Theory NA
section "Nondeterministic automata"
theory NA
imports AutoProj
begin
type_synonym ('a,'s) na = "'s * ('a ⇒ 's ⇒ 's set) * ('s ⇒ bool)"
primrec delta :: "('a,'s)na ⇒ 'a list ⇒ 's ⇒ 's set" where
"delta A [] p = {p}" |
"delta A (a#w) p = Union(delta A w ` next A a p)"
definition
accepts :: "('a,'s)na ⇒ 'a list ⇒ bool" where
"accepts A w = (∃q ∈ delta A w (start A). fin A q)"
definition
step :: "('a,'s)na ⇒ 'a ⇒ ('s * 's)set" where
"step A a = {(p,q) . q : next A a p}"
primrec steps :: "('a,'s)na ⇒ 'a list ⇒ ('s * 's)set" where
"steps A [] = Id" |
"steps A (a#w) = step A a O steps A w"
lemma steps_append[simp]:
"steps A (v@w) = steps A v O steps A w"
by(induct v, simp_all add:O_assoc)
lemma in_steps_append[iff]:
"(p,r) : steps A (v@w) = ((p,r) : (steps A v O steps A w))"
apply(rule steps_append[THEN equalityE])
apply blast
done
lemma delta_conv_steps: "⋀p. delta A w p = {q. (p,q) : steps A w}"
by(induct w)(auto simp:step_def)
lemma accepts_conv_steps:
"accepts A w = (∃q. (start A,q) ∈ steps A w ∧ fin A q)"
by(simp add: delta_conv_steps accepts_def)
abbreviation
Cons_syn :: "'a ⇒ 'a list set ⇒ 'a list set" (infixr ‹##› 65) where
"x ## S ≡ Cons x ` S"
end