Theory AutoMaxChop
section "Automata based scanner"
theory AutoMaxChop
imports DA MaxChop
begin
primrec auto_split :: "('a,'s)da ⇒ 's ⇒ 'a list * 'a list ⇒ 'a list ⇒ 'a splitter" where
"auto_split A q res ps [] = (if fin A q then (ps,[]) else res)" |
"auto_split A q res ps (x#xs) =
auto_split A (next A x q) (if fin A q then (ps,x#xs) else res) (ps@[x]) xs"
definition
auto_chop :: "('a,'s)da ⇒ 'a chopper" where
"auto_chop A = chop (λxs. auto_split A (start A) ([],xs) [] xs)"
lemma delta_snoc: "delta A (xs@[y]) q = next A y (delta A xs q)"
by simp
lemma auto_split_lemma:
"⋀q ps res. auto_split A (delta A ps q) res ps xs =
maxsplit (λys. fin A (delta A ys q)) res ps xs"
apply (induct xs)
apply simp
apply (simp add: delta_snoc[symmetric] del: delta_append)
done
lemma auto_split_is_maxsplit:
"auto_split A (start A) res [] xs = maxsplit (accepts A) res [] xs"
apply (unfold accepts_def)
apply (subst delta_Nil[where ?s = "start A", symmetric])
apply (subst auto_split_lemma)
apply simp
done
lemma is_maxsplitter_auto_split:
"is_maxsplitter (accepts A) (λxs. auto_split A (start A) ([],xs) [] xs)"
by (simp add: auto_split_is_maxsplit is_maxsplitter_maxsplit)
lemma is_maxchopper_auto_chop:
"is_maxchopper (accepts A) (auto_chop A)"
apply (unfold auto_chop_def)
apply (rule is_maxchopper_chop)
apply (rule is_maxsplitter_auto_split)
done
end