Theory RegExp2NA

(*  Author:     Tobias Nipkow
    Copyright   1998 TUM
*)

section "From regular expressions directly to nondeterministic automata"

theory RegExp2NA
imports "Regular-Sets.Regular_Exp" NA 
begin

type_synonym 'a bitsNA = "('a,bool list)na"

definition
"atom"  :: "'a  'a bitsNA" where
"atom a = ([True],
            λb s. if s=[True]  b=a then {[False]} else {},
            λs. s=[False])"

definition
 or :: "'a bitsNA  'a bitsNA  'a bitsNA" where
"or = (λ(ql,dl,fl)(qr,dr,fr).
   ([],
    λa s. case s of
            []  (True ## dl a ql)  (False ## dr a qr)
          | left#s  if left then True ## dl a s
                              else False ## dr a s,
    λs. case s of []  (fl ql | fr qr)
                | left#s  if left then fl s else fr s))"

definition
 conc :: "'a bitsNA  'a bitsNA  'a bitsNA" where
"conc = (λ(ql,dl,fl)(qr,dr,fr).
   (True#ql,
    λa s. case s of
            []  {}
          | left#s  if left then (True ## dl a s) 
                                   (if fl s then False ## dr a qr else {})
                              else False ## dr a s,
    λs. case s of []  False | left#s  left  fl s  fr qr | ¬left  fr s))"

definition
 epsilon :: "'a bitsNA" where
"epsilon = ([],λa s. {}, λs. s=[])"

definition
 plus :: "'a bitsNA  'a bitsNA" where
"plus = (λ(q,d,f). (q, λa s. d a s  (if f s then d a q else {}), f))"

definition
 star :: "'a bitsNA  'a bitsNA" where
"star A = or epsilon (plus A)"

primrec rexp2na :: "'a rexp  'a bitsNA" where
"rexp2na Zero       = ([], λa s. {}, λs. False)" |
"rexp2na One        = epsilon" |
"rexp2na(Atom a)    = atom a" |
"rexp2na(Plus r s)  = or (rexp2na r) (rexp2na s)" |
"rexp2na(Times r s) = conc (rexp2na r) (rexp2na s)" |
"rexp2na(Star r)    = star (rexp2na r)"

declare split_paired_all[simp]

(******************************************************)
(*                       atom                         *)
(******************************************************)

lemma fin_atom: "(fin (atom a) q) = (q = [False])"
  by(simp add:atom_def)

lemma start_atom: "start (atom a) = [True]"
  by(simp add:atom_def)

lemma in_step_atom_Some[simp]:
  "(p,q) : step (atom a) b = (p=[True]  q=[False]  b=a)"
  by (simp add: atom_def step_def)

lemma False_False_in_steps_atom:
  "([False],[False])  steps (atom a) w = (w = [])"
  by (induct "w") (auto simp add: relcomp_unfold)

lemma start_fin_in_steps_atom:
  "(start (atom a), [False])  steps (atom a) w = (w = [a])"
  by (induct "w") (auto simp: False_False_in_steps_atom relcomp_unfold start_atom)

lemma accepts_atom:
  "accepts (atom a) w = (w = [a])"
  by (simp add: accepts_conv_steps start_fin_in_steps_atom fin_atom)

(******************************************************)
(*                      or                            *)
(******************************************************)

(***** lift True/False over fin *****)

lemma fin_or_True[iff]:
  "L R. fin (or L R) (True#p) = fin L p"
  by(simp add:or_def)

lemma fin_or_False[iff]:
  "L R. fin (or L R) (False#p) = fin R p"
  by(simp add:or_def)

(***** lift True/False over step *****)

lemma True_in_step_or[iff]:
  "L R. (True#p,q) : step (or L R) a = (r. q = True#r  (p,r)  step L a)"
  by (force simp add:or_def step_def)

lemma False_in_step_or[iff]:
  "L R. (False#p,q) : step (or L R) a = (r. q = False#r  (p,r)  step R a)"
  by (force simp add:or_def step_def)


(***** lift True/False over steps *****)

lemma lift_True_over_steps_or[iff]:
  "p. (True#p,q)steps (or L R) w = (r. q = True # r  (p,r)  steps L w)"
  by (induct "w") force+

lemma lift_False_over_steps_or[iff]:
  "p. (False#p,q)steps (or L R) w = (r. q = False#r  (p,r)steps R w)"
  by (induct "w") force+

(** From the start  **)

lemma start_step_or[iff]:
  "L R. (start(or L R),q) : step(or L R) a = 
         (p. (q = True#p  (start L,p) : step L a) | 
               (q = False#p  (start R,p) : step R a))"
  by (force simp add:or_def step_def)

lemma steps_or:
  "(start(or L R), q)  steps (or L R) w = 
  ( (w = []  q = start(or L R)) | 
    (w  []  (p.  q = True  # p  (start L,p)  steps L w | 
                      q = False # p  (start R,p)  steps R w)))"
  by (cases w; fastforce)

lemma fin_start_or[iff]:
  "L R. fin (or L R) (start(or L R)) = (fin L (start L) | fin R (start R))"
  by (simp add:or_def)

lemma accepts_or[iff]:
  "accepts (or L R) w = (accepts L w | accepts R w)"
  by (cases w; fastforce simp add: accepts_conv_steps steps_or)

(******************************************************)
(*                      conc                        *)
(******************************************************)

(** True/False in fin **)

lemma fin_conc_True[iff]:
  "L R. fin (conc L R) (True#p) = (fin L p  fin R (start R))"
  by(simp add:conc_def)

lemma fin_conc_False[iff]:
  "L R. fin (conc L R) (False#p) = fin R p"
  by(simp add:conc_def)


(** True/False in step **)

lemma True_step_conc[iff]:
  "L R. (True#p,q) : step (conc L R) a = 
        ((r. q=True#r  (p,r): step L a) | 
         (fin L p  (r. q=False#r  (start R,r) : step R a)))"
  by (force simp add:conc_def step_def)

lemma False_step_conc[iff]:
  "L R. (False#p,q) : step (conc L R) a = 
       (r. q = False#r  (p,r) : step R a)"
  by (force simp add:conc_def step_def)

(** False in steps **)

lemma False_steps_conc[iff]:
  "p. (False#p,q)  steps (conc L R) w = (r. q=False#r  (p,r)  steps R w)"
  by (induct "w"; force)

(** True in steps **)

lemma True_True_steps_concI:
  "L R p. (p,q)  steps L w  (True#p,True#q)  steps (conc L R) w"
  by (induct "w"; force)

lemma True_False_step_conc[iff]:
  "L R. (True#p,False#q) : step (conc L R) a = 
         (fin L p  (start R,q) : step R a)"
  by simp

lemma True_steps_concD:
  "(True#p,q)  steps (conc L R) w 
     ((r. (p,r)  steps L w  q = True#r)   
  (u a v. w = u@a#v  
            (r. (p,r)  steps L u  fin L r  
            (s. (start R,s) : step R a  
            (t. (s,t)  steps R v  q = False#t)))))"
proof (induction "w" arbitrary: p)
  case Nil
  then show ?case by simp
next
  case (Cons a w)
  show ?case
    using Cons.prems
    apply clarsimp
    apply (elim exE disjE)
     apply (auto dest!: Cons.IH)
    apply (metis Cons_eq_appendI relcomp.relcompI steps.simps(2))
    apply force
    done
qed

lemma True_steps_conc:
  "(True#p,q)  steps (conc L R) w = 
 ((r. (p,r)  steps L w  q = True#r)  
  (u a v. w = u@a#v 
            (r. (p,r)  steps L u  fin L r  
            (s. (start R,s) : step R a  
            (t. (s,t)  steps R v  q = False#t)))))"
  by(force dest!: True_steps_concD intro!: True_True_steps_concI)

(** starting from the start **)

lemma start_conc:
  "L R. start(conc L R) = True#start L"
  by (simp add:conc_def)

lemma final_conc:
  "L R. fin(conc L R) p = ((fin R (start R)  (s. p = True#s  fin L s)) 
                           (s. p = False#s  fin R s))"
  by (force simp add:conc_def split: list.split)

lemma accepts_conc:
  "accepts (conc L R) w = (u v. w = u@v  accepts L u  accepts R v)"
proof -
  have "u v. w = u @ v  accepts L u  accepts R v"
    if "accepts (RegExp2NA.conc L R) w"
    using that unfolding accepts_conv_steps True_steps_conc start_conc
    by (elim exE disjE conjE) force+
  moreover have "accepts (RegExp2NA.conc L R) (u @ v)"
    if "w = u @ v" and "accepts L u" and "accepts R v" for u v
    using that unfolding accepts_conv_steps True_steps_conc final_conc start_conc
    by (cases v; fastforce)
  ultimately show ?thesis
    by auto
qed

(******************************************************)
(*                     epsilon                        *)
(******************************************************)

lemma step_epsilon[simp]: "step epsilon a = {}"
  by(simp add:epsilon_def step_def)

lemma steps_epsilon: "((p,q)  steps epsilon w) = (w=[]  p=q)"
  by (induct "w") auto

lemma accepts_epsilon[iff]: "accepts epsilon w = (w = [])"
  unfolding steps_epsilon accepts_conv_steps
  by (auto simp add: epsilon_def)

(******************************************************)
(*                       plus                         *)
(******************************************************)

lemma start_plus[simp]: "A. start (plus A) = start A"
  by(simp add:plus_def)

lemma fin_plus[iff]: "A. fin (plus A) = fin A"
  by(simp add:plus_def)

lemma step_plusI:
  "A. (p,q) : step A a  (p,q) : step (plus A) a"
  by(simp add:plus_def step_def)

lemma steps_plusI: "p. (p,q)  steps A w  (p,q)  steps (plus A) w"
  by (induct w; force intro: step_plusI)

lemma step_plus_conv[iff]:
  "A. ((p, r)  step (RegExp2NA.plus A) a)  ((p, r)  step A a  fin A p  (start A, r)  step A a)"
  by(simp add:plus_def step_def)

lemma fin_steps_plusI:
  "(start A, q)  steps A u; u  []; fin A p  (p, q)  steps (RegExp2NA.plus A) u"
  by (cases "u"; force intro: steps_plusI)

(* reverse list induction! Complicates matters for conc? *)
lemma start_steps_plusD[rule_format]:
  "(start A,r)  steps (plus A) w 
     (us v. w = concat us @ v  (uset us. accepts A u)  (start A,r)  steps A v)"
proof (induction w arbitrary: r rule: rev_induct)
  case Nil
  then show ?case
    by (intro exI [where x="[]"]) auto
next
  case (snoc x xs)
  then obtain us v z 
    where D: "(z, r)  step A x  fin A z  (start A, r)  step A x"
      and E: "(start A, z)  steps A v" 
      and F: "xset us. accepts A x" "xs = concat us @ v"
    by force
  show ?case
    using D
  proof
    assume "(z, r)  step A x"
    with E have "(start A, r)  steps A v O step A x"
      by blast
    with F show ?thesis
      by fastforce
  next
    assume "fin A z  (start A, r)  step A x"
    with E F show ?thesis
      by (force simp add: accepts_conv_steps intro: exI [where x = "us@[v]"])
  qed 
qed

lemma steps_star_cycle [rule_format]:
  "us  []  (u  set us. accepts A u)  accepts (plus A) (concat us)"
proof (induction us rule: rev_induct)
  case Nil
  then show ?case
    by simp
next
  case (snoc u us)
  show ?case
  proof (cases "us = []")
    case True
    then show ?thesis
      by (auto simp: accepts_conv_steps intro: steps_plusI)
  next
    case False
    then show ?thesis
    proof (clarsimp simp: accepts_conv_steps False snoc)
      fix q 
      assume §: "xset us. q. (start A, q)  steps A x  fin A q"
                "(start A, q)  steps A u" "fin A q"
      with snoc.IH show "q. (start A, q)  steps (RegExp2NA.plus A) (concat us) O steps (RegExp2NA.plus A) u  fin A q"
      proof (cases "u = []")
        case False
        with § snoc.IH us  [] show ?thesis 
          by (auto simp: accepts_conv_steps intro: fin_steps_plusI)
      qed (simp add: False accepts_conv_steps)
    qed
  qed
qed

lemma accepts_plus [iff]:
  "accepts (plus A) w = (us. us  []  w = concat us  (u  set us. accepts A u))"
proof -
  { assume "accepts (RegExp2NA.plus A) w"
    then obtain q us v where "fin A q" "w = concat us @ v" 
                   "uset us. accepts A u" "(start A, q)  steps A v"
      by (auto simp: accepts_conv_steps dest: start_steps_plusD)
    then have "us. us  []  w = concat us  (uset us. accepts A u)"
      by (intro exI [where x = "us@[v]"]) (auto simp: accepts_conv_steps)
  }
  then show ?thesis
    by (auto simp: intro: steps_star_cycle)
qed

(******************************************************)
(*                       star                         *)
(******************************************************)

lemma accepts_star:
  "accepts (star A) w = (us. (u  set us. accepts A u)  w = concat us)" (is "_ = ?rhs")
  unfolding star_def
  by (metis accepts_epsilon accepts_or accepts_plus concat.simps(1) empty_iff list.set(1))

(***** Correctness of r2n *****)

lemma accepts_rexp2na:
  "w. accepts (rexp2na r) w = (w  lang r)"
proof (induction r)
  case Zero
  then show ?case
    by (simp add: accepts_conv_steps)
next
  case (Times r1 r2)
  then show ?case by (force simp add: accepts_conc Regular_Set.conc_def)
next
  case (Star r)
  then show ?case by (simp add: accepts_star in_star_iff_concat subset_iff Ball_def)
qed (auto simp: accepts_atom)

end