Theory RegExp2NA
section "From regular expressions directly to nondeterministic automata"
theory RegExp2NA
imports "Regular-Sets.Regular_Exp" NA
begin
type_synonym 'a bitsNA = "('a,bool list)na"
definition
"atom" :: "'a ⇒ 'a bitsNA" where
"atom a = ([True],
λb s. if s=[True] ∧ b=a then {[False]} else {},
λs. s=[False])"
definition
or :: "'a bitsNA ⇒ 'a bitsNA ⇒ 'a bitsNA" where
"or = (λ(ql,dl,fl)(qr,dr,fr).
([],
λa s. case s of
[] ⇒ (True ## dl a ql) ∪ (False ## dr a qr)
| left#s ⇒ if left then True ## dl a s
else False ## dr a s,
λs. case s of [] ⇒ (fl ql | fr qr)
| left#s ⇒ if left then fl s else fr s))"
definition
conc :: "'a bitsNA ⇒ 'a bitsNA ⇒ 'a bitsNA" where
"conc = (λ(ql,dl,fl)(qr,dr,fr).
(True#ql,
λa s. case s of
[] ⇒ {}
| left#s ⇒ if left then (True ## dl a s) ∪
(if fl s then False ## dr a qr else {})
else False ## dr a s,
λs. case s of [] ⇒ False | left#s ⇒ left ∧ fl s ∧ fr qr | ¬left ∧ fr s))"
definition
epsilon :: "'a bitsNA" where
"epsilon = ([],λa s. {}, λs. s=[])"
definition
plus :: "'a bitsNA ⇒ 'a bitsNA" where
"plus = (λ(q,d,f). (q, λa s. d a s ∪ (if f s then d a q else {}), f))"
definition
star :: "'a bitsNA ⇒ 'a bitsNA" where
"star A = or epsilon (plus A)"
primrec rexp2na :: "'a rexp ⇒ 'a bitsNA" where
"rexp2na Zero = ([], λa s. {}, λs. False)" |
"rexp2na One = epsilon" |
"rexp2na(Atom a) = atom a" |
"rexp2na(Plus r s) = or (rexp2na r) (rexp2na s)" |
"rexp2na(Times r s) = conc (rexp2na r) (rexp2na s)" |
"rexp2na(Star r) = star (rexp2na r)"
declare split_paired_all[simp]
lemma fin_atom: "(fin (atom a) q) = (q = [False])"
by(simp add:atom_def)
lemma start_atom: "start (atom a) = [True]"
by(simp add:atom_def)
lemma in_step_atom_Some[simp]:
"(p,q) : step (atom a) b = (p=[True] ∧ q=[False] ∧ b=a)"
by (simp add: atom_def step_def)
lemma False_False_in_steps_atom:
"([False],[False]) ∈ steps (atom a) w = (w = [])"
by (induct "w") (auto simp add: relcomp_unfold)
lemma start_fin_in_steps_atom:
"(start (atom a), [False]) ∈ steps (atom a) w = (w = [a])"
by (induct "w") (auto simp: False_False_in_steps_atom relcomp_unfold start_atom)
lemma accepts_atom:
"accepts (atom a) w = (w = [a])"
by (simp add: accepts_conv_steps start_fin_in_steps_atom fin_atom)
lemma fin_or_True[iff]:
"⋀L R. fin (or L R) (True#p) = fin L p"
by(simp add:or_def)
lemma fin_or_False[iff]:
"⋀L R. fin (or L R) (False#p) = fin R p"
by(simp add:or_def)
lemma True_in_step_or[iff]:
"⋀L R. (True#p,q) : step (or L R) a = (∃r. q = True#r ∧ (p,r) ∈ step L a)"
by (force simp add:or_def step_def)
lemma False_in_step_or[iff]:
"⋀L R. (False#p,q) : step (or L R) a = (∃r. q = False#r ∧ (p,r) ∈ step R a)"
by (force simp add:or_def step_def)
lemma lift_True_over_steps_or[iff]:
"⋀p. (True#p,q)∈steps (or L R) w = (∃r. q = True # r ∧ (p,r) ∈ steps L w)"
by (induct "w") force+
lemma lift_False_over_steps_or[iff]:
"⋀p. (False#p,q)∈steps (or L R) w = (∃r. q = False#r ∧ (p,r)∈steps R w)"
by (induct "w") force+
lemma start_step_or[iff]:
"⋀L R. (start(or L R),q) : step(or L R) a =
(∃p. (q = True#p ∧ (start L,p) : step L a) |
(q = False#p ∧ (start R,p) : step R a))"
by (force simp add:or_def step_def)
lemma steps_or:
"(start(or L R), q) ∈ steps (or L R) w =
( (w = [] ∧ q = start(or L R)) |
(w ≠ [] ∧ (∃p. q = True # p ∧ (start L,p) ∈ steps L w |
q = False # p ∧ (start R,p) ∈ steps R w)))"
by (cases w; fastforce)
lemma fin_start_or[iff]:
"⋀L R. fin (or L R) (start(or L R)) = (fin L (start L) | fin R (start R))"
by (simp add:or_def)
lemma accepts_or[iff]:
"accepts (or L R) w = (accepts L w | accepts R w)"
by (cases w; fastforce simp add: accepts_conv_steps steps_or)
lemma fin_conc_True[iff]:
"⋀L R. fin (conc L R) (True#p) = (fin L p ∧ fin R (start R))"
by(simp add:conc_def)
lemma fin_conc_False[iff]:
"⋀L R. fin (conc L R) (False#p) = fin R p"
by(simp add:conc_def)
lemma True_step_conc[iff]:
"⋀L R. (True#p,q) : step (conc L R) a =
((∃r. q=True#r ∧ (p,r): step L a) |
(fin L p ∧ (∃r. q=False#r ∧ (start R,r) : step R a)))"
by (force simp add:conc_def step_def)
lemma False_step_conc[iff]:
"⋀L R. (False#p,q) : step (conc L R) a =
(∃r. q = False#r ∧ (p,r) : step R a)"
by (force simp add:conc_def step_def)
lemma False_steps_conc[iff]:
"⋀p. (False#p,q) ∈ steps (conc L R) w = (∃r. q=False#r ∧ (p,r) ∈ steps R w)"
by (induct "w"; force)
lemma True_True_steps_concI:
"⋀L R p. (p,q) ∈ steps L w ⟹ (True#p,True#q) ∈ steps (conc L R) w"
by (induct "w"; force)
lemma True_False_step_conc[iff]:
"⋀L R. (True#p,False#q) : step (conc L R) a =
(fin L p ∧ (start R,q) : step R a)"
by simp
lemma True_steps_concD:
"(True#p,q) ∈ steps (conc L R) w ⟹
((∃r. (p,r) ∈ steps L w ∧ q = True#r) ∨
(∃u a v. w = u@a#v ∧
(∃r. (p,r) ∈ steps L u ∧ fin L r ∧
(∃s. (start R,s) : step R a ∧
(∃t. (s,t) ∈ steps R v ∧ q = False#t)))))"
proof (induction "w" arbitrary: p)
case Nil
then show ?case by simp
next
case (Cons a w)
show ?case
using Cons.prems
apply clarsimp
apply (elim exE disjE)
apply (auto dest!: Cons.IH)
apply (metis Cons_eq_appendI relcomp.relcompI steps.simps(2))
apply force
done
qed
lemma True_steps_conc:
"(True#p,q) ∈ steps (conc L R) w =
((∃r. (p,r) ∈ steps L w ∧ q = True#r) ∨
(∃u a v. w = u@a#v ∧
(∃r. (p,r) ∈ steps L u ∧ fin L r ∧
(∃s. (start R,s) : step R a ∧
(∃t. (s,t) ∈ steps R v ∧ q = False#t)))))"
by(force dest!: True_steps_concD intro!: True_True_steps_concI)
lemma start_conc:
"⋀L R. start(conc L R) = True#start L"
by (simp add:conc_def)
lemma final_conc:
"⋀L R. fin(conc L R) p = ((fin R (start R) ∧ (∃s. p = True#s ∧ fin L s)) ∨
(∃s. p = False#s ∧ fin R s))"
by (force simp add:conc_def split: list.split)
lemma accepts_conc:
"accepts (conc L R) w = (∃u v. w = u@v ∧ accepts L u ∧ accepts R v)"
proof -
have "∃u v. w = u @ v ∧ accepts L u ∧ accepts R v"
if "accepts (RegExp2NA.conc L R) w"
using that unfolding accepts_conv_steps True_steps_conc start_conc
by (elim exE disjE conjE) force+
moreover have "accepts (RegExp2NA.conc L R) (u @ v)"
if "w = u @ v" and "accepts L u" and "accepts R v" for u v
using that unfolding accepts_conv_steps True_steps_conc final_conc start_conc
by (cases v; fastforce)
ultimately show ?thesis
by auto
qed
lemma step_epsilon[simp]: "step epsilon a = {}"
by(simp add:epsilon_def step_def)
lemma steps_epsilon: "((p,q) ∈ steps epsilon w) = (w=[] ∧ p=q)"
by (induct "w") auto
lemma accepts_epsilon[iff]: "accepts epsilon w = (w = [])"
unfolding steps_epsilon accepts_conv_steps
by (auto simp add: epsilon_def)
lemma start_plus[simp]: "⋀A. start (plus A) = start A"
by(simp add:plus_def)
lemma fin_plus[iff]: "⋀A. fin (plus A) = fin A"
by(simp add:plus_def)
lemma step_plusI:
"⋀A. (p,q) : step A a ⟹ (p,q) : step (plus A) a"
by(simp add:plus_def step_def)
lemma steps_plusI: "⋀p. (p,q) ∈ steps A w ⟹ (p,q) ∈ steps (plus A) w"
by (induct w; force intro: step_plusI)
lemma step_plus_conv[iff]:
"⋀A. ((p, r) ∈ step (RegExp2NA.plus A) a) ⟷ ((p, r) ∈ step A a ∨ fin A p ∧ (start A, r) ∈ step A a)"
by(simp add:plus_def step_def)
lemma fin_steps_plusI:
"⟦(start A, q) ∈ steps A u; u ≠ []; fin A p⟧ ⟹ (p, q) ∈ steps (RegExp2NA.plus A) u"
by (cases "u"; force intro: steps_plusI)
lemma start_steps_plusD[rule_format]:
"(start A,r) ∈ steps (plus A) w ⟹
(∃us v. w = concat us @ v ∧ (∀u∈set us. accepts A u) ∧ (start A,r) ∈ steps A v)"
proof (induction w arbitrary: r rule: rev_induct)
case Nil
then show ?case
by (intro exI [where x="[]"]) auto
next
case (snoc x xs)
then obtain us v z
where D: "(z, r) ∈ step A x ∨ fin A z ∧ (start A, r) ∈ step A x"
and E: "(start A, z) ∈ steps A v"
and F: "∀x∈set us. accepts A x" "xs = concat us @ v"
by force
show ?case
using D
proof
assume "(z, r) ∈ step A x"
with E have "(start A, r) ∈ steps A v O step A x"
by blast
with F show ?thesis
by fastforce
next
assume "fin A z ∧ (start A, r) ∈ step A x"
with E F show ?thesis
by (force simp add: accepts_conv_steps intro: exI [where x = "us@[v]"])
qed
qed
lemma steps_star_cycle [rule_format]:
"us ≠ [] ⟹ (∀u ∈ set us. accepts A u) ⟶ accepts (plus A) (concat us)"
proof (induction us rule: rev_induct)
case Nil
then show ?case
by simp
next
case (snoc u us)
show ?case
proof (cases "us = []")
case True
then show ?thesis
by (auto simp: accepts_conv_steps intro: steps_plusI)
next
case False
then show ?thesis
proof (clarsimp simp: accepts_conv_steps False snoc)
fix q
assume §: "∀x∈set us. ∃q. (start A, q) ∈ steps A x ∧ fin A q"
"(start A, q) ∈ steps A u" "fin A q"
with snoc.IH show "∃q. (start A, q) ∈ steps (RegExp2NA.plus A) (concat us) O steps (RegExp2NA.plus A) u ∧ fin A q"
proof (cases "u = []")
case False
with § snoc.IH ‹us ≠ []› show ?thesis
by (auto simp: accepts_conv_steps intro: fin_steps_plusI)
qed (simp add: False accepts_conv_steps)
qed
qed
qed
lemma accepts_plus [iff]:
"accepts (plus A) w = (∃us. us ≠ [] ∧ w = concat us ∧ (∀u ∈ set us. accepts A u))"
proof -
{ assume "accepts (RegExp2NA.plus A) w"
then obtain q us v where "fin A q" "w = concat us @ v"
"∀u∈set us. accepts A u" "(start A, q) ∈ steps A v"
by (auto simp: accepts_conv_steps dest: start_steps_plusD)
then have "∃us. us ≠ [] ∧ w = concat us ∧ (∀u∈set us. accepts A u)"
by (intro exI [where x = "us@[v]"]) (auto simp: accepts_conv_steps)
}
then show ?thesis
by (auto simp: intro: steps_star_cycle)
qed
lemma accepts_star:
"accepts (star A) w = (∃us. (∀u ∈ set us. accepts A u) ∧ w = concat us)" (is "_ = ?rhs")
unfolding star_def
by (metis accepts_epsilon accepts_or accepts_plus concat.simps(1) empty_iff list.set(1))
lemma accepts_rexp2na:
"⋀w. accepts (rexp2na r) w = (w ∈ lang r)"
proof (induction r)
case Zero
then show ?case
by (simp add: accepts_conv_steps)
next
case (Times r1 r2)
then show ?case by (force simp add: accepts_conc Regular_Set.conc_def)
next
case (Star r)
then show ?case by (simp add: accepts_star in_star_iff_concat subset_iff Ball_def)
qed (auto simp: accepts_atom)
end