" "Pre (Iod D W) x"], 
        assumption+)
 apply (cut_tac a = y in insert_iff[of _ "b" "W"]) 
 apply (frule_tac P = "y  insert b W" and Q = "y = b  y  W" in 
        eq_prop, assumption+,
        thin_tac "(y  insert b W) = (y = b  y  W)",
        thin_tac "y  insert b W")
 apply (erule disjE,
        thin_tac "xcarrier D. x  f x",
        frule_tac x = x in bspec, assumption,
        thin_tac "xW. x  b", erule conjE,
        frule Iod_carrier[THEN sym, of "insert b W"],
        frule eq_set_inc[of "x" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
        frule eq_set_inc[of "b" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
        thin_tac "insert b W = carrier (Iod D (insert b W))",
        simp del:insert_iff insert_subset,
        frule Worder.Torder[of "Iod D (insert b W)"],
         frule Torder.not_le_less[THEN sym, of "Iod D (insert b W)" "x" "b"], 
                      assumption+, simp add:Iod_le)
 apply (rotate_tac -4,
        frule_tac x = y in bspec, assumption,
        thin_tac "yW. Pre (Iod D W) x Iod D Wy  ¬ y Iod D Wx",
        frule_tac c = y in subsetD[of "W" "insert b W"], assumption,
        simp add:Iod_less) 
done
        
lemma (in Order) BNTr7_13:"S_inductive_set D; f  carrier D  carrier D; 
   a  carrier D; b  carrier D; xcarrier D. x  f x; W  WWa D f a; 
   xW. x  b; x  W  
        (segment (Iod D (insert b W)) x) = segment (Iod D W) x"
apply (case_tac "b  W", simp add:insert_absorb)
apply (frule mem_wwa_Worder[of "W"],
       frule mem_WWa_sub_carrier[of "W"],
       frule mem_WWa_Chain[of "W"],
       frule insert_sub[of "W" "carrier D" "b"], assumption+,
       frule well_ord_adjunction[of "W" "b"], assumption+,
       simp del:insert_subset add:Un_commute,
       cut_tac subset_insertI[of "W" "b"],
       cut_tac insertI1[of "b" "W"],
       frule Worder.Torder[of "Iod D (insert b W)"])
apply (rule equalityI)
 apply (rule subsetI)
 apply (simp del:insert_iff insert_subset add:segment_def Iod_carrier)
 apply (frule subsetD[of "W" "insert b W" "x"], assumption+,
        simp del:insert_iff insert_subset)
 apply (erule conjE, simp only:Iod_carrier)
 apply (cut_tac a = xa in insert_iff[of _ "b" "W"],
        frule_tac P = "xa  insert b W" and Q = "xa = b  xa  W" in 
        eq_prop, assumption+) 
apply (thin_tac "(xa  insert b W) = (xa = b  xa  W)",
       erule disjE, simp del:insert_iff insert_subset,
       frule Iod_carrier[THEN sym, of "insert b W"], 
       frule eq_set_inc[of "x" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
       frule eq_set_inc[of "b" "insert b W" "carrier (Iod D (insert b W))"],
                      assumption,
       thin_tac "insert b W = carrier (Iod D (insert b W))",
       frule Torder.not_le_less[THEN sym, of "Iod D (insert b W)" "x" "b"],
       assumption+, simp add:Iod_le)
apply (frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+,
       frule_tac c = x in subsetD[of "W" "insert b W"], assumption+,
       simp add:Iod_less)

apply (rule subsetI)
 apply (simp del:insert_iff insert_subset add:segment_def,
        simp only:Iod_carrier)
 apply (frule_tac subsetD[of "W" "insert b W" "x"], assumption+,
        simp del:insert_iff insert_subset)
 apply (erule conjE,
        frule_tac c = xa in subsetD[of "W" "insert b W"], assumption+,
        simp add:Iod_less)
done


lemma (in Order) BNTr7_14:"S_inductive_set D; f  carrier D  carrier D; 
      a  carrier D; xcarrier D. x  (f x); W  WWa D f a 
            (insert (Sup D W) W)  WWa D f a"
apply (case_tac "Sup D W  W",
       simp add:insert_absorb[of "Sup D W" "W"])
apply (frule mem_WWa_sub_carrier[of "W" "f" "a"],
       frule mem_WWa_Chain[of "W" "f" "a"],
       frule S_inductive_sup_mem[of "W"], assumption+,
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+,
       rule mem_of_WWa [of "insert (Sup D W) W" "a" "f"], assumption+,
       frule S_inductive_sup_bound[of "W"], assumption+)
apply (frule well_ord_adjunction[of "W" "Sup D W"], assumption+,
       simp add:mem_wwa_Worder, simp,
       frule mem_WWa_inc_a[of "W" "f" "a"], simp)

apply (rule ballI)
 apply (simp add:WWa_def Wa_def, (erule conjE)+, erule disjE,
        frule S_inductive_sup_bound[of "W"], assumption+,
        simp, simp)

apply (rule ballI)
 apply (simp only:insert_iff)
 apply (erule disjE)
 apply (frule mem_WWa_inc_a[of "W" "f" "a"])
 apply (frule not_eq_outside [of "Sup D W" "W"])
 apply (rotate_tac -1, 
       frule_tac x = a in bspec, assumption+,
       thin_tac "bW. b  Sup D W")
 apply (frule BNTr7_10[of "f" "a" "W"], assumption+)
 apply (simp del:insert_iff insert_subset add:Adjunct_segment_eq)
 apply (frule S_inductive_sup_bound[of "W"], assumption+)
 apply (subst BNTr7_11[of "f" "a" "Sup D W" "W"], assumption+)
 apply (case_tac "ExPre (Iod D W) x",
        subst BNTr7_12[of "f" "a" "Sup D W" "W"], assumption+)
 apply (simp del:insert_iff insert_subset add:WWa_def) 
 apply (unfold Wa_def, simp)
 apply (simp del:insert_iff insert_subset)
 apply (rule impI) 
 apply (subst BNTr7_13[of "f" "a" "Sup D W" "W"], assumption+)
 apply (simp add:WWa_def Wa_def)
done

lemma (in Order) BNTr7_15:"S_inductive_set D; f  carrier D  carrier D; 
     a  carrier D; xcarrier D. x  (f x); W  WWa D f a;
     f (Sup D W)  Sup D W 
     ExPre (Iod D (insert (f (Sup D W)) (insert (Sup D W) W))) (f (Sup D W))"
apply (simp add:ExPre_def)
apply (rule contrapos_pp, simp+)
apply (frule BNTr7_14[of "f" "a" "W"], assumption+)
apply (frule mem_WWa_sub_carrier[of "insert (Sup D W) W" "f" "a"],
      frule mem_WWa_Chain[of "insert (Sup D W) W" "f" "a"],
      frule mem_wwa_Worder[of "insert (Sup D W) W" "f" "a"],
      frule mem_WWa_Chain[of "W" "f" "a"],
      frule S_inductive_sup_mem[of "W"], assumption+,
      frule funcset_mem[of "f" "carrier D" "carrier D" "Sup D W"], assumption+,
      frule insert_sub[of "insert (Sup D W) W" "carrier D" "f (Sup D W)"], 
         assumption+,
      frule S_inductive_sup_bound[of "W"], assumption+)
apply (frule well_ord_adjunction[of "insert (Sup D W) W" "f (Sup D W)"], 
       assumption+,
       rule ballI,
       simp only:insert_iff, erule disjE, simp del:insert_iff insert_subset)
apply (frule_tac x = "Sup D W" in bspec, assumption,
       thin_tac "xcarrier D. x  f x") apply (
       rotate_tac -3,
       frule_tac x = x in bspec, assumption,
       thin_tac "xW. x  Sup D W") apply (
       frule mem_WWa_sub_carrier[of "W"],
       frule_tac c = x in subsetD[of "W" "carrier D"], assumption+,
       rule_tac a = x in le_trans[of _ "Sup D W" "f (Sup D W)"], assumption+,
       cut_tac insertI1[of "Sup D W" "W"],
       cut_tac insertI1[of "f (Sup D W)" "insert (Sup D W) W"],
       cut_tac subset_insertI[of "insert (Sup D W) W" "f (Sup D W)"],
       frule subsetD[of "insert (Sup D W) W" "insert (f (Sup D W)) 
               (insert (Sup D W) W)" "Sup D W"], assumption+)
apply (frule_tac a = "Sup D W" in forall_spec)
apply (frule_tac x = "Sup D W" in bspec, assumption,
       thin_tac "xcarrier D. x  f x",
       frule not_sym, 
       thin_tac "f (Sup D W)  Sup D W",
       simp del:insert_iff insert_subset 
             add:le_imp_less_or_eq[of "Sup D W" "f (Sup D W)"],
       simp only:Iod_less) 
apply (thin_tac "x. x Iod D (insert (f (Sup D W)) (insert (Sup D W) W))f (Sup D W) 
         x  carrier (Iod D (insert (f (Sup D W)) (insert (Sup D W) W))) 
         (ycarrier (Iod D (insert (f (Sup D W)) (insert (Sup D W) W))).
             x Iod D (insert (f (Sup D W)) (insert (Sup D W) W))y 
             y Iod D (insert (f (Sup D W)) (insert (Sup D W) W))f (Sup D W))",
      simp only:Iod_carrier,
      frule True_then[of "yinsert (f (Sup D W)) (insert (Sup D W) W).
         Sup D W Iod D (insert (f (Sup D W)) (insert (Sup D W) W))y 
         y Iod D (insert (f (Sup D W)) (insert (Sup D W) W))f (Sup D W)"],
      thin_tac "True 
      (yinsert (f (Sup D W)) (insert (Sup D W) W).
         Sup D W Iod D (insert (f (Sup D W)) (insert (Sup D W) W))y 
         y Iod D (insert (f (Sup D W)) (insert (Sup D W) W))f (Sup D W))",
       erule bexE, erule conjE)
apply (cut_tac a = y in insert_iff[of _ "f (Sup D W)" "insert (Sup D W) W"],
       frule_tac P = "y  insert (f (Sup D W)) (insert (Sup D W) W)" and
                 Q = "y = f (Sup D W)  y  insert (Sup D W) W" in eq_prop,
       assumption+,
       thin_tac "y  insert (f (Sup D W)) (insert (Sup D W) W)",
       thin_tac "(y  insert (f (Sup D W)) (insert (Sup D W) W)) =
         (y = f (Sup D W)  y  insert (Sup D W) W)")
apply (erule disjE, simp add:oless_def)
apply (cut_tac a = y in insert_iff[of _ "Sup D W" "W"],
       frule_tac P = "y  insert (Sup D W) W" and
                 Q = "y = (Sup D W)  y  W" in eq_prop, assumption+,
       thin_tac "y  insert (Sup D W) W",
       thin_tac "y  insert (Sup D W) W = (y = (Sup D W)  y  W)",
       erule disjE, simp add:oless_def,
       simp del:insert_iff insert_subset)
apply (frule_tac x = y in bspec, assumption,
       thin_tac "xW. x  Sup D W")
apply (frule_tac x = "Sup D W" in bspec, assumption,
       thin_tac "xcarrier D. x  f x",
       cut_tac subset_insertI[of "W" "Sup D W"],
       frule_tac c = y in subsetD[of "W" "insert (Sup D W) W"], assumption+,
       frule_tac c = y in subsetD[of "insert (Sup D W) W"
                  "insert (f (Sup D W)) (insert (Sup D W) W)"], assumption+,
       frule_tac Worder.Torder[of "Iod D (insert (f (Sup D W)) 
                                         (insert (Sup D W) W))"])
apply (frule_tac a1 = y in Torder.not_le_less[THEN sym, of 
       "Iod D (insert (f (Sup D W)) (insert (Sup D W) W))" _ "Sup D W"],
       simp add:Iod_carrier, simp add:Iod_carrier)
apply (simp add:Iod_le)
done
       
lemma (in Order) BNTr7_16:"S_inductive_set D; f  carrier D  carrier D; 
     a  carrier D; xcarrier D. x  (f x); W  WWa D f a; 
     f (Sup D W)  (Sup D W) 
     Pre (Iod D (insert (f (Sup D W)) (insert (Sup D W) W))) (f (Sup D W)) = 
          (Sup D W)" 
apply (frule BNTr7_14[of "f" "a" "W"], assumption+,
      frule mem_WWa_sub_carrier[of "insert (Sup D W) W" "f" "a"],
      frule mem_WWa_Chain[of "insert (Sup D W) W" "f" "a"],
      frule mem_wwa_Worder[of "insert (Sup D W) W" "f" "a"],
      frule mem_WWa_Chain[of "W" "f" "a"],
      frule S_inductive_sup_mem[of "W"], assumption+,
      frule funcset_mem[of "f" "carrier D" "carrier D" "Sup D W"], assumption+,
      frule insert_sub[of "insert (Sup D W) W" "carrier D" "f (Sup D W)"], 
         assumption+,
      frule S_inductive_sup_bound[of "W"], assumption+,
      frule well_ord_adjunction[of "insert (Sup D W) W" "f (Sup D W)"], 
      assumption+, rule ballI,
      simp only:insert_iff, erule disjE, simp del:insert_iff insert_subset,
      frule_tac x = "Sup D W" in bspec, assumption,
      thin_tac "xcarrier D. x  f x",
      rotate_tac -3,
      frule_tac x = x in bspec, assumption,
      thin_tac "xW. x  Sup D W",
      frule mem_WWa_sub_carrier[of "W"],
      frule_tac c = x in subsetD[of "W" "carrier D"], assumption+,
      rule_tac a = x in le_trans[of _ "Sup D W" "f (Sup D W)"], assumption+,
      cut_tac insertI1[of "Sup D W" "W"],
      cut_tac insertI1[of "f (Sup D W)" "insert (Sup D W) W"],
      cut_tac subset_insertI[of "insert (Sup D W) W" "f (Sup D W)"],
      frule subsetD[of "insert (Sup D W) W" "insert (f (Sup D W)) 
               (insert (Sup D W) W)" "Sup D W"], assumption+)
   apply (simp only:Un_commute[of "insert (Sup D W) W" "{f (Sup D W)}"],
          simp only:insert_is_Un[THEN sym])
apply (rule Worder.UniquePre[of "Iod D (insert (f (Sup D W)) 
       (insert (Sup D W) W))" "f (Sup D W)" "Sup D W"], assumption+,
       simp only:Iod_carrier,
       rule BNTr7_15, assumption+,
       rule conjI, simp only:Iod_carrier, rule conjI, simp only:Iod_less,
       frule_tac x = "Sup D W" in bspec, assumption,
       thin_tac "xcarrier D. x  f x", frule not_sym, 
       thin_tac "f (Sup D W)  Sup D W", simp add:oless_def) 
apply (rule contrapos_pp, (simp del:insert_iff insert_subset)+,
       erule bexE, erule conjE)
       apply (simp only:Iod_carrier) apply (
       cut_tac a = y in insert_iff[of _ "f (Sup D W)" "insert (Sup D W) W"],
       frule_tac P = "y  insert (f (Sup D W)) (insert (Sup D W) W)" and 
        Q = "y = f (Sup D W)  y  insert (Sup D W) W" in eq_prop,
        assumption,
       thin_tac "y  insert (f (Sup D W)) (insert (Sup D W) W)",
       thin_tac "y  insert (f (Sup D W)) (insert (Sup D W) W) =
                (y = f (Sup D W)  y  insert (Sup D W) W)",
       erule disjE, simp add:oless_def) apply (
       cut_tac a = y in insert_iff[of _ "Sup D W" "W"],
       frule_tac P = "y  insert (Sup D W) W" and 
        Q = "y = (Sup D W)  y  W" in eq_prop, assumption,
       thin_tac "y  insert (Sup D W) W",
       thin_tac "y  (insert (Sup D W) W) = (y = (Sup D W)  y  W)",
       erule disjE, simp add:oless_def)
apply (frule_tac x = y in bspec, assumption,
       thin_tac "xW. x  Sup D W",
       cut_tac subset_insertI[of "W" "Sup D W"],
       frule_tac c = y in subsetD[of "W" "insert (Sup D W) W"], assumption,
       frule Worder.Torder[of "Iod D (insert (f (Sup D W)) 
                                     (insert (Sup D W) W))"]) 
apply (frule mem_WWa_sub_carrier[of "W"],
       frule_tac c = y in subsetD[of "W" "carrier D"], assumption+,
       frule_tac c = y in subsetD[of "insert (Sup D W) W" 
             "insert (f (Sup D W)) (insert (Sup D W) W)"], assumption+,
       frule_tac a1 = y in Torder.not_le_less[THEN sym, 
        of "Iod D (insert (f (Sup D W)) (insert (Sup D W) W))" _ "Sup D W"],
       simp add:Iod_carrier, simp add:Iod_carrier)
      apply (simp add:Iod_le)
done

lemma (in Order) BNTr7_17:"S_inductive_set D; f  carrier D  carrier D; 
      a  carrier D; xcarrier D. x  (f x); W  WWa D f a 
          (insert (f (Sup D W)) (insert (Sup D W) W))  WWa D f a"
apply (frule mem_WWa_Chain[of "W"],
       frule S_inductive_sup_mem[of "W"], assumption+)
apply (case_tac "f (Sup D W) = Sup D W",
       simp add:insert_absorb, simp add: BNTr7_14,
       frule not_sym, thin_tac "f (Sup D W)  Sup D W")
apply (frule BNTr7_14[of "f" "a" "W"], assumption+,
      frule mem_WWa_sub_carrier[of "insert (Sup D W) W" "f" "a"],
      frule mem_WWa_Chain[of "insert (Sup D W) W" "f" "a"],
      frule funcset_mem[of "f" "carrier D" "carrier D" "Sup D W"], assumption+,
      frule mem_wwa_Worder[of "insert (Sup D W) W"])
apply (frule insert_sub[of "insert (Sup D W) W" "carrier D" "f (Sup D W)"], 
        assumption+,
       rule mem_of_WWa [of "(insert (f (Sup D W)) (insert (Sup D W) W))" "a"
        "f"], assumption+)
apply (frule well_ord_adjunction[of "insert (Sup D W) W" "f (Sup D W)"],
        assumption+, 
       frule S_inductive_sup_bound[of "W"], assumption+,
             rule ballI, 
             simp only:insert_iff, erule disjE, simp,
       frule_tac x = x in bspec, assumption,
             thin_tac "xW. x  Sup D W",
       frule_tac x = "Sup D W" in bspec, assumption,
             thin_tac "xcarrier D. x  f x",
       frule mem_WWa_sub_carrier[of "W"],
       frule_tac c = x in subsetD[of "W" "carrier D"], assumption+,
       rule_tac a = x in le_trans[of _ "Sup D W" "f (Sup D W)"], 
             assumption+, simp)
apply (frule mem_WWa_inc_a[of "insert (Sup D W) W" "f" "a"],
       simp)
apply (rule ballI) 
 apply (frule BNTr2_1[of "f" "a" "insert (Sup D W) W"], assumption+,
        cut_tac a = x in insert_iff[of _ "f (Sup D W)" "insert (Sup D W) W"],
        frule_tac P = "x  insert (f (Sup D W)) (insert (Sup D W) W)" and 
         Q = "x = (f (Sup D W))  x  (insert (Sup D W) W)" in eq_prop, 
                             assumption+,
        thin_tac "x  insert (f (Sup D W)) (insert (Sup D W) W)",  
        thin_tac "(x  insert (f (Sup D W)) (insert (Sup D W) W)) =
         (x = f (Sup D W)  x  insert (Sup D W) W)",
        erule disjE)
 apply (frule_tac x = "Sup D W" in bspec, assumption,
        thin_tac "xcarrier D. x  f x",
        frule_tac x = "Sup D W" in bspec, simp) 
apply (
        thin_tac "xinsert (Sup D W) W. a  x",
        simp add:le_trans[of "a" "Sup D W" "f (Sup D W)"])
apply (frule_tac x = x in bspec, assumption,
       thin_tac "xinsert (Sup D W) W. a  x",
       simp)
apply (rule ballI)          
apply (cut_tac a = x in insert_iff[of _ "f (Sup D W)" "insert (Sup D W) W"],
        frule_tac P = "x  insert (f (Sup D W)) (insert (Sup D W) W)" and 
         Q = "x = (f (Sup D W))  x  (insert (Sup D W) W)" in eq_prop, 
                             assumption+,
        thin_tac "x  insert (f (Sup D W)) (insert (Sup D W) W)",  
        thin_tac "(x  insert (f (Sup D W)) (insert (Sup D W) W)) =
         (x = f (Sup D W)  x  insert (Sup D W) W)",
        erule disjE)
apply (frule not_sym, thin_tac "Sup D W  f (Sup D W)",
       frule BNTr7_15[of "f" "a" "W"], assumption+,
       simp del:insert_iff insert_subset) 
apply (subst BNTr7_16[of "f" "a" "W"], assumption+, simp,
       frule S_inductive_sup_bound[of "W"], assumption+)
apply (subst BNTr7_11[of "f" "a" "f (Sup D W)" 
                         "insert (Sup D W) W"], assumption+,
       rule ballI,
       thin_tac "x  insert (Sup D W) W", simp only:insert_iff,
       erule disjE,
       frule_tac x = "Sup D W" in bspec, assumption,
       thin_tac "xcarrier D. x  f x",
       simp add:le_antisym,
       frule_tac x = xa in bspec, assumption+,
       thin_tac "xW. x  Sup D W",
       frule_tac x = "Sup D W" in bspec, assumption,
       thin_tac "xcarrier D. x  f x",
       frule mem_WWa_sub_carrier[of "W"],
       frule_tac c = xa in subsetD[of "W" "carrier D"], assumption+,
       rule_tac a = xa in le_trans[of _ "Sup D W" "f (Sup D W)"],
       assumption+)
apply (case_tac "ExPre (Iod D (insert (Sup D W) W)) x",
       simp del:insert_iff insert_subset,
       subst BNTr7_12[of "f" "a" "f (Sup D W)" "insert (Sup D W) W"],
                assumption+,
       rule ballI, thin_tac "x  insert (Sup D W) W",
              simp only:insert_iff, erule disjE,
         frule_tac x = "Sup D W" in bspec, assumption,
         thin_tac "xcarrier D. x  f x",
         simp add:le_antisym,
         frule_tac x = xa in bspec, assumption+,
              thin_tac "xW. x  Sup D W",
         frule_tac x = "Sup D W" in bspec, assumption,
              thin_tac "xcarrier D. x  f x",
         frule mem_WWa_sub_carrier[of "W"],
         frule_tac c = xa in subsetD[of "W" "carrier D"], assumption+,
         rule_tac a = xa in le_trans[of _ "Sup D W" "f (Sup D W)"],
               assumption+)
       apply (frule mem_WWa_then[of "insert (Sup D W) W" "f" "a"],
              (erule conjE)+,
              thin_tac "xinsert (Sup D W) W. a  x",
              frule_tac x = x in bspec, assumption,
              thin_tac "xinsert (Sup D W) W.
            if ExPre (Iod D (insert (Sup D W) W)) x
            then f (Pre (Iod D (insert (Sup D W) W)) x) = x
            else if a  x
                 then Sup D (segment (Iod D (insert (Sup D W) W)) x) = x
                 else a = a", simp)
       apply (simp del:insert_iff insert_subset, rule impI)
  apply (subst BNTr7_13[of "f" "a" "f (Sup D W)" "insert (Sup D W) W"],
               assumption+,
         rule ballI, thin_tac "x  insert (Sup D W) W",
              simp only:insert_iff,
         erule disjE,
         frule_tac x = "Sup D W" in bspec, assumption,
              thin_tac "xcarrier D. x  f x",
         simp add:le_antisym,
         frule_tac x = xa in bspec, assumption+,
              thin_tac "xW. x  Sup D W",
         frule_tac x = "Sup D W" in bspec, assumption,
              thin_tac "xcarrier D. x  f x",
              frule mem_WWa_sub_carrier[of "W"],
              frule_tac c = xa in subsetD[of "W" "carrier D"], assumption+,
              rule_tac a = xa in le_trans[of _ "Sup D W" "f (Sup D W)"],
               assumption+)
       apply (frule mem_WWa_then[of "insert (Sup D W) W" "f" "a"],
              (erule conjE)+,
              thin_tac "xinsert (Sup D W) W. a  x",
             frule_tac x = x in bspec, assumption,
              thin_tac "xinsert (Sup D W) W.
            if ExPre (Iod D (insert (Sup D W) W)) x
            then f (Pre (Iod D (insert (Sup D W) W)) x) = x
            else if a  x
                 then Sup D (segment (Iod D (insert (Sup D W) W)) x) = x
                 else a = a", simp) 
done

lemma (in Order) BNTr8:"f  carrier D  carrier D; a  carrier D; 
          xcarrier D. x  (f x)    (WWa D f a)  (WWa D f a)"
apply (cut_tac Union_WWa_sub_carrier[of "f" "a"])
apply (rule mem_of_WWa[of "(WWa D f a)" "a" "f"], simp)
 apply (simp add:Worder_def Torder_def)
 apply (simp add:Iod_Order[of "(WWa D f a)"])
 apply (rule conjI)
 apply (simp add:Torder_axioms_def)
 apply ((rule allI, rule impI)+, simp add:Iod_carrier,
         (erule bexE)+) 
 apply (rename_tac b c X1 X2)
 apply (frule_tac ?W1.0 = X1 and ?W2.0 = X2 in BNTr7[of "f" "a"],
           assumption+)
 apply (erule disjE)
 apply ((frule_tac c = b and A = X1 and B = X2 in subsetD, assumption+),
        (frule_tac W = X2 in mem_wwa_Worder[of _ "f" "a"]),
        (simp add:Worder_def Torder_def, (erule conjE)+,
         simp add:Torder_axioms_def),

       (frule_tac W = X1 in  mem_WWa_sub_carrier[of _ "f" "a"],
        frule_tac W = X2 in  mem_WWa_sub_carrier[of _ "f" "a"],
        simp add:Iod_carrier),
       (frule_tac a = b in forall_spec, assumption,
        thin_tac "a. a  X2  (b. b  X2 
                                a Iod D X2b  b Iod D X2a)",
        frule_tac a = c in forall_spec, assumption,
        thin_tac "ba. ba  X2  b Iod D X2ba  ba Iod D X2b",
        frule_tac X = X1 and A = b in UnionI[of _ "WWa D f a"], assumption+,
        frule_tac X = X2 and A = c in UnionI[of _ "WWa D f a"], assumption+,
        simp add:Iod_le)) 
 apply (frule_tac c = c and A = X2 and B = X1 in subsetD, assumption+,
        frule_tac W = X1 in mem_wwa_Worder[of _ "f" "a"],
        (simp add:Worder_def Torder_def, (erule conjE)+,
         simp add:Torder_axioms_def),

        (frule_tac W = X2 in  mem_WWa_sub_carrier[of _ "f" "a"],
         frule_tac W = X1 in  mem_WWa_sub_carrier[of _ "f" "a"],
         simp add:Iod_carrier,
         frule_tac a = b in forall_spec, assumption),
        thin_tac "a. a  X1  (b. b  X1 
                                a Iod D X1b  b Iod D X1a)",
        (frule_tac a = c in forall_spec, assumption,
         thin_tac "ba. ba  X1  b Iod D X1ba  ba Iod D X1b",
         frule_tac X = X1 and A = b in UnionI[of _ "WWa D f a"], assumption+,
         frule_tac X = X1 and A = c in UnionI[of _ "WWa D f a"], assumption+),
        simp add:Iod_le)

apply (subst Worder_axioms_def)
 apply (rule allI, rule impI, erule conjE)
 apply (frule_tac A = X in nonempty_ex, erule exE)
 apply (simp only:Iod_carrier,
        frule_tac c = x and A = X and B = "(WWa D f a)" in subsetD,
        assumption, simp, erule bexE)
 apply (rename_tac X x W)
 apply (frule_tac W = W in mem_wwa_Worder[of _ "f" "a"],
        simp add:Worder_def Torder_def, erule conjE,
        simp add:Worder_axioms_def, erule conjE)
 apply (frule_tac a = "X  W" in forall_spec,
        thin_tac "X. X  carrier (Iod D W)  X  {} 
            (x. minimum_elem (Iod D W) X x)",
        frule_tac W = W in mem_WWa_sub_carrier[of _ "f" "a"],
        simp only:Iod_carrier, simp add:Int_lower2, blast,
        thin_tac "X. X  carrier (Iod D W)  X  {} 
            (x. minimum_elem (Iod D W) X x)", erule exE)
 apply (frule_tac W = W in mem_WWa_sub_carrier)
 apply (frule_tac D = "Iod D W" and X = "X  W" and a = xa in 
                      Order.minimum_elem_mem)
 apply (simp add:Iod_carrier)
 apply simp
apply (rule contrapos_pp, (simp del:Union_iff)+, erule conjE)
 apply (simp add:minimum_elem_def)
 apply (frule_tac a = xa in forall_spec, assumption+,
        thin_tac "x. x  X  (xaX. ¬ x Iod D ((WWa D f a))xa)",
        erule bexE)
 apply (frule_tac c = xb and A = X and B = "(WWa D f a)" in subsetD,
                 assumption+) 
apply (cut_tac A = xb and C = "WWa D f a" in Union_iff, simp del:Union_iff,
       erule bexE, rename_tac X x W xa xb W',
       frule_tac ?W1.0 = W and ?W2.0 = W' in BNTr7[of "f" "a"], assumption+)
 apply (case_tac "W'  W",
        frule_tac c = xb and A = W' and B = W in subsetD, assumption+,
        rotate_tac 4,
        frule_tac x = xb in bspec, simp,
        thin_tac "xX  W. xa Iod D Wx")
 apply (frule Iod_Order[of "(WWa D f a)"], 
        frule_tac X = W and A = xa in UnionI[of _ "WWa D f a"], assumption+,
        simp del:Union_iff add:Iod_le)
 apply (simp del:Union_iff)
 apply (frule_tac c = xa and A = W and B = W' in subsetD, assumption+,
        frule_tac X = W' and A = xa in UnionI[of _ "WWa D f a"], assumption+,
        frule_tac X = W' and A = xb in UnionI[of _ "WWa D f a"], assumption+)
 apply (simp only:Iod_le)
 apply (frule_tac W = W' in mem_wwa_Worder,
        frule_tac D = "Iod D W'" in Worder.Torder,
        frule_tac D = "Iod D W'" in Worder.Order)
 apply (frule_tac W = W' in mem_WWa_sub_carrier,
        frule_tac T1 = W' and a1 = xa and b1 = xb in Iod_le[THEN sym],
        assumption+, simp del:Union_iff)
 apply (frule_tac D = "Iod D W'" and a = xa and b = xb in Torder.not_le_less)
        apply (simp add:Iod_carrier) apply (simp add:Iod_carrier)
 apply (simp del:Union_iff add:Iod_less, thin_tac "¬ xa  xb", 
        thin_tac "¬ xa Iod D W'xb")
 apply (frule Iod_Order[of "(WWa D f a)"])
 apply (frule_tac a1 = xb and b1 = xa in Iod_less[THEN sym, of " (WWa D f a)"],
        assumption+, simp del:Union_iff,
        frule_tac x = xa and xa = xb and W = W in BNTr7_1[of "f" "a"], 
                        assumption+,
        frule_tac a1 = xb and b1 = xa and T1 = W in Iod_less[THEN sym],
           assumption+, simp del:Union_iff,
        frule_tac W = W in mem_wwa_Worder,
          frule_tac D = "Iod D W" in Worder.Torder)
   apply (frule_tac D1 = "Iod D W" and a1 = xa and b1 = xb in 
            Torder.not_le_less[THEN sym],
          simp add:Iod_carrier, simp add:Iod_carrier, simp del:Union_iff)
apply (rule BNTr7_6, assumption+)

apply (rule ballI) 
 apply (cut_tac A = x in Union_iff[of _ "WWa D f a"], simp del:Union_iff)
 apply (erule bexE, rename_tac x W)
 apply (simp add:WWa_def Wa_def[of "D" _ "f" "a"])

apply (rule ballI)
apply (case_tac "ExPre (Iod D ((WWa D f a))) x", simp,
       erule bexE, rename_tac x W,
       frule_tac X = W and A = x in UnionI[of _ "WWa D f a"], assumption+,
       frule_tac x = x in BNTr7_2[of "f" "a"], assumption+,
       frule_tac x = W in bspec, assumption,
         thin_tac "WWWa D f a. x  W  ExPre (Iod D W) x",
         simp del:Union_iff)
  apply (frule_tac x = x in BNTr7_3[of "f" "a"], assumption+,
         frule_tac x = W in bspec, assumption,
         thin_tac "WWWa D f a.
              x  W  Pre (Iod D ((WWa D f a))) x = Pre (Iod D W) x",
         simp del:Union_iff)
  apply (simp add:WWa_def Wa_def)

apply (simp del:Union_iff, rule impI) 
 apply (cut_tac A = x in Union_iff[of _ "WWa D f a"], simp del:Union_iff,
        erule bexE, rename_tac x W,
        frule_tac x = x and W = W in  BNTr7_5[of "f" "a" _], assumption+,
        simp)
 apply (frule_tac x = x and W = W in BNTr7_4[of "f" "a"], assumption+,
        simp del:Union_iff,
        thin_tac "(WWa D f a)  carrier D",
        thin_tac "XWWa D f a. x  X",
        thin_tac "segment (Iod D ((WWa D f a))) x = segment (Iod D W) x",
        thin_tac "¬ ExPre (Iod D ((WWa D f a))) x")
 apply (simp add:WWa_def Wa_def)
done

(*
lemma (in Order) BNTr9:"⟦S_inductive_set D; f ∈ carrier D → carrier D; 
           a ∈ carrier D;  ∀x∈carrier D. x ≼ (f x)⟧ ⟹ 
            insert (Sup D (⋃(WWa D f a))) (⋃(WWa D f a)) ∈ WWa D f a"
apply (frule BNTr8[of "f" "a"], assumption+,
       rule BNTr7_14[of "f" "a" "⋃(WWa D f a)"], assumption+)
done

lemma (in Order) S_inductive_postSup_outside:" ⟦S_inductive_set D; 
       Chain D X; b ∈ carrier D; Sup D X ≺ b⟧ ⟹ b ∉ X"
apply (frule S_inductive_sup_mem[of "X"], assumption+)
apply (rule contrapos_pp, simp+)
apply (frule S_inductive_sup_bound[of "X"], assumption,
       frule_tac a = b in bspec, assumption,
       thin_tac "∀x∈X. x ≼ Sup D X",
       frule less_imp_le[of "Sup D X" "b"], assumption+)
apply (frule le_antisym[of "Sup D X" "b"], assumption+, simp add:oless_def)
done

lemma (in Order) S_inductive_adjunct_postSup_mem_WWa:"⟦S_inductive_set D;
      ∀x∈carrier D. x ≼ (f x); W ∈ WWa D f a; b ∈ carrier D; (Sup D W) ≺ b⟧
       ⟹  insert b (insert (Sup D W) W) ∈ WWa D f a"
apply (frule mem_WWa_sub_carrier[of "W"],
       frule mem_WWa_Chain[of "W"],
       frule mem_wwa_Worder[of "W"],
       frule S_inductive_sup_mem[of "W"], assumption+)
apply (rule mem_of_WWa[of "insert b (insert (Sup D W) W)" "a" "f"],
       rule insert_sub[of "insert (Sup D W) W" "carrier D" "b"],
       rule insert_sub[of "W" "carrier D" "Sup D W"], assumption+) 
apply (frule S_inductive_sup_bound[of "W"], assumption+,
       frule insert_sub[of "W" "carrier D" "Sup D W"], assumption+)
apply (frule well_ord_adjunction[of "W" "Sup D W"], assumption+)
apply (frule well_ord_adjunction[of "insert (Sup D W) W" "b"], assumption+)
   apply (rule ballI, simp, erule disjE, simp add:less_imp_le,
          frule_tac a = x in bspec, assumption,
          thin_tac "∀x∈W. x ≼ Sup D W")
   apply (frule_tac c = x in subsetD[of "W" "carrier D"], assumption+,
          frule less_imp_le[of "Sup D W" "b"], assumption+,
          frule_tac a = x in le_trans[of _ "Sup D W" "b"], assumption+,
          simp add:Un_commute[of "W" "{Sup D W}"],
          simp add:Un_commute[of "insert (Sup D W) W" "{b}"])
 apply (cut_tac subset_insertI[of "W" "Sup D W"],
        cut_tac subset_insertI[of "insert (Sup D W) W" "b"],
        frule mem_WWa_inc_a[of "W"], 
        frule subsetD[of "W" "insert (Sup D W) W" "a"], assumption+,
        frule subsetD[of "insert (Sup D W) W" "insert b (insert (Sup D W) W)" 
                       "a"], assumption+)
 apply (rule ballI) apply simp
 apply (erule disjE, simp,
        frule less_imp_le[of "Sup D W" "b"], assumption+,
        frule S_inductive_sup_bound[of "W"], assumption,
        frule mem_WWa_inc_a[of "W"], 
        frule_tac a = a in bspec, assumption,
        frule subsetD[of "W" "carrier D" "a"], assumption+,
        rule le_trans[of "a" "Sup D W" "b"], assumption+)
 apply (erule disjE, simp,
        frule mem_WWa_inc_a[of "W"], 
        frule S_inductive_sup_bound[of "W"], assumption,
        simp, simp  add:WWa_def Wa_def)
 apply (rule ballI)
 apply (simp only:insert_iff)
 apply (erule disjE)*)

lemma (in Order) BNTr10:"S_inductive_set D; f  carrier D  carrier D; 
   a  carrier D;  xcarrier D. x  (f x) 
                   (Sup D ((WWa D f a)))  ((WWa D f a))"
apply (frule_tac f = f and a = a in BNTr8, assumption+,
       frule BNTr7_14[of "f" "a" "(WWa D f a)"], assumption+,
       frule mem_family_sub_Un[of "insert (Sup D ((WWa D f a))) ((WWa D f a))"
          "WWa D f a"],
       cut_tac insertI1[of "Sup D ((WWa D f a))" "(WWa D f a)"])
apply (simp add:subsetD)
done         

lemma (in Order) BNTr11:"S_inductive_set D; f  carrier D  carrier D; 
                 a  carrier D;  xcarrier D. x  (f x)  
                   f (Sup D ((WWa D f a))) = (Sup D ((WWa D f a)))"
apply (frule_tac f = f and a = a in BNTr8, assumption+,
       frule mem_WWa_Chain[of "(WWa D f a)"],
       frule BNTr10[of "f" "a"], assumption+,
       frule S_inductive_sup_mem[of "(WWa D f a)"], assumption)
apply (frule BNTr7_17[of "f" "a" "(WWa D f a)"], assumption+) 
apply (cut_tac insertI1[of "f (Sup D ((WWa D f a)) )" "insert (Sup D ((WWa D f a))) ((WWa D f a))"],
       frule mem_family_sub_Un[of "insert (f (Sup D ((WWa D f a))))
      (insert (Sup D ((WWa D f a))) ((WWa D f a)))" "(WWa D f a)"])
apply (frule subsetD[of "insert (f (Sup D ((WWa D f a)))) 
        (insert (Sup D ((WWa D f a))) ((WWa D f a)))" "(WWa D f a)" "f (Sup D ((WWa D f a)))"],
         assumption+)
apply (frule S_inductive_sup_bound[of "(WWa D f a)"], assumption) 
apply (frule_tac x = "f (Sup D ((WWa D f a)))" in bspec,
       assumption,
       thin_tac "x(WWa D f a). x  Sup D ((WWa D f a))")
apply (frule_tac x = "Sup D ((WWa D f a))" in bspec, assumption,
       thin_tac "xcarrier D. x  f x")
apply (frule funcset_mem[of "f" "carrier D" "carrier D" "Sup D ((WWa D f a))"],
       assumption+,
       rule le_antisym[of "f (Sup D ((WWa D f a)))" "Sup D ((WWa D f a))"], 
        assumption+)
done

lemma (in Order) Bourbaki_Nakayama:"S_inductive_set D; 
      f  carrier D  carrier D; a  carrier D; xcarrier D. x  (f x) 
      x0carrier D. f x0 = x0"
apply (frule BNTr8[of "f" "a"], assumption+,
       frule mem_WWa_Chain[of "(WWa D f a)" "f" "a"],
       frule S_inductive_sup_mem[of "(WWa D f a)"], assumption+,
       frule BNTr11[of "f" "a"], assumption+)
apply blast
done

definition
  maxl_fun :: " _   'a  'a" where
  "maxl_fun D = (λxcarrier D. if y. y(upper_bounds D {x})  y  x then
    SOME z. z  (upper_bounds D {x})  z  x else x)"

lemma (in Order) maxl_funTr:"x  carrier D; 
      y. y  upper_bounds D {x}  y  x  
      (SOME z. z  upper_bounds D {x}  z  x)  carrier D"
apply (rule someI2_ex, assumption+,
       simp add:upper_bounds_def upper_bound_def)
done

lemma (in Order) maxl_fun_func:"maxl_fun D  carrier D  carrier D"
by (simp add:maxl_fun_def maxl_funTr)

lemma (in Order) maxl_fun_gt:"x  carrier D; 
      y carrier D.  x  y  x  y   
          x  (maxl_fun D x)  (maxl_fun D x)  x"
apply (simp add:maxl_fun_def upper_bounds_def upper_bound_def,
       rule conjI, rule impI)
apply (rule someI2_ex, assumption+, simp,
       erule bexE, blast)
done


lemma (in Order) maxl_fun_maxl:"x  carrier D; maxl_fun D x = x 
       maximal x"
apply (rule contrapos_pp, simp+, simp add:maximal_element_def)
apply (frule maxl_fun_gt[of "x"], assumption, erule conjE, simp)
done

lemma (in Order) maxl_fun_asc:"xcarrier D. x  (maxl_fun D x)"
apply (rule ballI)
apply (simp add:maxl_fun_def, rule conjI, rule impI)  
 apply (rule someI2_ex, assumption, simp add:upper_bounds_def upper_bound_def,
        rule impI, rule le_refl, assumption)
done

lemma (in Order) S_inductive_maxl:"S_inductive_set D; carrier D  {}  
          m. maximal m"
apply (frule nonempty_ex [of "carrier D"],
       erule exE, rename_tac a)
 apply (cut_tac maxl_fun_asc, cut_tac maxl_fun_func,
        frule_tac a = a in Bourbaki_Nakayama[of "maxl_fun D" _], assumption+)
 apply (erule bexE,
        frule_tac x = x0 in maxl_fun_maxl, assumption+)
 apply blast
done

lemma (in Order) maximal_mem:"maximal m  m  carrier D"
by (simp add:maximal_element_def)

definition
  Chains :: " _   ('a set) set" where
  "Chains D == {C. Chain D C}"

definition
  family_Torder::" _   ('a set) Order"
    ((fTo _) [999]1000) where
  "fTo D = carrier = Chains D , rel = {Z. Z  (Chains D) × (Chains D)  (fst Z)  (snd Z)}"

lemma (in Order) Chain_mem_fTo:"Chain D C  C  carrier (fTo D)"
by (simp add:family_Torder_def Chains_def)

lemma (in Order) fTOrder:"Order (fTo D)"
apply (subst Order_def)
 apply (simp add:family_Torder_def)
 apply auto
done

lemma (in Order) fTo_Order_sub:"A  carrier (fTo D); B  carrier (fTo D)
          (A (fTo D)B) = (A  B)"
by (subst ole_def, simp add:family_Torder_def)


lemma (in Order) mem_fTo_Chain:"X  carrier (fTo D)  Chain D X"
by (simp add:family_Torder_def Chains_def)

lemma (in Order) mem_fTo_sub_carrier:"X  carrier (fTo D)  X  carrier D"
by (frule mem_fTo_Chain[of "X"], simp add:Chain_sub)

lemma (in Order) Un_fTo_Chain:"Chain (fTo D) CC  Chain D ( CC)" 
apply (cut_tac fTOrder,
       frule Order.Chain_sub[of "fTo D" "CC"], assumption+,
       cut_tac family_subset_Un_sub[of "CC" "carrier D"],
       subst Chain_def, simp, simp add:Torder_def, simp add:Iod_Order,
       simp add:Torder_axioms_def)
apply ((rule allI, rule impI)+, simp add:Iod_carrier)
apply ((erule bexE)+,
        frule_tac A = X in mem_family_sub_Un[of _ "CC"],
        frule_tac A = Xa in mem_family_sub_Un[of _ "CC"],
        frule_tac c = a and A = X in subsetD[of _ "CC"], assumption+,
        frule_tac c = b and A = Xa in subsetD[of _ "CC"], assumption+,
        simp only:Iod_le,
        frule_tac c = X in subsetD[of "CC" "carrier fTo D"], assumption+,
        frule_tac c = Xa in subsetD[of "CC" "carrier fTo D"], assumption+)
 apply (simp add:Chain_def Torder_def Torder_axioms_def,
        thin_tac "XCC. a  X", thin_tac "XCC. b  X",
        (erule conjE)+,
        frule_tac a = X in forall_spec,
        simp only:Order.Iod_carrier[of "fTo D" "CC"],
        thin_tac "a. a  carrier (Iod (fTo D) CC) 
            (b. b  carrier (Iod (fTo D) CC) 
                 a Iod (fTo D) CCb  b Iod (fTo D) CCa)",
        frule_tac a = Xa in forall_spec,
        simp only:Order.Iod_carrier[of "fTo D" "CC"],
        thin_tac "b. b  carrier (Iod (fTo D) CC) 
            X Iod (fTo D) CCb  b Iod (fTo D) CCX")
   apply (simp add:Order.Iod_le) apply (simp add:fTo_Order_sub)
   apply (frule_tac X = X in mem_fTo_Chain,
          frule_tac X = Xa in mem_fTo_Chain,
          frule_tac X = X in Chain_Torder,
          frule_tac X = Xa in Chain_Torder,
          frule_tac X = X in Chain_sub,
          frule_tac X = Xa in Chain_sub) 
  apply (simp add:Torder_def Torder_axioms_def, (erule conjE)+, 
         simp only:Iod_carrier)
  apply (erule disjE,
      frule_tac c = a and A = X and B = Xa in subsetD, assumption+,
      thin_tac "a. a  X  (b. b  X  a Iod D Xb  b Iod D Xa)",
      frule_tac a = a in forall_spec,
      thin_tac "a. a  Xa  (b. b  Xa  a Iod D Xab  b Iod D Xaa)",
      assumption,
      thin_tac "a. a  Xa  (b. b  Xa  a Iod D Xab  b Iod D Xaa)",
      frule_tac a = b in forall_spec, assumption,
      thin_tac "b. b  Xa  a Iod D Xab  b Iod D Xaa",
      simp add:Iod_le)
   apply (
      frule_tac c = b and A = Xa and B = X in subsetD, assumption+,
      thin_tac "a. a  Xa  (b. b  Xa  a Iod D Xab  b Iod D Xaa)",
      frule_tac a = a in forall_spec,
      thin_tac "a. a  X  (b. b  X  a Iod D Xb  b Iod D Xa)",
      assumption,
      thin_tac "a. a  X  (b. b  X  a Iod D Xb  b Iod D Xa)",
      frule_tac a = b in forall_spec, assumption,
      thin_tac "b. b  X  a Iod D Xb  b Iod D Xa",
      simp add:Iod_le) 
 
 apply (rule ballI,
        frule_tac c = A in subsetD[of "CC" "carrier (fTo D)"], assumption+,
        rule mem_fTo_sub_carrier, assumption+)
done  

lemma (in Order) Un_fTo_Chain_mem_fTo:"Chain (fTo D) CC 
                  ( CC)  carrier (fTo D)" 
apply (frule Un_fTo_Chain[of "CC"], thin_tac "Chain (fTo D) CC")
apply (simp add:family_Torder_def Chains_def)
done

lemma (in Order) Un_upper_bound:"Chain (fTo D) C 
                  C  upper_bounds (fTo D) C"
apply (simp add:upper_bounds_def upper_bound_def,
       simp add:Un_fTo_Chain_mem_fTo)
apply (rule ballI,
       simp add:ole_def,
       subst family_Torder_def, simp)

apply (cut_tac fTOrder,
       frule Order.Chain_sub[of "fTo D" "C"], assumption,
       frule_tac c = s in subsetD[of "C" "carrier (fTo D)"], assumption+,
       cut_tac Un_fTo_Chain_mem_fTo[of "C"],
       simp add:mem_fTo_Chain Chains_def,
       rule_tac A = s in mem_family_sub_Un[of _ "C"], assumption)
apply assumption
done

lemma (in Order) fTo_conditional_inc_C:"C  carrier (fTo D)  
        C  carrier (Iod (fTo D) {S  carrier fTo D. C  S})"
apply (cut_tac fTOrder,
       cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"])
apply (simp add:Order.Iod_carrier)
done

lemma (in Order) fTo_conditional_Un_Chain_mem1:" C  carrier (fTo D); 
     Chain (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca; Ca  {} 
      Ca  upper_bounds (Iod (fTo D) {S  carrier fTo D. C  S}) Ca"
 
apply (cut_tac fTOrder,
       cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"])

  apply (simp add:upper_bounds_def upper_bound_def)
  apply (subgoal_tac "Ca carrier (Iod (fTo D) {S  carrier (fTo D). C  S})")
   apply simp
   apply (rule ballI)
   apply (force simp add: Chain_def Order.Iod_carrier Order.Iod_le Union_upper fTo_Order_sub subset_eq)  
  apply (simp add:Order.Iod_carrier[of "fTo D"])
  apply (rule conjI)
   apply (rule Un_fTo_Chain_mem_fTo[of "Ca"])
   apply (force simp add: Chain_def Order.Iod_carrier Order.Iod_sub_sub)
  apply (simp add:Chain_def, erule conjE)
  apply (rule sub_Union[of "Ca" "C"])
  using Order.Iod_carrier by fastforce

lemma (in Order) fTo_conditional_min1:" C  carrier (fTo D); 
     Chain (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca; Ca  {} 
      minimum_elem (Iod (fTo D) {S  carrier fTo D. C  S})
        (upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca) (Ca)"
apply (frule fTo_conditional_Un_Chain_mem1[of "C" "Ca"], assumption+,
       simp add:minimum_elem_def)
apply (rule ballI)
 apply (simp add:upper_bounds_def upper_bound_def, (erule conjE)+,
        cut_tac fTOrder,
        cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"])
 apply (simp only:Order.Iod_carrier,
        simp only:Order.Iod_le[of "fTo D"])
 apply (frule_tac c = "Ca" in subsetD[of "{S  carrier fTo D. C  S}"
         "carrier (fTo D)"], assumption+,
        frule_tac c = x in subsetD[of "{S  carrier fTo D. C  S}"
         "carrier (fTo D)"], assumption+)
  apply (subst Order.fTo_Order_sub, rule Order_axioms, assumption, simp,
         rule_tac C = Ca and B = x in family_subset_Un_sub)
  apply (rule ballI)
  apply (thin_tac "sCa. s Iod (fTo D) {S  carrier (fTo D). C  S}Ca",
         frule_tac x = A in bspec, assumption,
         thin_tac "sCa. s Iod (fTo D) {S  carrier (fTo D). C  S}x")
  apply (frule Order.Iod_Order[of "fTo D" "{S  carrier fTo D. C  S}"],
                      assumption,
         frule Order.Chain_sub[of "Iod (fTo D) {S  carrier (fTo D). C  S}"
           "Ca"], assumption,
         simp only:Order.Iod_carrier[of "fTo D" "{S  carrier fTo D. C  S}"])
  apply (frule_tac c = x in subsetD[of "{x  carrier fTo D. C  x}"
                             "carrier (fTo D)"], simp,
         frule_tac c = A in subsetD[of "Ca" "{x  carrier fTo D. C  x}"],
                              assumption+,
         frule_tac a = A and b = x in Order.Iod_le[of "fTo D" 
                   "{x  carrier fTo D. C  x}"], assumption+)
    apply simp apply (simp add:fTo_Order_sub)
done
 
lemma (in Order) fTo_conditional_Un_Chain_mem2:" C  carrier (fTo D); 
       Chain (Iod (fTo D) {S  carrier fTo D. C  S}) Ca; Ca = {} 
       C  upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca"
apply (cut_tac fTOrder,
       cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"])
apply (simp add:upper_bounds_def upper_bound_def, simp add:Order.Iod_carrier)
done

lemma (in Order) fTo_conditional_min2:" C  carrier (fTo D); 
     Chain (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca; Ca = {} 
      minimum_elem (Iod (fTo D) {S  carrier fTo D. C  S})
        (upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca) C"
apply (simp add:minimum_elem_def upper_bounds_def upper_bound_def)
apply (cut_tac fTOrder,
       cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"],
       simp add:Order.Iod_carrier)
  by (auto simp add: Order.Iod_le fTo_Order_sub)


lemma (in Order) fTo_S_inductive:"S_inductive_set (fTo D)"
apply (simp add:S_inductive_set_def,
       rule allI, rule impI)
apply (rule contrapos_pp, simp+)
 apply (simp add:minimum_elem_def,
        frule_tac CC = C in Un_fTo_Chain_mem_fTo,
        frule_tac x = "C" in bspec, assumption,
         thin_tac "xcarrier (fTo D).
            x  upper_bounds (fTo D) C 
            (xaupper_bounds (fTo D) C. ¬ x (fTo D)xa)")
 apply (frule_tac C = C in Un_upper_bound, simp,
        erule bexE,
        thin_tac "C  upper_bounds (fTo D) C")
 apply (simp add:upper_bounds_def upper_bound_def,
        erule conjE)
 apply (cut_tac C = C and B = x in family_subset_Un_sub)
 apply (rule ballI)
 apply (frule_tac x = A in bspec, assumption,
        thin_tac "sC. s fTo Dx",
        cut_tac fTOrder,
        frule_tac X = C in Order.Chain_sub[of "fTo D"], assumption+,
        frule_tac c = A and A = C in subsetD[of _ "carrier (fTo D)"],
                        assumption+,
        simp add:fTo_Order_sub)
 apply (simp add:fTo_Order_sub)
done

lemma (in Order) conditional_min_upper_bound:" C  carrier (fTo D);
      Chain (Iod (fTo D) {S  carrier fTo D. C  S}) Ca  
      X. minimum_elem (Iod (fTo D) {S  carrier (fTo D). C  S})
         (upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca) X"
apply (case_tac "Ca = {}",
        frule fTo_conditional_min2[of "C"], assumption+, blast,
        frule fTo_conditional_min1[of "C"], assumption+, blast)
done

lemma (in Order) Hausdorff_acTr:"C  carrier (fTo D) 
       S_inductive_set (Iod (fTo D) {S. S  (carrier (fTo D))   C  S})"
apply (simp add:S_inductive_set_def)
 apply (rule allI, rule impI)
 apply (frule_tac Ca = Ca in conditional_min_upper_bound[of "C"],
         assumption+)
 apply (erule exE, cut_tac fTOrder)
 apply (cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"])
 apply (frule Order.Iod_Order[of "fTo D" "{S  carrier fTo D. C  S}"],
          assumption+)
 apply (frule_tac X = "upper_bounds (Iod (fTo D) 
                              {S  carrier (fTo D). C  S}) Ca"
   and a = X in 
   Order.minimum_elem_mem[of "Iod (fTo D) {S  carrier (fTo D). C  S}"])
 apply (simp only:Order.Iod_carrier)
 apply (rule subsetI,
        thin_tac "minimum_elem (Iod (fTo D) {S  carrier (fTo D). C  S})
         (upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca) X")
 apply (simp add:upper_bounds_def upper_bound_def, erule conjE)
 apply (simp add:Order.Iod_carrier) apply assumption 
 apply (subgoal_tac "Xcarrier (Iod (fTo D) {S  carrier (fTo D). C  S}) ")
 apply blast
 apply (frule_tac X = Ca in Order.Chain_sub[of "Iod (fTo D) 
        {S  carrier (fTo D). C  S}"], assumption,
        frule_tac X = Ca in Order.upper_bounds_sub[of 
         "Iod (fTo D) {S  carrier (fTo D). C  S}"], assumption)
 apply (thin_tac "minimum_elem (Iod (fTo D) {S  carrier (fTo D). C  S})
         (upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S}) Ca) X")
 apply (rule_tac A = "upper_bounds (Iod (fTo D) {S  carrier (fTo D). C  S})
        Ca" and B = "carrier (Iod (fTo D) {S  carrier (fTo D). C  S})" and 
        c = X  in subsetD, assumption+)
done

lemma  satisfy_cond_mem_set:" x  A; P x   x  {y  A. P y}"
by blast

lemma (in Order) maximal_conditional_maximal:" C  carrier (fTo D);
       maximalIod (fTo D) {S  carrier (fTo D). C  S}m  maximal(fTo D)m"
apply (unfold maximal_element_def, erule conjE)
apply (cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"],
       cut_tac fTOrder,
       frule Order.Iod_Order[of "fTo D" "{x  carrier fTo D. C  x}"],
       assumption+,
       simp only:Order.Iod_carrier,
       frule subsetD[of "{S  carrier fTo D. C  S}" 
              "carrier (fTo D)" "m"], assumption+, simp)
apply (rule ballI, rule impI) 
 apply (simp only:fTo_Order_sub,
        frule_tac a = b in forall_spec, simp,
        thin_tac "b. b  carrier (fTo D)  C  b 
             m Iod (fTo D) {S  carrier (fTo D). C  S}b  m = b")
  by (simp add: Order.Iod_le fTo_Order_sub)

lemma (in Order) Hausdorff_ac:"C  carrier (fTo D)  
                    Mcarrier (fTo D). C  M  maximal(fTo D)M"
apply (frule_tac Hausdorff_acTr[of "C"],
       cut_tac conditional_subset[of "carrier (fTo D)" "(⊆) C"],
       cut_tac fTOrder,
       frule Order.Iod_Order[of "fTo D" "{x  carrier fTo D. C  x}"],
       assumption+)
apply (frule Order.S_inductive_maxl[of "Iod (fTo D) 
              {S  carrier (fTo D). C  S}"], assumption+,
       frule fTo_conditional_inc_C[of "C"], simp add:nonempty,
       erule exE,
       frule_tac m = m in Order.maximal_mem[of 
             "Iod (fTo D) {x  carrier (fTo D). C  x}"], assumption+,
       simp add:Order.Iod_carrier, erule conjE,
       frule_tac m = m in maximal_conditional_maximal[of "C"], assumption+)
apply blast
done

(** g_Zorn_lemma is the Zorn's lemma in general ordered set **)
lemma (in Order) Zorn_lemmaTr:"Chain D C; M  carrier fTo D; C  M;
           maximalfTo DM; b  carrier D; sM. s  b  
            maximal b  b  upper_bounds D C"
apply (simp add:upper_bounds_def upper_bound_def)
apply (rule conjI)
prefer 2
 apply (rule ballI, simp add:subsetD,
        rule contrapos_pp, simp+, simp add:maximal_element_def,
        erule bexE, erule conjE)
 apply (frule_tac X = M in mem_fTo_Chain,
        frule_tac X = M and b = ba in adjunct_Chain, assumption+,
        rule ballI)
 apply (frule_tac x = x in bspec, assumption+,
        thin_tac "sM. s  b",
        frule_tac X = M in Chain_sub,
        frule_tac c = x in subsetD[of "M" "carrier D"], assumption+,
        rule_tac a = x and b = b and c = ba in le_trans, assumption+)
 apply (cut_tac B = M and a = ba in subset_insertI,
        cut_tac a = ba in insertI1[of _ "M"], 
        cut_tac C = "insert ba M" in Chain_mem_fTo, assumption)
 apply (frule_tac x = "insert ba M" in bspec, assumption,
        thin_tac "bcarrier fTo D. M fTo Db  M = b",
        simp del:insert_iff insert_subset add:fTo_Order_sub)
 apply (frule_tac x = ba in bspec, assumption,
        thin_tac "sM. s  b")
 apply (frule_tac a = b and b = ba in le_antisym, assumption+, simp)
done

lemma (in Order) g_Zorn_lemma1:"inductive_set D; Chain D C  m. maximal m  m  upper_bounds D C"
apply (frule Chain_mem_fTo [of "C"],
       frule Hausdorff_ac[of "C"]) 
 apply (erule bexE, erule conjE)
 apply (frule_tac X = M in mem_fTo_Chain)
 apply (simp add:inductive_set_def)
 apply (frule_tac a = M in forall_spec, assumption,
        thin_tac "C. Chain D C  (b. ub C b)",
        erule exE, simp add:upper_bound_def, erule conjE)
 apply (frule_tac M = M and b = b in Zorn_lemmaTr[of "C"], assumption+)
 apply blast
done

lemma (in Order) g_Zorn_lemma2:"inductive_set D; a  carrier D  
                 mcarrier D. maximal m  a  m" 
apply (frule BNTr1 [of "a"],
       frule singleton_sub[of "a" "carrier D"],
       frule_tac  X = "{a}" in Torder_Chain,
       simp add:Worder.Torder)
apply (frule_tac C = "{a}" in g_Zorn_lemma1, assumption+,
       erule exE, erule conjE,
       simp add:upper_bounds_def upper_bound_def)
apply blast
done

lemma (in Order) g_Zorn_lemma3:"inductive_set D  mcarrier D. maximal m"
apply (cut_tac Iod_empty_Torder,
       cut_tac empty_subsetI[of "carrier D"],
       frule Torder_Chain[of "{}"], assumption+)
apply (frule_tac  C = "{}" in g_Zorn_lemma1, assumption+,
       simp add:upper_bounds_def upper_bound_def,
       blast)
done

chapter "Group Theory. Focused on Jordan Hoelder theorem"
    

section "Definition of a Group"

record 'a Group = "'a carrier" + 
  top      :: "['a, 'a ]  'a" (infixl ı› 70)
  iop      :: "'a    'a" (ρı _› [81] 80)
  one     :: "'a"   (𝟭ı›) 

locale Group =
 fixes G (structure)
 assumes top_closed: "top G  carrier G  carrier G  carrier G"
 and     tassoc : "a  carrier G; b  carrier G; c  carrier G 
         (a  b)  c = a  (b  c)"
 and     iop_closed:"iop G  carrier G  carrier G"
 and     l_i :"a  carrier G   (ρ a)  a = 𝟭"
 and     unit_closed: "𝟭  carrier G"
 and     l_unit:"a  carrier G  𝟭  a = a"


lemma (in Group) mult_closed:"a  carrier G; b  carrier G 
           a  b  carrier G"
apply (cut_tac top_closed)
apply (frule funcset_mem[of "(⋅)" "carrier G" "carrier G  carrier G" "a"],
       assumption+,
       frule funcset_mem[of "(⋅) a" "carrier G" "carrier G" "b"],
       assumption+ )
done
    
lemma (in Group) i_closed:"a  carrier G  (ρ a)  carrier G" 
apply  (cut_tac iop_closed,
       frule funcset_mem[of "iop G" "carrier G" "carrier G" "a"])
apply assumption+
done

lemma (in Group) r_mult_eqn:"a  carrier G; b  carrier G;
       c  carrier G; a = b  a  c = b  c"
by simp

lemma (in Group) l_mult_eqn:"a  carrier G; b  carrier G;
       c  carrier G; a = b  c  a = c  b"
by simp

lemma (in Group) r_i:"a  carrier G 
                    a  (ρ a) = 𝟭 "
apply (frule mult_closed[of "a" "ρ a"],
       simp add:i_closed,
       cut_tac l_unit[of "a"],
       cut_tac unit_closed,
       frule mult_closed[of "𝟭" "a"], assumption+,
       frule i_closed[of "a"],
       frule mult_closed[of "ρ a" "a"], assumption+)

 apply (frule r_mult_eqn[of "(ρ a)  a" "𝟭" "ρ a"], assumption+,
        simp add:l_i,
        simp add:l_unit[of "ρ a"])

(* (i i a) from the left  *) 
 apply (frule i_closed[of "a"],
        frule i_closed[of "ρ a"],
        frule mult_closed[of "ρ a" "a"], assumption+,
        frule mult_closed[of "(ρ a)  a" "ρ a"], assumption+,
        frule l_mult_eqn[of "(ρ a)  a  (ρ a)" "ρ a" "ρ (ρ a)"],
        assumption+) 
 apply (thin_tac "(ρ a)  a  (ρ a) = (ρ a)",
        simp add:l_i[of "ρ a"],
        simp add:tassoc[THEN sym, of "ρ (ρ a)" "(ρ a)  a" "ρ a"],
        simp add:tassoc[THEN sym, of "ρ (ρ a)" "ρ a" "a"])
 apply (simp add:l_i[of "ρ a"])
apply assumption
done

lemma (in Group) r_unit:"a  carrier G  a  𝟭 = a"
apply (cut_tac unit_closed,
       frule i_closed[of "a"],
       frule mult_closed[of "a" "𝟭"], assumption+)
apply (cut_tac l_i[THEN sym, of "a"],
       simp,
       thin_tac "𝟭 = ρ a  a")
   
apply (simp add:tassoc[THEN sym] r_i l_unit)
apply assumption
done

lemma (in Group) l_i_unique:"a  carrier G; b  carrier G; 
       b  a = 𝟭   (ρ a) = b "
apply (cut_tac unit_closed,
       frule i_closed[of "a"],
       frule mult_closed[of "b" "a"], assumption+)
apply (frule r_mult_eqn[of "b  a" "𝟭" "ρ a"], assumption+)
apply (thin_tac "b  a = 𝟭",
       simp add:tassoc[of "b" "a" "ρ a"] r_i)
apply (simp add:l_unit r_unit)
done

lemma (in Group) l_i_i:"a  carrier G  (ρ (ρ a))  (ρ a) = 𝟭"
by (frule i_closed[of "a"],
       cut_tac l_i[of "ρ a"], assumption+) 

lemma (in Group) l_div_eqn:"a  carrier G; x  carrier G; y  carrier G;
        a  x = a  y   x = y"
apply (frule mult_closed[of "a" "x"], assumption+,
       frule mult_closed[of "a" "y"], assumption+,
       frule i_closed[of "a"],
       frule l_mult_eqn[of "a  x" "a  y" "ρ a"], assumption+)
apply (thin_tac "a  x = a  y",
       simp add:tassoc[THEN sym])
apply (simp add:l_i l_unit)
done

lemma (in Group) r_div_eqn:"a  carrier G; x  carrier G; y  carrier G;
   x  a = y  a   x = y "
apply (frule mult_closed[of "x" "a"], assumption+,
       frule mult_closed[of "y" "a"], assumption+,
       frule i_closed[of "a"],
       frule r_mult_eqn[of "x  a" "y  a" "ρ a"], assumption+)
 apply (thin_tac "x  a =  y  a",
        simp add:tassoc, simp add:r_i r_unit)
done

lemma (in Group) l_mult_eqn1:"a  carrier G; x  carrier G;  y  carrier G;
        (ρ a)  x = (ρ a)  y   x = y "
by (frule i_closed[of "a"], rule l_div_eqn[of "ρ a" "x" "y"], assumption+)
                                        
lemma (in Group) tOp_assocTr41:"a  carrier G; b  carrier G; c  carrier G;
       d  carrier G  a  b  c  d = a  b  (c  d)"
by (frule mult_closed[of "a" "b"], assumption+, 
                                   simp add:tassoc[of "a  b" "c" "d"])

lemma (in Group) tOp_assocTr42:"a  carrier G; b  carrier G; c  carrier G;
      d  carrier G  a  b  c  d = a  (b  c) d"
by (simp add:tassoc[of "a" "b" "c"])

lemma (in Group) tOp_assocTr44:"a  carrier G; b  carrier G; c  carrier G;
      d  carrier G   (ρ a)  b  ((ρ c)  d) = 
                                         (ρ  a)  ((b  (ρ c))  d)"  
apply (frule i_closed[of "a"],
       frule i_closed[of "c"])
apply (simp add:tassoc[of "b" "ρ c" "d"],
       frule mult_closed[of "ρ c" "d"], assumption+,
       simp add:tassoc[THEN sym, of "ρ a" "b" "(ρ c)  d"])
done

lemma (in Group) tOp_assocTr45:"a  carrier G; b  carrier G; c  carrier G; 
d  carrier G  a  b  c  d = a  (b  (c  d))"
apply (frule mult_closed[of "c" "d"], assumption+)
 apply (simp add:tassoc[of "a" "b" "c  d", THEN sym])
 apply (simp add:tOp_assocTr41)
done
 
lemma (in Group) one_unique:"a  carrier G; x  carrier G;  x  a = x  
                                a = 𝟭"
apply (frule mult_closed[of "x" "a"], assumption+,
       frule i_closed[of "x"],
       frule l_mult_eqn[of "x  a" "x" "ρ x"], assumption+)
apply (thin_tac "x  a = x",
       simp add:tassoc[THEN sym, of "ρ x" "x" "a"],
       simp add:l_i l_unit)
done

lemma (in Group) i_one:"ρ 𝟭 = 𝟭" 
by  (cut_tac unit_closed, frule l_i[of "𝟭"],
     frule i_closed[of "𝟭"], simp add:r_unit)

lemma (in Group) eqn_inv1:"a  carrier G; x  carrier G; a = (ρ x)   
                       x = (ρ a)"
apply (frule i_closed[of "x"],
       frule l_mult_eqn[of "a" "ρ x" "x"], assumption+,
       thin_tac "a = ρ x", simp add:r_i,
       simp add:l_i_unique[of "a" "x"])
done

lemma (in Group) eqn_inv2:"a  carrier G; x  carrier G;  x  a = x  (ρ x) 
                        x = (ρ a)"
apply (rule eqn_inv1, assumption+)
apply (rule l_div_eqn[of "x" "a" "ρ x"], assumption+,
       simp add:i_closed, assumption)
done

lemma (in Group) r_one_unique:"a  carrier G; x  carrier G; a  x = a  
                                 x = 𝟭"
apply (frule mult_closed[of "a" "x"], assumption+,
       frule i_closed[of "a"],
       frule l_mult_eqn[of "a  x" "a" "ρ a"], assumption+,
       thin_tac "a  x = a",
       simp add:tassoc[THEN sym] l_i l_unit)
done

lemma (in Group) r_i_unique:"a  carrier G; x  carrier G; a  x = 𝟭 
                             x = (ρ a)"
apply (cut_tac unit_closed,
       frule mult_closed[of "a" "x"], assumption+,
       frule i_closed[of "x"],
       frule r_mult_eqn[of "a  x" "𝟭" "ρ x"], assumption+,
       thin_tac "a  x = 𝟭",
       simp add:tassoc[of "a" "x" "ρ x"] r_i r_unit l_unit) 
apply (simp add:eqn_inv1)
done

lemma (in Group) iop_i_i:"a  carrier G   ρ (ρ a) = a"
apply (frule i_closed[of "a"], frule i_closed[of "ρ a"],
       frule l_i[of "ρ a"],
       frule mult_closed[of "ρ (ρ a)" "ρ a"], assumption+)
apply (cut_tac unit_closed,
       frule r_mult_eqn[of "ρ (ρ a)  ρ a" "𝟭" "a"], assumption+,
       thin_tac "ρ (ρ a)  ρ a = 𝟭",
       simp only:tassoc) 
apply (simp add:l_i r_unit l_unit)
done

lemma (in Group) i_ab:"a  carrier G; b  carrier G 
                            ρ (a  b) = (ρ b)  (ρ a)"
apply (frule mult_closed[of "a" "b"], assumption+,
       frule i_closed[of "a  b"],
       frule i_closed[of "a"], frule i_closed[of "b"],
       frule l_div_eqn[of "a  b" "ρ (a  b)" "(ρ b)  (ρ a)"], assumption+,
       simp add:mult_closed, simp add:r_i[of "a  b"],
       simp add:tOp_assocTr41[THEN sym], simp add:tOp_assocTr42,
       simp add:r_i r_unit)
apply assumption
done

lemma (in Group) sol_eq_l:"a  carrier G; b  carrier G; x  carrier G;
                   a  x = b  x = (ρ a)  b"
apply (frule mult_closed[of "a" "x"], assumption+,
       frule i_closed[of "a"],
       frule l_mult_eqn[of "a  x" "b" "ρ a"], assumption+)
apply (thin_tac "a  x = b",
       simp add:tassoc[THEN sym],
       simp add:l_i l_unit)
done

lemma (in Group) sol_eq_r:"a  carrier G; b  carrier G; x  carrier G; 
       x  a = b    x = b  (ρ a)"
apply (frule mult_closed[of "x" "a"], assumption+,
       frule i_closed[of "a"],
       frule r_mult_eqn[of "x  a" "b" "ρ a"], assumption+)
apply (thin_tac "x  a = b",
       simp add:tassoc,
       simp add:r_i r_unit)
done
       
lemma (in Group) r_div_eq:"a  carrier G; b  carrier G; a  (ρ b) = 𝟭 
                            a = b"
apply (frule i_closed[of "b"],
       frule mult_closed[of "a" "ρ b"], assumption+,
       cut_tac unit_closed,
       frule r_mult_eqn[of "a  (ρ b)" "𝟭" "b"], assumption+)
apply (thin_tac "a  ρ b = 𝟭",
       simp add:tassoc l_i r_i, simp add:l_unit r_unit)
done   

lemma (in Group) l_div_eq:"a  carrier G; b  carrier G; (ρ a)  b = 𝟭 
                               a = b"
apply (frule i_closed[of "a"],
       frule mult_closed[of "ρ a" "b"], assumption+,
       cut_tac unit_closed,
       frule l_mult_eqn[of "(ρ a)  b" "𝟭" "a"], assumption+)
apply (thin_tac "ρ a  b = 𝟭",
       simp add:tassoc[THEN sym] r_i l_unit r_unit)
done

lemma (in Group) i_m_closed:"a  carrier G ; b  carrier G 
              (ρ a)  b  carrier G "
by (rule mult_closed,
       simp add:i_closed, assumption)


section "Subgroups"

definition
  sg ::"[_ , 'a set ]  bool"  (‹_ » _ › [60, 61]60) where
  "G » H  H  {}  H  carrier G  (a  H. b  H. a G(ρGb)  H)" 
 
 (** SG is a set satisfying the condition above. In math textbooks this is 
  called a subgroup and it is also taken as a group with induced structure.**)

definition
   Gp :: "_  'a set  _"        ((ı_) 70) where
   "GH  G  carrier := H, top := top G, iop := iop G, one := one G"     

  (** Gp G H is a group with carrier H, where H is sg **)


definition
  rcs :: "[_ , 'a set, 'a]  'a set" (infix ı› 70) where
  "H Ga = {b.  h  H. h Ga = b}"

definition
  lcs :: "[_ , 'a, 'a set]  'a set" (infix ı› 70) where
  "a GH = {b.  h  H. a Gh = b}" 

definition
  nsg :: "_  'a set  bool"    (‹_  _› [60,61]60) where
  "G  H  G » H  (x  carrier G. H Gx = x GH)" 

definition
  set_rcs :: "[_ , 'a set]  'a set set" where
  "set_rcs G H = {C. a  carrier G. C = H Ga}"

definition
  c_iop :: "[_ , 'a set]   'a set  'a set" where
  "c_iop G H = (λXset_rcs G H. {z.  x  X . h  H. h G(ρGx) = z})"      
 
definition
  c_top :: "[_, 'a set]  (['a set, 'a set]  'a set)" where
  "c_top G H = (λXset_rcs G H. λYset_rcs G H. 
    {z. x  X.  y  Y. x Gy = z})" 

lemma (in Group) sg_subset:"G » H  H  carrier G"
by (simp add:sg_def)

lemma (in Group) one_Gp_one:"G » H  𝟭(Gp G H)= 𝟭"
by (simp add:Gp_def)

lemma (in Group) carrier_Gp:"G » H  (carrier (H)) = H"
by (simp add:Gp_def)

lemma (in Group) sg_subset_elem:"G » H; h  H   h  carrier G"
by (frule sg_subset [of "H"], simp only:subsetD)

lemma (in Group) sg_mult_closedr:"G » H; x  carrier G; h  H 
                x  h  carrier G"
apply (frule sg_subset_elem [of "H" "h"], assumption+)
apply (simp add:mult_closed)
done

lemma (in Group) sg_mult_closedl:"G » H; x  carrier G; h  H 
                    h  x  carrier G"
apply (frule sg_subset_elem[of "H" "h"], assumption+)
apply (simp add:mult_closed)
done

lemma (in Group) sg_condTr1:"H  carrier G; H  {};
                  a. b. a  H  b  H   a  (ρ b)  H  𝟭  H"
apply (frule  nonempty_ex [of "H"], erule exE)
apply (frule_tac x = x in spec,
       thin_tac "a b. a  H  b  H  a  ρ b  H",
       frule_tac x = x in spec,
       thin_tac "b. x  H  b  H  x  ρ b  H")
apply (frule_tac c = x in subsetD[of "H" "carrier G"], assumption+,
       simp add:r_i)
done

lemma (in Group) sg_unit_closed:"G » H  𝟭  H"
apply (simp add:sg_def, (erule conjE)+,
       rule sg_condTr1, assumption+, blast)     
done

lemma (in Group) sg_i_closed:"G » H; x  H  (ρ x)  H"
apply (frule sg_unit_closed,
       frule sg_subset_elem[of "H" "x"], assumption,
       simp add:sg_def, (erule conjE)+)
apply (frule_tac x = 𝟭 in bspec, assumption,
       rotate_tac -1,
       frule_tac x = x in bspec, assumption,
       thin_tac "bH. 𝟭  ρ b  H",
       thin_tac "aH. bH. a  ρ b  H")
apply (frule i_closed[of "x"],
       simp add:l_unit)
done

lemma (in Group) sg_mult_closed:"G » H; x  H; y  H 
                                       x  y  H" 
apply (frule sg_i_closed[of "H" "y"], assumption,
       simp add:sg_def, (erule conjE)+)
apply (frule_tac x = x in bspec, assumption,
       rotate_tac -1,
       frule_tac x = "ρ y" in bspec, assumption,
       thin_tac "bH. x  ρ b  H",
       thin_tac "aH. bH. a  ρ b  H")
apply (frule subsetD[of "H" "carrier G"], assumption+,
      simp add:iop_i_i)
done

lemma (in Group) nsg_sg: "G  H  G » H"
by (simp add:nsg_def)

lemma (in Group) nsg_subset:"G  N   N  carrier G"
apply (simp add:nsg_def, (erule conjE)+)
apply (simp add:sg_subset)
done

lemma (in Group) nsg_lr_cst_eq:"G  N; a  carrier G 
                                     a  N = N  a"
by (simp add: nsg_def)

lemma (in Group) sg_i_m_closed:"G » H; a  H ; b  H  (ρ a)  b  H"
apply (rule sg_mult_closed, assumption+,
       simp add:sg_i_closed, assumption)
done

lemma (in Group) sg_m_i_closed:"G » H; a  H ; b  H   a  (ρ b)  H"
apply (simp add:sg_def)
done

definition
  sg_gen :: "[_ , 'a set]  'a set" where
  "sg_gen G A = {H. G » H  A  H}"

lemma (in Group) smallest_sg_gen:"A  carrier G; G » H; A  H 
                                   sg_gen G A  H"
apply (simp add:sg_gen_def)
apply auto
done

lemma (in Group) special_sg_G: "G » (carrier G)"
apply (simp add:sg_def,
       cut_tac unit_closed, simp add:nonempty)
apply ((rule ballI)+, simp add:mult_closed i_closed)
done

lemma (in Group) special_sg_self: "G = (carrier G)"
by (simp add:Gp_def)

lemma (in Group) special_sg_e: "G » {𝟭}"
apply (simp add:sg_def)
apply (simp add:unit_closed i_one l_unit)
done

lemma (in Group) inter_sgs:"G » H; G » K  G » (H  K)"
apply (frule sg_unit_closed[of "H"],
       frule sg_unit_closed[of "K"])
apply (simp add:sg_def)
apply auto
done

lemma (in Group) subg_generated:"A  carrier G   G » (sg_gen G A)"
apply (simp add:sg_def)
apply (rule conjI,
       simp add:sg_gen_def,
       rule ex_nonempty, simp)
 apply (rule contrapos_pp, simp+,
        frule_tac x = 𝟭 in spec,
        thin_tac "x. xa. G » xa   A  xa  x  xa",
        erule exE, (erule conjE)+,
        frule_tac H = x in sg_unit_closed, simp)

apply (rule conjI)
 apply (cut_tac special_sg_G,
        simp add:sg_gen_def,
        rule subsetI,
        blast)

apply ((rule ballI)+,
       simp add:sg_gen_def,
       rule allI, rule impI,
       frule_tac a = x in forall_spec, assumption,
       thin_tac "x. G » x   A  x  a  x",
       frule_tac a = x in forall_spec, assumption,
       thin_tac "x. G » x   A  x  b  x")
 apply (simp add:sg_m_i_closed)
done

definition
  Qg :: "[_ , 'a set]  
         carrier:: 'a set set, top:: ['a set, 'a set]  'a set,
           iop:: 'a set  'a set, one:: 'a set " where
  "Qg G H = carrier = set_rcs G H, top = c_top G H, iop = c_iop G H, one = H "


definition
  Pj :: "[_ , 'a set]   ( 'a => 'a set)" where
  "Pj G H = (λx  carrier G. H Gx)"        

no_notation inverse_divide (infixl '/ 70)

abbreviation
  QGRP :: "([('a, 'more) Group_scheme, 'a set] => ('a set) Group)"
    (infixl '/ 70) where
  "G / H == Qg G H"
  

definition
  gHom ::"[('a, 'more) Group_scheme, ('b, 'more1) Group_scheme]  
           ('a   'b) set" where
  "gHom G F = {f. (f  extensional (carrier G)  f  carrier G  carrier F) 
       (x  carrier G. y  carrier G. f (x Gy) = (f x) F(f y))}"
 
definition
  gkernel ::"[('a, 'more) Group_scheme , ('b, 'more1) Group_scheme, 'a  'b]
             'a set" where
  "gkernel G F f = {x. (x  carrier G)  (f x = 𝟭F)}"


definition
  iim :: "[('a, 'more) Group_scheme, ('b, 'more1) Group_scheme, 'a  'b, 
            'b set]   'a set" where
  "iim G F f K = {x. (x  carrier G)  (f x  K)}"

abbreviation
  GKER :: "[('a, 'more) Group_scheme, ('b, 'more1) Group_scheme, 'a  'b ]  'a set"
    ((3gker⇘_,_ _) [88,88,89]88) where
  "gker⇘G,Ff == gkernel G F f"

definition
  gsurjec :: "[('a, 'more) Group_scheme, ('b, 'more1) Group_scheme, 
             'a  'b]  bool"  ((3gsurj⇘_,_ _) [88,88,89]88) where
  "gsurj⇘F,Gf  f  gHom F G  surj_to f (carrier F) (carrier G)" 


definition
  ginjec :: "[('a, 'more) Group_scheme, ('b, 'more1) Group_scheme, 
             'a  'b]   bool"    ((3ginj⇘_,_ _) [88,88,89]88) where
  "ginj⇘F,Gf  f  gHom F G  inj_on f (carrier F)"

definition
  gbijec :: "[('a, 'm) Group_scheme, ('b, 'm1) Group_scheme, 'a  'b]
              bool"       ((3gbij⇘_,_ _) [88,88,89]88) where
  "gbij⇘F,Gf  gsurj⇘F,Gf  ginj⇘F,Gf"

definition
  Ug :: "_    ('a, 'more) Group_scheme" where
  "Ug G = G{𝟭G}"

definition
  Ugp :: "_  bool" where
  "Ugp G == Group G  carrier G = {𝟭G}"

definition
  isomorphic :: "[('a, 'm) Group_scheme, ('b, 'm1) Group_scheme]
                          bool"   (infix  100) where
  "F  G  (f. gbij⇘F,Gf)"

definition
  constghom :: "[('a, 'm) Group_scheme, ('b, 'm1) Group_scheme] 
                            ('a  'b)"  (('1'⇘_,_) [88,89]88) where
  "1⇘F,G= (λxcarrier F. 𝟭G)" 

definition
  cmpghom :: "[('a, 'm) Group_scheme, 'b  'c, 'a  'b]  'a  'c" where
  "cmpghom F g f = compose (carrier F) g f"  

abbreviation
  GCOMP :: "['b  'c, ('a, 'm) Group_scheme, 'a  'b]  'a  'c"
    ((3_ ∘⇘_ _) [88, 88, 89]88) where
  "g ∘⇘Ff == cmpghom F g f"

lemma Group_Ugp:"Ugp G  Group G"
by (simp add:Ugp_def)

lemma (in Group) r_mult_in_sg:"G » H; a  carrier G; x  carrier G; x  a  H
                               h  H. h  (ρ a) = x"
apply (frule inEx[of "x  a" "H"],
       erule bexE)
apply (rotate_tac -1, frule sym, thin_tac "y = x  a",
       frule_tac h = y in sg_subset_elem[of "H"], assumption+,
       frule_tac b1 = y in sol_eq_r[THEN sym, of "a" _ "x"], assumption+)
apply blast
done  

lemma (in Group) r_unit_sg:"G » H; h  H  h  𝟭 = h"
by (frule sg_subset_elem [of "H" "h"], assumption,
       simp add:r_unit)

lemma (in Group) sg_l_unit:"G » H; h  H  𝟭  h = h"
by (frule sg_subset_elem [of "H" "h"], assumption+, simp add:l_unit)

lemma (in Group) sg_l_i:"G » H; x  H   (ρ x)  x = 𝟭"
by (frule sg_subset_elem[of "H" "x"], assumption+,
       simp add:l_i)

lemma (in Group) sg_tassoc:"G » H; x  H; y  H; z  H 
                  x  y  z = x  (y  z)" 
apply (frule sg_subset_elem[of "H" "x"], assumption+,
       frule sg_subset_elem[of "H" "y"], assumption+,
       frule sg_subset_elem[of "H" "z"], assumption+)
apply (simp add:tassoc)
done

lemma (in Group) sg_condition:"H  carrier G; H  {};
       a. b. a  H  b  H   a  (ρ b)  H  G » H"
by (simp add:sg_def)

definition
  Gimage :: "[('a, 'm) Group_scheme, ('b, 'm1) Group_scheme, 'a   'b] 
                         ('b, 'm1) Group_scheme" where
  "Gimage F G f = Gp G (f `(carrier F))"
  
abbreviation
  GIMAGE :: "[('a, 'm) Group_scheme, ('b, 'm1) Group_scheme,
        'a  'b ]  ('b, 'm1) Group_scheme"    ((3Img⇘_,_ _) [88,88,89]88) where
  "Img⇘F,Gf == Gimage F G f"

lemma (in Group) Group_Gp:"G » H  Group ( H)" 
apply (simp add:Group_def Gp_def)
apply (simp add:sg_tassoc sg_l_i sg_unit_closed sg_l_unit
         sg_mult_closed sg_i_closed)
done
 
lemma (in Group) Gp_carrier:"G » H  carrier (Gp G H) = H" 
by (simp add:Gp_def)

lemma (in Group) sg_sg:"G » K; G » H; H  K  Gp G K » H"
apply (simp add:sg_def [of "Gp G K" "H"])
apply (rule conjI, simp add:sg_def)
 apply (simp add:Gp_def)
 apply ((rule ballI)+, simp add:sg_m_i_closed)
done

lemma (in Group) sg_subset_of_subG:"G » K; Gp G K » H  H  K"
by (simp add:sg_def[of " K"], simp add:Gp_def)

lemma const_ghom:"Group F; Group G  1⇘F,G gHom F G"
apply (simp add:gHom_def constghom_def)
apply (simp add:Pi_def Group.unit_closed)
apply ((rule ballI)+, 
       cut_tac Group.unit_closed[of "G"],
       simp add:Group.mult_closed Group.l_unit)
apply assumption
done

lemma (in Group) const_gbij:"gbij⇘( {𝟭}),( {𝟭})(1⇘({𝟭}),({𝟭}))"
apply (cut_tac special_sg_e,
       frule Group_Gp[of "{𝟭}"],
       frule const_ghom[of " {𝟭}" " {𝟭}"], assumption)
apply (simp add:gbijec_def)
apply (rule conjI, simp add:gsurjec_def,
       simp add:surj_to_def Gp_def constghom_def) 
apply (simp add:ginjec_def inj_on_def Gp_def)
done

lemma (in Group) unit_Groups_isom:" ( {𝟭})  ( {𝟭})" 
apply (unfold isomorphic_def,
       cut_tac const_gbij, blast)
done

lemma Ugp_const_gHom:"Ugp G; Ugp E  (λxcarrier G. 𝟭E)  gHom G E"
apply (simp add:gHom_def)
 apply (rule conjI)
 apply (rule Pi_I)
 apply (simp add:Group.unit_closed[of "E"] Ugp_def) 
 apply (simp add:Ugp_def, (erule conjE)+)
 apply (cut_tac Group.unit_closed[of "G"], cut_tac Group.unit_closed[of "E"])
 apply (simp add:Group.l_unit) apply assumption+
done

lemma Ugp_const_gbij:"Ugp G; Ugp E  gbij⇘G,E(λxcarrier G. 𝟭E)"
apply (simp add:gbijec_def)
apply (simp add:gsurjec_def ginjec_def)
apply (simp add:Ugp_const_gHom)
apply (rule conjI)
apply (simp add:surj_to_def, simp add:Ugp_def)

apply (simp add:inj_on_def)
apply ((rule ballI)+, simp add:Ugp_def)
done
                       

lemma Ugps_isomorphic:"Ugp G; Ugp E  G  E"
apply (simp add:isomorphic_def)
apply (frule_tac Ugp_const_gbij[of "G" "E"], assumption+)
apply blast
done

lemma (in Group) Gp_mult_induced:"G » L; a  L; b  L    
                          a (Gp G L)b = a  b"
by (simp add:Gp_def)

lemma (in Group) sg_i_induced:"G » L; a  L   ρ(Gp G L)a = ρ a"
by (simp add:Gp_def)

lemma (in Group) Gp_mult_induced1:"G » H ; G » K; a  H  K; b  H  K 
           a (H  K)b = a (H)b"
by (simp add:Gp_def)

lemma (in Group) Gp_mult_induced2:"G » H ; G » K; a  H  K; b  H  K 
           a (H  K)b = a (K)b"
by (simp add:Gp_def)

lemma (in Group) sg_i_induced1:"G » H ; G » K; a  H  K 
                                       ρ(H  K)a = ρ(H)a"
by (simp add:Gp_def)

lemma (in Group) sg_i_induced2:"G » H ; G » K; a  H  K 
            ρ(H  K)a = ρKa"
by (simp add:Gp_def)

lemma (in Group) subg_sg_sg:"G » K; (Gp G K) » H   G » H" 
apply (frule sg_subset_of_subG[of "K" "H"], assumption+,
       simp add:sg_def [of _ "H"])
apply (simp add:Gp_def[of _ "K"],
       frule sg_subset[of "K"], simp add:subset_trans[of "H" "K" "carrier G"])
done 

lemma (in Group) Gp_inherited:"G » K; G » L; K  L  
                                Gp (Gp G L) K = Gp G K" 
by (simp add:Gp_def)

section "Cosets"

(* left cosets *)
lemma (in Group) mem_lcs:"G » H; a  carrier G; x  a  H   
                          x  carrier G"
by (simp add: lcs_def, erule bexE,
       frule_tac h = h in sg_mult_closedr[of "H" "a"], assumption+, simp)

lemma (in Group) lcs_subset:"G » H; a  carrier G  a  H  carrier G"
apply (simp add:lcs_def,
       rule subsetI, simp, erule bexE)
apply (frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       frule_tac a = a and b = h in mult_closed, assumption+)
apply simp
done

lemma (in Group) a_in_lcs:"G » H; a  carrier G  a  a  H"
apply (simp add: lcs_def,
       rule bexI [of _ "𝟭"],
       subst r_unit, assumption+, simp)
apply (simp add:sg_unit_closed)
done

lemma (in Group) eq_lcs1:"G » H; a  carrier G; b  carrier G;
         x  a  H; a  H = b  H   x  b  H"
by simp

lemma (in Group) eq_lcs2:"G » H; a  carrier G; b  carrier G;
                            a  H = b  H  a  b  H"
by (frule a_in_lcs[of "H" "a"], assumption+, simp)
 
lemma (in Group) lcs_mem_ldiv:"G » H; a  carrier G; b  carrier G  
                                  (a  b  H) = ((ρ b)  a  H)"
apply (rule iffI)
apply (simp add: lcs_def, erule bexE)
apply (frule_tac x = h in sol_eq_l[of "b" "a"], assumption+,
       simp add:sg_subset_elem[of "H"], assumption+) 
apply (thin_tac "b  h = a", simp)

apply (frule_tac x = "(ρ b)  a" and A = H in inEx,
       erule bexE,
       frule_tac h = y in sg_subset_elem[of "H"], assumption+,
       frule sg_subset_elem[of "H" "(ρ b)  a"], assumption+)
apply (frule_tac a = y in l_mult_eqn[of _ "(ρ b)  a" "b"], assumption+,
       frule i_closed[of "b"],
       thin_tac "y = ρ b  a",
       simp add:tassoc[THEN sym], simp add:r_i l_unit)
apply (rotate_tac -2, frule sym, thin_tac "b  y = a", simp add:lcs_def,
       blast)
done

(*
lemma (in Group) lcsTr4:"⟦G » H; a ∈ carrier G; b ∈ carrier G;
 x ∈ carrier G⟧ ⟹ (i ((i a) ⋅ b)) ⋅ ((i a) ⋅ x) = (i b) ⋅ x"
apply (frule i_closed[of "a"], frule i_closed[of "b"],
       simp add:i_ab[of "i a" "b"])
apply (frule mult_closed[of "i a" "x"], assumption+,
       simp add:iop_i_i,
       simp add:tassoc[of "i b" "a" "(i a) ⋅ x"],
       simp add:tassoc[THEN sym, of "a" "i a" "x"] r_i l_unit)
done *)

lemma (in Group) lcsTr5:"G » H; a  carrier G; b  carrier G;
                 (ρ a)  b  H; x  a  H  ((ρ b)  x)  H"
apply (frule mem_lcs[of "H" "a" "x"], assumption+,
       subst lcs_mem_ldiv[THEN sym, of "H" "x" "b"], assumption+,
       simp add:lcs_def, erule bexE)
apply (frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       frule_tac x = h in sol_eq_l[of "a" "x"], assumption+,
       frule sg_i_m_closed[of "H" "(ρ a)  b" "(ρ a)  x"], assumption+,
       rotate_tac -1, frule sym, thin_tac "h = ρ a  x", simp)
apply (frule i_closed[of "a"],
       simp add:i_ab iop_i_i, frule i_closed[of "b"],
       simp add:tassoc[of "ρ b" "a"],
       simp add:tassoc[THEN sym, of "a" "ρ a" "x"] r_i l_unit)
apply (frule inEx[of "(ρ b)  x"], erule bexE,
       rotate_tac -1, frule sym, thin_tac "y = ρ b  x",
       frule_tac b = y in sol_eq_l[of "ρ b" _ "x"],
       simp add:sg_subset_elem, assumption+,
       simp add:iop_i_i, blast)
done

lemma (in Group) lcsTr6:"G » H; a  carrier G; b  carrier G;
                         (ρ a)  b  H; x  a  H   x  b  H"
by (frule lcsTr5[of "H" "a" "b" "x"], assumption+,
       subst lcs_mem_ldiv, assumption+, rule mem_lcs, assumption+)

lemma (in Group) lcs_Unit1:"G » H  𝟭  H = H"
apply (rule equalityI)
apply (rule subsetI, simp add:lcs_def, erule bexE,
       frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       simp add:l_unit)
apply (rule subsetI,
       simp add:lcs_def,
       frule_tac h = x in sg_subset_elem[of "H"], assumption+,
       frule_tac a = x in l_unit)
apply blast
done

lemma (in Group) lcs_Unit2:"G » H; h  H  h  H = H"
apply (rule equalityI)
apply (rule subsetI, simp add:lcs_def, erule bexE,
       frule_tac x = h and y = ha in sg_mult_closed, assumption+, simp)
apply (rule subsetI,
       simp add:lcs_def,
       rule_tac  x = "(ρ h)  x" in bexI[of _ _ "H"])
apply (frule sg_subset_elem[of "H" "h"], assumption+,
       frule i_closed[of "h"],
       frule_tac h = x in sg_subset_elem[of "H"], assumption+,
       simp add:tassoc[THEN sym, of "h" "ρ h"] r_i l_unit)
apply (simp add:sg_i_m_closed[of "H" "h"])
done

lemma (in Group) lcsTr7:"G » H; a  carrier G; b  carrier G; (ρ a)  b  H
                         a  H   b  H"
apply (rule subsetI)
apply (simp add:lcsTr6 [of "H" "a" "b" _])
done

lemma (in Group) lcsTr8:"G » H; a  carrier G; h  H  a  h  a  H"
apply (simp add:lcs_def)
apply blast
done

lemma (in Group) lcs_tool1:"G » H; a  carrier G; b  carrier G;
      (ρ a)  b  H  (ρ b)  a  H"
by (frule sg_i_closed [of "H" "(ρ a)  b"], assumption+,
       frule i_closed[of "a"], simp add:i_ab iop_i_i)

theorem (in Group) lcs_eq:"G » H; a  carrier G; b  carrier G  
           ((ρ a)  b  H) = (a  H = b  H)" 
apply (rule iffI)
 apply ((rule equalityI),
        (rule lcsTr7 [of "H" "a" "b"], assumption+),
        (frule lcs_tool1 [of "H" "a" "b"], assumption+),
        (rule lcsTr7 [of "H" "b" "a"], assumption+))
apply (subst lcs_mem_ldiv[THEN sym, of "H" "b" "a"], assumption+,
       simp add:a_in_lcs[of "H" "b"])
done

lemma (in Group) rcs_subset:"G » H; a  carrier G  H  a  carrier G"
apply (rule subsetI,
       simp add:rcs_def, erule bexE,
       frule_tac h = h in sg_mult_closedl[of "H" "a"], assumption+)
apply simp
done

lemma (in Group) mem_rcs:"G » H; x  H  a  hH. h  a = x" 
by (simp add:rcs_def)

lemma (in Group) rcs_subset_elem:"G » H; a  carrier G; x  H  a   
                                                        x  carrier G"
apply (simp add:rcs_def, erule bexE)
apply (frule_tac h = h in sg_mult_closedl[of "H" "a"], assumption+,
       simp)
done

lemma (in Group) rcs_in_set_rcs:"G » H; a  carrier G  
          H  a  set_rcs G H"
apply (simp add:set_rcs_def)
apply blast
done

lemma (in Group) rcsTr0:"G » H; a  carrier G; b  carrier G 
                         H  (a  b)  set_rcs G H"
apply (rule rcs_in_set_rcs [of "H" "a  b"], assumption)
apply (simp add:mult_closed)
done

lemma (in Group) a_in_rcs:"G » H; a  carrier G  a  H  a"
apply (simp add: rcs_def)
apply (frule l_unit[of "a"],
       frule sg_unit_closed[of "H"], blast)
done

lemma (in Group) rcs_nonempty:"G » H; X  set_rcs G H  X  {}"
apply (simp add:set_rcs_def, erule bexE)
apply (frule_tac a = a in a_in_rcs[of "H"], assumption+, simp)
apply (simp add:nonempty)
done

lemma (in Group) rcs_tool0:"G » H; a  carrier G; b  carrier G;
      a  (ρ b)  H  b  (ρ a)  H"
by (frule sg_i_closed [of "H" "a  ( ρ b)"], assumption+,
       frule i_closed[of "b"], simp add:i_ab iop_i_i)

lemma (in Group) rcsTr1:"G » H; a  carrier G; b  carrier G;
         x  H  a; H  a = H  b  x  H  b"
by simp

lemma (in Group) rcs_eqTr:"G » H; a  carrier G; b  carrier G;
                             H  a = H  b  a  H  b"
apply (rule rcsTr1, assumption+)
apply (rule a_in_rcs, assumption+)
done 

lemma (in Group) rcs_eqTr1:"G » H; a  carrier G; b  carrier G  
           (a  H  b) =  (a  (ρ b)  H)"
apply (rule iffI)
apply (simp add:rcs_def, erule bexE,
       frule_tac h = h in sg_subset_elem[of "H"], assumption+)
apply (frule_tac x = h in sol_eq_r[of "b" "a" _], assumption+, simp)
apply (frule inEx[of "a  (ρ b)" "H"], erule bexE)
apply (frule_tac h = y in sg_subset_elem[of "H"], assumption+,
       frule i_closed[of "b"])
apply (rotate_tac -3, frule sym, thin_tac "y = a  ρ b",
       frule_tac b = y in sol_eq_r[of "ρ b" _ "a"], assumption+,
       simp add:iop_i_i)
apply (simp add:rcs_def, blast)
done   
       
lemma (in Group) rcsTr2:"G » H; a  carrier G; b  H  (ρ a)  
                          b  a  H" 
apply (frule i_closed[of "a"],
       frule_tac rcs_subset_elem[of "H" "ρ a" "b"], assumption+,
       frule rcs_eqTr1[of "H" "b" "ρ a"], assumption+)
apply (simp add:iop_i_i)
done

lemma (in Group) rcsTr5:"G » H; a  carrier G; b  carrier G;
       b  (ρ a)  H; x  H  a  x  (ρ b)  H"
apply (frule rcs_subset_elem[of "H" "a" "x"], assumption+,
       simp add:rcs_def, erule bexE)
apply (frule_tac h = h in sg_subset_elem[of "H"], assumption,
       frule_tac a = h and b = a in mult_closed, assumption+,
       frule i_closed[of "b"])
apply (frule_tac a = "h  a" in r_mult_eqn[of _ "x" "ρ b"], assumption+,
       thin_tac "h  a = x",
       simp add:tassoc[of _ "a" "ρ b"],
       frule_tac x = h in sg_mult_closed[of "H" _ "a  (ρ b)"], assumption+,
       rule rcs_tool0[of "H" "b" "a"], assumption+)
apply simp
done

lemma (in Group) rcsTr6:"G » H; a  carrier G; b  carrier G;
                  b  (ρ a)  H ; x  H  a  x  H  b"
apply (frule  rcsTr5 [of "H" "a" "b" "x"], assumption+)
apply (subst rcs_eqTr1[of "H" "x" "b"], assumption+)
apply (rule rcs_subset_elem[of "H" "a" "x"], assumption+)
done

lemma (in Group) rcs_Unit1:"G » H   H  𝟭 = H"
apply (rule equalityI)
apply (rule subsetI,
       simp add:rcs_def, erule bexE,
       frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       simp add:r_unit)
apply (rule subsetI)
apply (simp add:rcs_def,
       frule_tac h = x in sg_subset_elem[of "H"], assumption+,
       frule_tac a = x in r_unit, blast)
done

lemma (in Group) unit_rcs_in_set_rcs:"G » H  H  set_rcs G H"
apply (cut_tac unit_closed)
apply (frule rcs_in_set_rcs[of "H" "𝟭"], assumption+)
apply (simp add:rcs_Unit1)
done

lemma (in Group) rcs_Unit2:"G » H; h  H  H  h = H"
apply (rule equalityI)
 apply (rule subsetI,
        simp add:rcs_def, erule bexE,
        frule_tac x = ha and y = h in sg_mult_closed[of "H"], assumption+,
        simp)

apply (rule subsetI,
       simp add:rcs_def)
apply (frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       frule_tac h = x in sg_subset_elem[of "H"], assumption+,
       frule i_closed[of "h"],
       frule_tac a = x in tassoc[of _ "ρ h" "h"], assumption+,
       simp add:l_i r_unit)
apply (frule_tac a = x in sg_m_i_closed[of "H" _ "h"], assumption+,
       blast)
done
     
lemma (in Group) rcsTr7:"G » H; a  carrier G; b  carrier G; b  (ρ a)  H
                          H  a    H  b"
apply (rule subsetI)
apply (rule rcsTr6[of "H" "a" "b"], assumption+)
done 

lemma (in Group) rcs_tool1:"G » H; a  carrier G; b  carrier G; 
      b  (ρ a)  H   a  (ρ b)  H "
apply (frule sg_i_closed[of "H" "b  (ρ a)"], assumption+)
 apply (frule i_closed[of "a"], simp add:i_ab iop_i_i)
done

lemma (in Group) rcs_tool2:"G » H; a  carrier G;  x  H  a 
                                h  H. h  a = x"
apply (simp add:rcs_def)
done

theorem (in Group) rcs_eq:"G » H; a  carrier G; b  carrier G 
                            (b  (ρ a)  H) = (H  a = H  b)"
apply (rule iffI)
apply (rule equalityI)
apply (frule rcsTr7[of "H" "a" "b"], assumption+)
apply (frule rcs_tool1[of "H" "a" "b"], assumption+)
apply (rule rcsTr7[of "H" "b" "a"], assumption+)
apply (frule a_in_rcs[of "H" "a"], assumption, simp)
apply (simp add:rcs_eqTr1[of "H" "a" "b"])
apply (rule rcs_tool1, assumption+)
done

lemma (in Group) rcs_eq1:"G » H; a  carrier G; x  H  a 
                                           H  a = H  x"
apply (frule rcs_subset_elem[of "H" "a" "x"], assumption+)
apply (subst rcs_eq[THEN sym, of "H" "a" "x"], assumption+)
apply (subst rcs_eqTr1[THEN sym, of "H" "x" "a"], assumption+)
done

lemma (in Group) rcs_eq2:"G » H; a  carrier G;  b  carrier G; 
                           (H  a)  (H  b)  {}  (H  a) = (H  b)"
apply (frule nonempty_int [of "H  a" "H  b"], erule exE)
apply (simp, erule conjE)
apply (frule_tac x = x in rcs_eq1[of "H" "a"], assumption+,
       frule_tac x = x in rcs_eq1[of "H" "b"], assumption+)
apply simp
done

lemma (in Group) rcs_meet:"G » H; X  set_rcs G H; Y  set_rcs G H;
                               X  Y  {}  X = Y"
apply (simp add:set_rcs_def, (erule bexE)+, simp)
apply (rule_tac a = a and b = aa in rcs_eq2[of "H"], assumption+)
done
      
lemma (in Group) rcsTr8:"G » H; a  carrier G; h  H; x  H  a 
                      h  x  H  a"
apply (frule rcs_subset_elem[of "H" "a" "x"], assumption+,
       frule sg_subset_elem[of "H" "h"], assumption+)
apply (simp add:rcs_def, erule bexE,
       frule_tac h = ha in sg_subset_elem[of "H"], assumption+,
       frule_tac a = ha and b = a in mult_closed, assumption,
       frule_tac a = "ha  a" and b = x and c = h in l_mult_eqn, assumption+,
       thin_tac "ha  a = x", simp add:tassoc[THEN sym, of "h" _ "a"])
apply (frule_tac x = h and y = ha in sg_mult_closed[of "H"], assumption+,
       blast)
done

lemma (in Group) rcsTr9:"G » H; a  carrier G; h  H; (ρ x)  H  a 
                          h  (ρ x)  H  a"
by (insert rcsTr8 [of "H" "a" "h" "ρ x"], simp)

lemma (in Group) rcsTr10:"G » H; a  carrier G; x  H  a; y  H  a 
                          x  (ρ y)  H" 
apply (simp add:rcs_def)
apply (erule bexE)+
apply (rotate_tac -1, frule sym, thin_tac "ha  a = y",
       frule sym, thin_tac "h  a = x", simp,
       thin_tac "y = ha  a", thin_tac "x = h  a")
apply (frule_tac h = ha in sg_subset_elem[of "H"], assumption+,
       frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       simp add:i_ab)
apply (frule_tac a = a in i_closed, frule_tac a = ha in i_closed,
       simp add:tOp_assocTr41[THEN sym], simp add:tOp_assocTr42,
       simp add:r_i r_unit)
apply (simp add:sg_m_i_closed[of "H"])
done

lemma (in Group) PrSubg4_2:"G » H; a  carrier G; x  H  (ρ a)  
       x  {z. v(H  a). hH. h  (ρ v) = z}"
apply (simp add:rcs_def[of _ "H" "ρ a"], erule bexE,
       frule_tac h = h in sg_subset_elem[of "H"], assumption+,
       frule i_closed[of "a"])
apply (frule a_in_rcs[of "H" "a"], assumption, blast)
done

lemma (in Group) rcs_fixed:"G » H; a  carrier G; H  a = H   a  H"
by (frule a_in_rcs[of "H" "a"], assumption+, simp)

lemma (in Group) rcs_fixed1:"G » H; a  carrier G; h  H 
                                               H  a = (H  (h  a))"
apply (rule rcs_eq1[of "H" "a" "h  a"], assumption+)
apply (simp add:rcs_def, blast)
done  

lemma (in Group) rcs_fixed2:"G » H  hH. H  h = H"
apply (rule ballI)
apply (simp add:rcs_Unit2)
done

lemma (in Group) Gp_rcs:"G » H; G » K; H  K; x  K 
                                   H (Gp G K)x = (H  x)"
by (simp add:rcs_def, simp add:Gp_def)

lemma (in Group) subg_lcs:"G » H; G » K; H  K; x  K 
                                   x (Gp G K)H = x  H"
by (simp add:lcs_def, simp add:Gp_def)

section "Normal subgroups and Quotient groups"

lemma (in Group) nsg1:"G » H; b  carrier G; h  H;
       a carrier G. hH. (a  h) (ρ a)  H  b  h  (ρ b)  H"
by blast

lemma (in Group) nsg2:"G » H; b  carrier G; h  H;  
       acarrier G. hH. (a  h)  (ρ a)  H   (ρ b)  h  b  H"
apply (frule i_closed[of "b"], 
       frule_tac x = "ρ b" in bspec, assumption,
       thin_tac "acarrier G. hH. a  h  ρ a  H",
       frule_tac x = h in bspec, assumption,
       thin_tac "hH. ρ b  h  ρ (ρ b)  H")
apply (simp add:iop_i_i)
done

lemma (in Group) nsg_subset_elem:"G  H; h  H  h  carrier G"
by (insert nsg_sg[of "H"], simp add:sg_subset_elem)

lemma (in Group) nsg_l_rcs_eq:"G  N; a  carrier G  a  N = N  a"
by (simp add: nsg_def)

lemma (in Group) sg_nsg1:"G » H; a carrier G. hH. (a  h) (ρ a)  H;
                 b  carrier G   H  b =  b  H"
apply (rule equalityI)
 (* H ∙ b ⊆ b ♢ H  *)
  apply (rule subsetI, simp add:rcs_def, erule bexE, frule i_closed[of "b"])
  apply (frule_tac x = "ρ b" in bspec, assumption,
         thin_tac "acarrier G. hH. a  h  ρ a  H",
         frule_tac x = h in bspec, assumption,
         thin_tac "hH. ρ b  h  ρ (ρ b)  H",
         simp add:iop_i_i)
  apply (frule_tac h = h in sg_mult_closedl[of "H" "b"], assumption+, simp,
         frule_tac h = h in sg_subset_elem[of "H"], assumption+,
         simp only:tassoc[of "ρ b" _ "b"], thin_tac "h  b = x")
  apply (subst lcs_mem_ldiv[of "H" _ "b"], assumption+)

  apply (rule subsetI, simp add:lcs_def, erule bexE)
  apply (frule_tac x = b in bspec, assumption,
         thin_tac "acarrier G. hH. a  h  ρ a  H",
         frule_tac x = h in bspec, assumption,
         thin_tac "hH.  b  h  (ρ b)  H",
         simp add:iop_i_i)
  apply (frule_tac h = h in sg_mult_closedr[of "H" "b"], assumption+, simp)
  apply (subst rcs_eqTr1[of "H" _ "b"], assumption+)
done 

lemma (in Group) cond_nsg:"G » H; acarrier G. hH. a  h  (ρ a)  H 
                             G  H" 
apply (subst nsg_def, simp)
apply (rule ballI, rule sg_nsg1, assumption+)
done

lemma (in Group) special_nsg_e:"G » H  Gp G H  {𝟭}"
apply (simp add:nsg_def,
       frule Group_Gp[of "H"])
apply (rule conjI)
apply (frule Group.special_sg_e[of "H"],
       simp add:one_Gp_one[THEN sym])

apply (rule ballI,
       simp add:lcs_def rcs_def, simp add:Gp_def,
       frule_tac h = x in sg_subset_elem[of "H"], assumption+,
       simp add:l_unit r_unit)
done

lemma (in Group) special_nsg_G:"G  (carrier G)" 
apply (simp add:nsg_def,
       simp add:special_sg_G)
apply (rule ballI, rule equalityI)
apply (rule subsetI,
       simp add:rcs_def lcs_def, erule bexE)
apply (frule_tac a = h and b = x in mult_closed, assumption+,
       frule_tac a = x in i_closed,
       frule_tac a1 = x and b1 = "ρ x" and c1 = "h  x" in tassoc[THEN sym],
                 assumption+, simp add:r_i l_unit,
       frule_tac a = "ρ x" and b = xa in mult_closed, assumption+, blast)

apply (rule subsetI, simp add:rcs_def lcs_def, erule bexE,
       frule_tac a = x and b = h in mult_closed, assumption+,
       frule_tac a = x in i_closed,
       frule_tac a = "x  h"  and b = "ρ x" and c = x in tassoc,
                 assumption+, simp add:l_i r_unit,
       frule_tac a = xa and b = "ρ x" in mult_closed, assumption+,
       blast)
done

lemma (in Group) special_nsg_G1:"G » H  Gp G H  H" 
apply (frule Group_Gp[of "H"], frule Group.special_nsg_G[of "H"])
apply (simp add:Gp_carrier)
done

lemma (in Group) nsgTr0:"G  N; a  carrier G; b  carrier G; b  N  a 
                          (a  (ρ b)  N)  ((ρ a)  b  N)"
apply (frule nsg_sg[of "N"],
       frule rcs_eqTr1[of "N" "b" "a"], assumption+, simp,
       frule i_closed[of "a"], 
       frule sg_i_closed[of "N" "b  ρ a"], assumption, simp add:i_ab iop_i_i)
apply (simp add:nsg_l_rcs_eq[THEN sym, of "N" "a"],
       subst lcs_mem_ldiv[THEN sym, of "N" "b" "a"], assumption+)
done

lemma (in Group) nsgTr1:"G  N; a  carrier G; b  carrier G; b  (ρ a)  N
                          (ρ b)  a  N"
apply (frule nsg_sg[of "N"],
       simp add:rcs_eqTr1[THEN sym, of "N" "b" "a"],
       simp add:nsg_l_rcs_eq[THEN sym])
apply (simp add:lcs_mem_ldiv[of "N" "b" "a"],
       rule lcs_tool1, assumption+)
done      

lemma (in Group) nsgTr2:"a  carrier G; b  carrier G; a1  carrier G; 
       b1  carrier G   (a  b)  (ρ (a1  b1)) = 
                          a  (((b  (ρ b1))  ((ρ a1)  a))  (ρ a))"
apply (frule i_closed[of "a1"], frule i_closed[of "b1"],
       frule i_closed[of "a"],
       frule mult_closed[of "b" "ρ b1"], assumption+,
       frule mult_closed[of "ρ a1" "a"], assumption+,
       subst tassoc[of "b  (ρ b1)" "(ρ a1)  a" "ρ a"], assumption+,
       simp add:tassoc[of "ρ a1" "a" "ρ a"] r_i r_unit) 
apply (simp add:i_ab,
       subst tassoc[of "a" "b" "(ρ b1)  (ρ a1)"], assumption+,
       rule mult_closed, assumption+,
       simp add:tassoc[THEN sym, of "b" "ρ b1" "ρ a1"])
done

lemma (in Group) nsgPr1:"G  N; a  carrier G; h  N 
                                                 a  (h  (ρ a))  N"
apply (frule nsg_sg[of "N"], 
       frule sg_subset_elem[of "N" "h"], assumption+,
       frule i_closed[of "a"],
       frule rcs_fixed1[THEN sym, of "N" "ρ a" "h"], assumption+, 
       frule mult_closed[of "h" "ρ a"], assumption+)
apply (frule a_in_rcs[of "N" "h  (ρ a)"], assumption+, simp,
       thin_tac "N  (h  ρ a) = N  ρ a")
apply (simp add:nsg_l_rcs_eq[THEN sym, of "N" "ρ a"],
       simp add:lcs_mem_ldiv[of "N" "h  (ρ a)" "ρ a"] iop_i_i)
done       
    
lemma (in Group) nsgPr1_1:"G  N; a  carrier G ; h  N  
                              (a  h)  (ρ a)  N"
apply (frule nsgPr1[of "N" "a" "h"], assumption+)
apply (frule nsg_sg[of "N"],
       frule sg_subset_elem[of "N" "h"], assumption+,
       frule i_closed[of "a"],
       simp add:tassoc[THEN sym, of "a" "h" "ρ a"])
done

lemma (in Group) nsgPr2:"G  N; a  carrier G; h  N 
                                   (ρ a)  (h  a)  N"
apply (frule i_closed[of "a"],
       frule nsgPr1[of "N" "ρ a" "h"], assumption+)
apply (simp add:iop_i_i)
done

lemma (in Group) nsgPr2_1:"G  N; a  carrier G; h  N 
                                              (ρ a)  h  a  N"
apply (frule i_closed[of "a"],
       frule  nsgPr1_1[of "N" "ρ a" "h"], assumption+, simp add:iop_i_i)
done

lemma (in Group) nsgTr3:"G  N; a  carrier G; b  carrier G; 
a1  carrier G; b1  carrier G;  a  (ρ a1)  N; b  (ρ b1)  N  
                  (a  b)  (ρ (a1  b1))  N"
apply (frule nsg_sg[of "N"]) 
apply (frule  nsgTr2 [of "a" "b" "a1" "b1"], assumption+)
apply (frule  nsgTr1 [of "N" "a1" "a"], assumption+)

apply (frule i_closed[of "a"],
       frule sg_i_closed [of "N" "(ρ a)  a1"], assumption+, 
        simp add:i_ab[of "ρ a" "a1"] iop_i_i,
       frule sg_mult_closed[of "N" "b  (ρ b1)" "(ρ a1)  a"], assumption+)
apply (rule nsgPr1[of "N" "a" "b  (ρ b1)  ((ρ a1)  a)"], assumption+)
done

lemma (in Group) nsg_in_Gp:"G  N; G » H; N  H  (Gp G H)  N"
apply (frule Group_Gp [of "H"],
       frule nsg_sg[of "N"]) 
apply (rule Group.cond_nsg [of "H" "N"], assumption+,
       simp add:sg_sg[of "H" "N"])
apply (rule ballI, rule ballI,
       (subst Gp_def)+, simp add:Gp_carrier)
apply (frule_tac h = a in sg_subset_elem[of "H"], assumption+,
       rule_tac a = a and h = h in nsgPr1_1[of "N"], assumption+)
done

lemma (in Group) nsgTr4:"G  N; a  carrier G;  x  N  a  
                            (ρ x)  N  (ρ a)"
apply (frule nsgTr0 [of "N"], assumption+)
apply (frule nsg_sg[of "N"], rule a_in_rcs[of "N"], assumption+,
       thin_tac "a  ρ a  N  ρ a  a  N",
       frule nsg_sg[of "N"],
       frule rcs_subset_elem[of "N" "a" "x"], assumption+,
       simp add:rcs_eqTr1[of "N" "x" "a"])
apply (frule nsgTr1[of "N" "a" "x"], assumption+,
       frule i_closed[of "x"],
       subst rcs_eqTr1[of "N" "ρ x" "ρ a"], assumption+,
       simp add:i_closed, simp add:iop_i_i)
done

lemma (in Group) c_topTr1:"G  N; a  carrier G; b  carrier G; 
       a1  carrier G; b1  carrier G; N  a = N  a1; N  b = N  b1  
                      N  (a  b) = N  (a1  b1)"
apply (frule nsg_sg[of "N"],
       frule mult_closed[of "a" "b"], assumption+,
       frule mult_closed[of "a1" "b1"], assumption+,
       simp add:rcs_eq[THEN sym, of "N" "a" "a1"],
       simp add:rcs_eq[THEN sym, of "N" "b" "b1"])
apply (subst rcs_eq[THEN sym, of "N" "a  b" "a1  b1"], assumption+)
apply (rule nsgTr3[of "N" "a1" "b1" "a" "b"], assumption+)
done

lemma (in Group) c_topTr2:"G  N; a  carrier G; a1  carrier G;
                 N  a = N  a1   N  (ρ a) = N  (ρ a1)"
apply (frule nsg_sg[of "N"], 
       simp add:rcs_eq[THEN sym, of "N" "a" "a1"])
apply (subst rcs_eq[THEN sym, of "N" "ρ a" "ρ a1"], assumption+,
       simp add:i_closed, simp add:i_closed, simp add:iop_i_i)
apply (rule nsgTr1[of "N" "a" "a1"], assumption+)
done

lemma (in Group) c_iop_welldefTr1:"G  N; a  carrier G 
                         c_iop G N (N  a)   N  (ρ a)"
apply (frule nsg_sg[of "N"],
       frule i_closed[of "a"])  
apply (rule subsetI)
apply (simp add:c_iop_def rcs_in_set_rcs)
apply (erule bexE)+
apply (simp add:rcs_def[of _ "N" "a"], erule bexE,
       rotate_tac -1, frule sym, thin_tac "ha  a = xa", simp,
       thin_tac "xa = ha  a")
apply (frule_tac h = ha in sg_subset_elem[of "N"], assumption+,
       frule_tac a = ha and b = a in mult_closed, assumption+,
       frule_tac a = "ha  a" in i_closed,
       frule_tac h = h in sg_subset_elem[of "N"], assumption+,
       frule_tac a = h and b = "ρ (ha  a)" in mult_closed, assumption+)
apply (frule_tac a = "h  ρ (ha  a)" and b = x in r_mult_eqn[of _ _ 
       "a  (ρ a)"], simp, simp add:r_i unit_closed, assumption)
apply (frule_tac a = "h  ρ (ha  a)" in tassoc[of _ "a" "ρ a"], assumption+,
       frule_tac a = "h  ρ (ha  a)" and A = "carrier G" and b = x in 
                 eq_elem_in, assumption+,
       thin_tac "h  ρ (ha  a) = x", simp,
       thin_tac "h  ρ (ha  a)  (a  ρ a) = x  (a  ρ a)")
apply (frule_tac a = h and b = "ρ (ha  a)" and c = a in tassoc, assumption+,
       simp, thin_tac "h  ρ (ha  a)  a = h  (ρ (ha  a)  a)")
apply (simp add:i_ab r_i r_unit)
apply (frule_tac x = ha in sg_i_closed[of "N"], assumption+,
       frule sym, thin_tac "h  (ρ a  ρ ha  a)  ρ a = x", simp,
       thin_tac "x = h  (ρ a  ρ ha  a)  ρ a")
apply (frule_tac h = "ρ ha" in nsgPr2_1[of "N" "a"], assumption+,
       frule_tac x = h and y = "ρ a  ρ ha  a" in sg_mult_closed, assumption+)
apply (simp add:rcs_def, blast)
done

lemma (in Group) c_iop_welldefTr2:"G  N; a  carrier G 
                                   N  (ρ a)   c_iop G N (N  a)"
apply (rule subsetI) 
 apply (frule nsg_sg[of "N"],
        frule i_closed[of "a"],
        frule_tac x = x in rcs_subset_elem[of "N" "ρ a"], assumption+)
apply (simp add:c_iop_def,
       simp add:rcs_in_set_rcs[of "N" "a"],
       simp add:rcs_def[of _ "N" "ρ a"])
 apply (frule a_in_rcs[of "N" "a"], assumption, blast)
done
 
lemma (in Group) c_iop_welldef:"G  N; a  carrier G 
                 c_iop G N (N  a) =  N  (ρ a)"  
 apply (rule equalityI) 
 apply (simp only:c_iop_welldefTr1[of "N" "a"])
 apply (simp only:c_iop_welldefTr2[of "N" "a"])
done

lemma (in Group) c_top_welldefTr1:"G  N; a  carrier G; 
          b  carrier G; x  N  a; y  N  b  x  y  N  (a  b)"
apply (frule nsg_sg[of "N"])
apply (frule_tac x = x in rcs_subset_elem[of "N" "a"], assumption+,
       frule_tac x = y in rcs_subset_elem[of "N" "b"], assumption+,
       frule rcs_eqTr1[of "N" "x" "a"], assumption+,
       frule rcs_eqTr1[of "N" "y" "b"], assumption+, simp)      
apply (frule_tac mult_closed[of "a" "b"], assumption+,
       frule_tac mult_closed[of "x" "y"], assumption+)
apply (subst rcs_eqTr1[of "N" "x  y" "a  b"], assumption+,
       rule nsgTr3[of "N" "x" "y" "a" "b"], assumption+)
done

lemma (in Group) c_top_welldefTr2:"G  N; a  carrier G; b  carrier G  
                        c_top G N (N  a) (N  b)   N  (a  b)"
apply (frule nsg_sg[of "N"],
       simp add:c_top_def, simp add:rcs_in_set_rcs)
apply (rule subsetI, simp, (erule bexE)+,
       frule_tac x = xa and y = y in c_top_welldefTr1[of "N" "a" "b"], 
       assumption+, simp)
done

lemma (in Group) c_top_welldefTr4:"G  N; a  carrier G; b  carrier G; 
      x  N  (a  b)  x  c_top G N (N  a) (N  b)" 
apply (frule nsg_sg[of "N"]) 
apply (simp add:c_top_def, simp add:rcs_in_set_rcs,
       simp add:rcs_def[of _ "N" "a  b"], erule bexE,
       frule_tac h = h in sg_subset_elem[of "N"], assumption+,
       simp add:tassoc[THEN sym, of _ "a" "b"])
apply (frule a_in_rcs[of "N" "b"], assumption,
       frule_tac h1 = h in rcs_fixed1[THEN sym, of "N" "a"], assumption+,
       frule_tac a = h and b = a in mult_closed, assumption+,
       frule_tac a = "h  a" in a_in_rcs[of "N"], assumption+, simp)
apply blast
done

lemma (in Group) c_top_welldefTr5:"G  N; a  carrier G; b  carrier G  
                             N  (a  b)  c_top G N (N  a) (N  b)"
by (rule subsetI,
       rule c_top_welldefTr4[of "N" "a" "b" _], assumption+)

lemma (in Group) c_top_welldef:"G  N; a  carrier G; b  carrier G  
                 N  (a  b) = c_top G N (N  a) (N  b)"
by (rule equalityI, simp only:c_top_welldefTr5, simp only:c_top_welldefTr2)

lemma (in Group) Qg_unitTr:"G  N; a  carrier G 
                            c_top G N N (N  a) = N  a" 
apply (frule nsg_sg[of "N"])
apply (rule equalityI)
 apply (rule subsetI, simp add:c_top_def) 
 apply (simp add:unit_rcs_in_set_rcs rcs_in_set_rcs)
 apply (erule bexE)+
 apply (simp add:rcs_def, erule bexE)
 apply (frule sym, thin_tac "xa  y = x", frule sym, thin_tac "h  a = y",
        simp, thin_tac "x = xa  (h  a)", thin_tac "y = h  a",
       frule_tac h = xa in sg_subset_elem[of "N"], assumption+,
       frule_tac h = h in sg_subset_elem[of "N"], assumption+,
       simp add:tassoc[THEN sym],
       frule_tac x = xa and y = h in  sg_mult_closed[of "N"], assumption+,
       blast)
apply (rule subsetI,
       simp add:c_top_def, simp add:unit_rcs_in_set_rcs rcs_in_set_rcs)
apply (frule_tac x = x in mem_rcs [of "N" _ "a"], assumption, erule bexE,
       frule a_in_rcs[of "N" "a"], assumption, blast)
done                    

lemma (in Group) Qg_unit:"G  N   xset_rcs G N. c_top G N N x = x" 
by (rule ballI,
       simp add:set_rcs_def, erule bexE, simp,
       simp add:Qg_unitTr)

lemma (in Group) Qg_iTr:"G  N; a  carrier G 
                         c_top G N (c_iop G N (N  a)) (N  a) = N"
apply (simp add:c_iop_welldef [of "N" "a"])
apply (frule i_closed[of "a"],
       simp add:c_top_welldef[THEN sym, of "N" "ρ a" "a"],
       simp add:l_i)
apply (frule nsg_sg[of "N"],
       simp add:rcs_Unit1[of "N"])
done  

lemma (in Group) Qg_i:"G  N  
                         x  set_rcs G N. c_top G N (c_iop G N x) x = N"
apply (rule ballI, simp add:set_rcs_def, erule bexE)
apply (simp add:Qg_iTr)
done

lemma (in Group) Qg_tassocTr:
  "G  N; a  carrier G; b  carrier G; c  carrier G   
   c_top G N (N  a) (c_top G N (N  b) (N  c)) = 
                           c_top G N (c_top G N (N  a) (N  b)) (N  c)"
apply (frule mult_closed[of "b" "c"], assumption+,
       frule mult_closed[of "a" "b"], assumption+,
       simp add:c_top_welldef[THEN sym])
apply (simp add:tassoc)
done

lemma (in Group) Qg_tassoc: "G  N 
Xset_rcs G N. Yset_rcs G N. Zset_rcs G N. c_top G N X (c_top G N Y Z) 
                                   = c_top G N (c_top G N X Y) Z"
apply (rule ballI)+ apply (simp add:set_rcs_def, (erule bexE)+)
apply (simp add:Qg_tassocTr)
done

lemma (in Group) Qg_top:"G  N  
                 c_top G N : set_rcs G N  set_rcs G N  set_rcs G N"
apply (rule Pi_I, rule Pi_I, simp add:set_rcs_def, (erule bexE)+,
       simp add:c_top_welldef[THEN sym])
 apply (metis mult_closed)
done

lemma (in Group) Qg_top_closed:"G  N; A  set_rcs G N; B  set_rcs G N 
                                   c_top G N A B  set_rcs G N"
apply (frule Qg_top[of "N"])
apply (frule funcset_mem [of "c_top G N" "set_rcs G N" _ "A"], assumption)
apply (rule funcset_mem[of "c_top G N A" "set_rcs G N" "set_rcs G N" "B"],
           assumption, assumption)
done

lemma (in Group) Qg_iop: "G  N 
               c_iop G N :set_rcs G N  set_rcs G N"
apply (rule Pi_I)
 apply (simp add:set_rcs_def, erule bexE)
 apply (simp add:c_iop_welldef)
apply (frule_tac a = a in i_closed, blast)
done

lemma (in Group) Qg_iop_closed:"G  N; A  set_rcs G N 
                                   c_iop G N A  set_rcs G N"
by (frule Qg_iop[of "N"],
       erule funcset_mem, assumption)

lemma (in Group) Qg_unit_closed: "G  N   N  set_rcs G N"
by (frule nsg_sg[of "N"],
       simp only:unit_rcs_in_set_rcs)

theorem (in Group) Group_Qg:"G  N   Group (Qg G N)" 
apply (frule Qg_top [of "N"], frule Qg_iop [of "N"],
       frule Qg_unit[of "N"], frule Qg_i[of "N" ],
       frule Qg_tassoc[of "N"], frule Qg_unit_closed[of "N" ])
apply (simp add:Qg_def Group_def)
done

lemma (in Group) Qg_one:"G  N  one (G / N) = N"
by (simp add:Qg_def)

lemma (in Group) Qg_carrier:"carrier (G / (N::'a set)) = set_rcs G N" 
by (simp add:Qg_def) (** only a trick *)

lemma (in Group) Qg_unit_group:"G  N  
                        (set_rcs G N = {N}) = (carrier G = N)"
apply (rule iffI)
 apply (rule contrapos_pp, simp+,
       frule nsg_sg[of "N"],
       frule sg_subset[of "N"],
       frule sets_not_eq[of "carrier G" "N"], assumption, erule bexE,
       frule_tac a = a in rcs_in_set_rcs[of "N"], assumption+,
       simp)  
 apply (frule_tac a = a in a_in_rcs[of "N"], assumption+,
        simp)
apply (simp add:set_rcs_def, frule nsg_sg[of "N"],
       frule rcs_fixed2[of "N"], frule_tac sg_unit_closed[of "N"], blast)
done

lemma (in Group) Gp_Qg:"G  N  Gp(G / N) (carrier(G / N)) = G / N"
by (simp add:Gp_def Qg_def)

lemma (in Group) Pj_hom0:"G  N; x  carrier G; y  carrier G
                  Pj G N (x  y) = (Pj G N x) (G / N)(Pj G N y)"
apply (simp add:Pj_def mult_closed)
apply (simp add:Qg_def, simp add:c_top_welldef)
done

lemma (in Group) Pj_ghom:"G  N  (Pj G N)  gHom G (G / N)"
apply (simp add:gHom_def)
apply (rule conjI,
       simp add:restrict_def Pj_def extensional_def)
apply (rule conjI, simp add:Pi_def,
       rule allI, rule impI,
       simp add:Qg_def set_rcs_def, simp add:Pj_def, blast)
apply ((rule ballI)+, simp add:Pj_hom0)
done

lemma (in Group) Pj_mem:"G  N; x  carrier G  (Pj G N) x = N  x"
by (simp add:Pj_def)

lemma (in Group) Pj_gsurjec:"G  N  gsurjec G (G/N) (Pj G N)"
apply (simp add:gsurjec_def)
apply (simp add:Pj_ghom) 
apply (rule surj_to_test[of "Pj G N" "carrier G" "carrier (G / N)"],
       frule Pj_ghom[of "N"], simp add:gHom_def,
       rule ballI,
       simp add:Qg_def set_rcs_def, erule bexE)
 apply (frule_tac x = a in Pj_mem[of "N"], assumption, simp, blast)
done

lemma (in Group) lcs_in_Gp:"G » H; G » K; K  H; a  H   
                                       a  K = a (Gp G H)K"
by (simp add:lcs_def, simp add:Gp_def)

lemma (in Group) rcs_in_Gp:"G » H; G » K; K  H; a  H   
                              K  a = K (Gp G H)a"
apply (simp add:rcs_def)
apply (simp add:Gp_def)
done

end