Theory DA
section "Deterministic automata"
theory DA
imports AutoProj
begin
type_synonym ('a,'s)da = "'s * ('a ⇒ 's ⇒ 's) * ('s ⇒ bool)"
definition
foldl2 :: "('a ⇒ 'b ⇒ 'b) ⇒ 'a list ⇒ 'b ⇒ 'b" where
"foldl2 f xs a = foldl (λa b. f b a) a xs"
definition
delta :: "('a,'s)da ⇒ 'a list ⇒ 's ⇒ 's" where
"delta A = foldl2 (next A)"
definition
accepts :: "('a,'s)da ⇒ 'a list ⇒ bool" where
"accepts A = (λw. fin A (delta A w (start A)))"
lemma [simp]: "foldl2 f [] a = a ∧ foldl2 f (x#xs) a = foldl2 f xs (f x a)"
by(simp add:foldl2_def)
lemma delta_Nil[simp]: "delta A [] s = s"
by(simp add:delta_def)
lemma delta_Cons[simp]: "delta A (a#w) s = delta A w (next A a s)"
by(simp add:delta_def)
lemma delta_append[simp]:
"⋀q ys. delta A (xs@ys) q = delta A ys (delta A xs q)"
by(induct xs) simp_all
end