Theory HOL-Algebra.Group
theory Group
imports Complete_Lattice "HOL-Library.FuncSet"
begin
section ‹Monoids and Groups›
subsection ‹Definitions›
text ‹
Definitions follow \<^cite>‹"Jacobson:1985"›.
›
record 'a monoid = "'a partial_object" +
mult :: "['a, 'a] ⇒ 'a" (infixl ‹⊗ı› 70)
one :: 'a (‹𝟭ı›)
definition m_inv :: "('a, 'b) monoid_scheme => 'a => 'a"
where "m_inv G x = (THE y. y ∈ carrier G ∧ x ⊗⇘G⇙ y = 𝟭⇘G⇙ ∧ y ⊗⇘G⇙ x = 𝟭⇘G⇙)"
open_bundle m_inv_syntax
begin
notation m_inv (‹(‹open_block notation=‹prefix inv››invı _)› [81] 80)
end
definition
Units :: "_ => 'a set"
where "Units G = {y. y ∈ carrier G ∧ (∃x ∈ carrier G. x ⊗⇘G⇙ y = 𝟭⇘G⇙ ∧ y ⊗⇘G⇙ x = 𝟭⇘G⇙)}"
locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:
"⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y ∈ carrier G"
and m_assoc:
"⟦x ∈ carrier G; y ∈ carrier G; z ∈ carrier G⟧
⟹ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
and one_closed [intro, simp]: "𝟭 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G ⟹ 𝟭 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G ⟹ x ⊗ 𝟭 = x"
lemma monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier G"
and one_closed: "𝟭 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
and l_one: "!!x. x ∈ carrier G ==> 𝟭 ⊗ x = x"
and r_one: "!!x. x ∈ carrier G ==> x ⊗ 𝟭 = x"
shows "monoid G"
by (fast intro!: monoid.intro intro: assms)
lemma (in monoid) Units_closed [dest]:
"x ∈ Units G ==> x ∈ carrier G"
by (unfold Units_def) fast
lemma (in monoid) one_unique:
assumes "u ∈ carrier G"
and "⋀x. x ∈ carrier G ⟹ u ⊗ x = x"
shows "u = 𝟭"
using assms(2)[OF one_closed] r_one[OF assms(1)] by simp
lemma (in monoid) inv_unique:
assumes eq: "y ⊗ x = 𝟭" "x ⊗ y' = 𝟭"
and G: "x ∈ carrier G" "y ∈ carrier G" "y' ∈ carrier G"
shows "y = y'"
proof -
from G eq have "y = y ⊗ (x ⊗ y')" by simp
also from G have "... = (y ⊗ x) ⊗ y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed
lemma (in monoid) Units_m_closed [simp, intro]:
assumes x: "x ∈ Units G" and y: "y ∈ Units G"
shows "x ⊗ y ∈ Units G"
proof -
from x obtain x' where x: "x ∈ carrier G" "x' ∈ carrier G" and xinv: "x ⊗ x' = 𝟭" "x' ⊗ x = 𝟭"
unfolding Units_def by fast
from y obtain y' where y: "y ∈ carrier G" "y' ∈ carrier G" and yinv: "y ⊗ y' = 𝟭" "y' ⊗ y = 𝟭"
unfolding Units_def by fast
from x y xinv yinv have "y' ⊗ (x' ⊗ x) ⊗ y = 𝟭" by simp
moreover from x y xinv yinv have "x ⊗ (y ⊗ y') ⊗ x' = 𝟭" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def
by simp (metis m_assoc m_closed)
qed
lemma (in monoid) Units_one_closed [intro, simp]:
"𝟭 ∈ Units G"
by (unfold Units_def) auto
lemma (in monoid) Units_inv_closed [intro, simp]:
"x ∈ Units G ==> inv x ∈ carrier G"
apply (simp add: Units_def m_inv_def)
by (metis (mono_tags, lifting) inv_unique the_equality)
lemma (in monoid) Units_l_inv_ex:
"x ∈ Units G ==> ∃y ∈ carrier G. y ⊗ x = 𝟭"
by (unfold Units_def) auto
lemma (in monoid) Units_r_inv_ex:
"x ∈ Units G ==> ∃y ∈ carrier G. x ⊗ y = 𝟭"
by (unfold Units_def) auto
lemma (in monoid) Units_l_inv [simp]:
"x ∈ Units G ==> inv x ⊗ x = 𝟭"
apply (unfold Units_def m_inv_def, simp)
by (metis (mono_tags, lifting) inv_unique the_equality)
lemma (in monoid) Units_r_inv [simp]:
"x ∈ Units G ==> x ⊗ inv x = 𝟭"
by (metis (full_types) Units_closed Units_inv_closed Units_l_inv Units_r_inv_ex inv_unique)
lemma (in monoid) inv_one [simp]:
"inv 𝟭 = 𝟭"
by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed monoid_axioms)
lemma (in monoid) Units_inv_Units [intro, simp]:
"x ∈ Units G ==> inv x ∈ Units G"
proof -
assume x: "x ∈ Units G"
show "inv x ∈ Units G"
by (auto simp add: Units_def
intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed
lemma (in monoid) Units_l_cancel [simp]:
"[| x ∈ Units G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"
proof
assume eq: "x ⊗ y = x ⊗ z"
and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
then have "(inv x ⊗ x) ⊗ y = (inv x ⊗ x) ⊗ z"
by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by simp
next
assume eq: "y = z"
and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
then show "x ⊗ y = x ⊗ z" by simp
qed
lemma (in monoid) Units_inv_inv [simp]:
"x ∈ Units G ==> inv (inv x) = x"
proof -
assume x: "x ∈ Units G"
then have "inv x ⊗ inv (inv x) = inv x ⊗ x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed
lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
fix x y
assume G: "x ∈ Units G" "y ∈ Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
with G show "x = y" by simp
qed
lemma (in monoid) Units_inv_comm:
assumes inv: "x ⊗ y = 𝟭"
and G: "x ∈ Units G" "y ∈ Units G"
shows "y ⊗ x = 𝟭"
proof -
from G have "x ⊗ y ⊗ x = x ⊗ 𝟭" by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed
lemma (in monoid) carrier_not_empty: "carrier G ≠ {}"
by auto
subsection ‹Groups›
text ‹
A group is a monoid all of whose elements are invertible.
›
locale group = monoid +
assumes Units: "carrier G <= Units G"
lemma (in group) is_group [iff]: "group G" by (rule group_axioms)
lemma (in group) is_monoid [iff]: "monoid G"
by (rule monoid_axioms)
theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier G"
and one_closed [simp]: "𝟭 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
and l_one [simp]: "!!x. x ∈ carrier G ==> 𝟭 ⊗ x = x"
and l_inv_ex: "!!x. x ∈ carrier G ==> ∃y ∈ carrier G. y ⊗ x = 𝟭"
shows "group G"
proof -
have l_cancel [simp]:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"
proof
fix x y z
assume eq: "x ⊗ y = x ⊗ z"
and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"
and l_inv: "x_inv ⊗ x = 𝟭" by fast
from G eq xG have "(x_inv ⊗ x) ⊗ y = (x_inv ⊗ x) ⊗ z"
by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)
next
fix x y z
assume eq: "y = z"
and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then show "x ⊗ y = x ⊗ z" by simp
qed
have r_one:
"!!x. x ∈ carrier G ==> x ⊗ 𝟭 = x"
proof -
fix x
assume x: "x ∈ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"
and l_inv: "x_inv ⊗ x = 𝟭" by fast
from x xG have "x_inv ⊗ (x ⊗ 𝟭) = x_inv ⊗ x"
by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x ⊗ 𝟭 = x" by simp
qed
have inv_ex:
"⋀x. x ∈ carrier G ⟹ ∃y ∈ carrier G. y ⊗ x = 𝟭 ∧ x ⊗ y = 𝟭"
proof -
fix x
assume x: "x ∈ carrier G"
with l_inv_ex obtain y where y: "y ∈ carrier G"
and l_inv: "y ⊗ x = 𝟭" by fast
from x y have "y ⊗ (x ⊗ y) = y ⊗ 𝟭"
by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x ⊗ y = 𝟭"
by simp
from x y show "∃y ∈ carrier G. y ⊗ x = 𝟭 ∧ x ⊗ y = 𝟭"
by (fast intro: l_inv r_inv)
qed
then have carrier_subset_Units: "carrier G ⊆ Units G"
by (unfold Units_def) fast
show ?thesis
by standard (auto simp: r_one m_assoc carrier_subset_Units)
qed
lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x ∈ carrier G ==> ∃y ∈ carrier G. y ⊗ x = 𝟭"
shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)
lemma (in group) Units_eq [simp]:
"Units G = carrier G"
proof
show "Units G ⊆ carrier G" by fast
next
show "carrier G ⊆ Units G" by (rule Units)
qed
lemma (in group) inv_closed [intro, simp]:
"x ∈ carrier G ==> inv x ∈ carrier G"
using Units_inv_closed by simp
lemma (in group) l_inv_ex [simp]:
"x ∈ carrier G ==> ∃y ∈ carrier G. y ⊗ x = 𝟭"
using Units_l_inv_ex by simp
lemma (in group) r_inv_ex [simp]:
"x ∈ carrier G ==> ∃y ∈ carrier G. x ⊗ y = 𝟭"
using Units_r_inv_ex by simp
lemma (in group) l_inv [simp]:
"x ∈ carrier G ==> inv x ⊗ x = 𝟭"
by simp
subsection ‹Cancellation Laws and Basic Properties›
lemma (in group) inv_eq_1_iff [simp]:
assumes "x ∈ carrier G" shows "inv⇘G⇙ x = 𝟭⇘G⇙ ⟷ x = 𝟭⇘G⇙"
proof -
have "x = 𝟭" if "inv x = 𝟭"
proof -
have "inv x ⊗ x = 𝟭"
using assms l_inv by blast
then show "x = 𝟭"
using that assms by simp
qed
then show ?thesis
by auto
qed
lemma (in group) r_inv [simp]:
"x ∈ carrier G ==> x ⊗ inv x = 𝟭"
by simp
lemma (in group) right_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(y ⊗ x = z ⊗ x) = (y = z)"
by (metis inv_closed m_assoc r_inv r_one)
lemma (in group) inv_inv [simp]:
"x ∈ carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp
lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp
lemma (in group) inv_mult_group:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv y ⊗ inv x"
proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"
by (simp add: m_assoc) (simp add: m_assoc [symmetric])
with G show ?thesis by (simp del: l_inv Units_l_inv)
qed
lemma (in group) inv_comm:
"[| x ⊗ y = 𝟭; x ∈ carrier G; y ∈ carrier G |] ==> y ⊗ x = 𝟭"
by (rule Units_inv_comm) auto
lemma (in group) inv_equality:
"[|y ⊗ x = 𝟭; x ∈ carrier G; y ∈ carrier G|] ==> inv x = y"
using inv_unique r_inv by blast
lemma (in group) inv_solve_left:
"⟦ a ∈ carrier G; b ∈ carrier G; c ∈ carrier G ⟧ ⟹ a = inv b ⊗ c ⟷ c = b ⊗ a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_left':
"⟦ a ∈ carrier G; b ∈ carrier G; c ∈ carrier G ⟧ ⟹ inv b ⊗ c = a ⟷ c = b ⊗ a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right:
"⟦ a ∈ carrier G; b ∈ carrier G; c ∈ carrier G ⟧ ⟹ a = b ⊗ inv c ⟷ b = a ⊗ c"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right':
"⟦a ∈ carrier G; b ∈ carrier G; c ∈ carrier G⟧ ⟹ b ⊗ inv c = a ⟷ b = a ⊗ c"
by (auto simp: m_assoc)
subsection ‹Power›
consts
pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr ‹[^]ı› 75)
overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
begin
definition "nat_pow G a n = rec_nat 𝟭⇘G⇙ (%u b. b ⊗⇘G⇙ a) n"
end
lemma (in monoid) nat_pow_closed [intro, simp]:
"x ∈ carrier G ==> x [^] (n::nat) ∈ carrier G"
by (induct n) (simp_all add: nat_pow_def)
lemma (in monoid) nat_pow_0 [simp]:
"x [^] (0::nat) = 𝟭"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_Suc [simp]:
"x [^] (Suc n) = x [^] n ⊗ x"
by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_one [simp]:
"𝟭 [^] (n::nat) = 𝟭"
by (induct n) simp_all
lemma (in monoid) nat_pow_mult:
"x ∈ carrier G ==> x [^] (n::nat) ⊗ x [^] m = x [^] (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])
lemma (in monoid) nat_pow_comm:
"x ∈ carrier G ⟹ (x [^] (n::nat)) ⊗ (x [^] (m :: nat)) = (x [^] m) ⊗ (x [^] n)"
using nat_pow_mult[of x n m] nat_pow_mult[of x m n] by (simp add: add.commute)
lemma (in monoid) nat_pow_Suc2:
"x ∈ carrier G ⟹ x [^] (Suc n) = x ⊗ (x [^] n)"
using nat_pow_mult[of x 1 n] Suc_eq_plus1[of n]
by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc nat_pow_def)
lemma (in monoid) nat_pow_pow:
"x ∈ carrier G ==> (x [^] n) [^] m = x [^] (n * m::nat)"
by (induct m) (simp, simp add: nat_pow_mult add.commute)
lemma (in monoid) nat_pow_consistent:
"x [^] (n :: nat) = x [^]⇘(G ⦇ carrier := H ⦈)⇙ n"
unfolding nat_pow_def by simp
lemma nat_pow_0 [simp]: "x [^]⇘G⇙ (0::nat) = 𝟭⇘G⇙"
by (simp add: nat_pow_def)
lemma nat_pow_Suc [simp]: "x [^]⇘G⇙ (Suc n) = (x [^]⇘G⇙ n)⊗⇘G⇙ x"
by (simp add: nat_pow_def)
lemma (in group) nat_pow_inv:
assumes "x ∈ carrier G" shows "(inv x) [^] (i :: nat) = inv (x [^] i)"
proof (induction i)
case 0 thus ?case by simp
next
case (Suc i)
have "(inv x) [^] Suc i = ((inv x) [^] i) ⊗ inv x"
by simp
also have " ... = (inv (x [^] i)) ⊗ inv x"
by (simp add: Suc.IH Suc.prems)
also have " ... = inv (x ⊗ (x [^] i))"
by (simp add: assms inv_mult_group)
also have " ... = inv (x [^] (Suc i))"
using assms nat_pow_Suc2 by auto
finally show ?case .
qed
overloading int_pow == "pow :: [_, 'a, int] => 'a"
begin
definition "int_pow G a z =
(let p = rec_nat 𝟭⇘G⇙ (%u b. b ⊗⇘G⇙ a)
in if z < 0 then inv⇘G⇙ (p (nat (-z))) else p (nat z))"
end
lemma int_pow_int: "x [^]⇘G⇙ (int n) = x [^]⇘G⇙ n"
by(simp add: int_pow_def nat_pow_def)
lemma pow_nat:
assumes "i≥0"
shows "x [^]⇘G⇙ nat i = x [^]⇘G⇙ i"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (simp add: int_pow_int)
next
case (neg n)
then show ?thesis
using assms by linarith
qed
lemma int_pow_0 [simp]: "x [^]⇘G⇙ (0::int) = 𝟭⇘G⇙"
by (simp add: int_pow_def)
lemma int_pow_def2: "a [^]⇘G⇙ z =
(if z < 0 then inv⇘G⇙ (a [^]⇘G⇙ (nat (-z))) else a [^]⇘G⇙ (nat z))"
by (simp add: int_pow_def nat_pow_def)
lemma (in group) int_pow_one [simp]:
"𝟭 [^] (z::int) = 𝟭"
by (simp add: int_pow_def2)
lemma (in group) int_pow_closed [intro, simp]:
"x ∈ carrier G ==> x [^] (i::int) ∈ carrier G"
by (simp add: int_pow_def2)
lemma (in group) int_pow_1 [simp]:
"x ∈ carrier G ⟹ x [^] (1::int) = x"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg:
"x ∈ carrier G ⟹ x [^] (-i::int) = inv (x [^] i)"
by (simp add: int_pow_def2)
lemma (in group) int_pow_neg_int: "x ∈ carrier G ⟹ x [^] -(int n) = inv (x [^] n)"
by (simp add: int_pow_neg int_pow_int)
lemma (in group) int_pow_mult:
assumes "x ∈ carrier G" shows "x [^] (i + j::int) = x [^] i ⊗ x [^] j"
proof -
have [simp]: "-i - j = -j - i" by simp
show ?thesis
by (auto simp: assms int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult)
qed
lemma (in group) int_pow_inv:
"x ∈ carrier G ⟹ (inv x) [^] (i :: int) = inv (x [^] i)"
by (metis int_pow_def2 nat_pow_inv)
lemma (in group) int_pow_pow:
assumes "x ∈ carrier G"
shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)"
proof (cases)
assume n_ge: "n ≥ 0" thus ?thesis
proof (cases)
assume m_ge: "m ≥ 0" thus ?thesis
using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2 [where G=G]
by (simp add: mult_less_0_iff nat_mult_distrib)
next
assume m_lt: "¬ m ≥ 0"
with n_ge show ?thesis
apply (simp add: int_pow_def2 mult_less_0_iff)
by (metis assms mult_minus_right n_ge nat_mult_distrib nat_pow_pow)
qed
next
assume n_lt: "¬ n ≥ 0" thus ?thesis
proof (cases)
assume m_ge: "m ≥ 0"
have "inv x [^] (nat m * nat (- n)) = inv x [^] nat (- (m * n))"
by (metis (full_types) m_ge mult_minus_right nat_mult_distrib)
with m_ge n_lt show ?thesis
by (simp add: int_pow_def2 mult_less_0_iff assms mult.commute nat_pow_inv nat_pow_pow)
next
assume m_lt: "¬ m ≥ 0" thus ?thesis
using n_lt by (auto simp: int_pow_def2 mult_less_0_iff assms nat_mult_distrib_neg nat_pow_inv nat_pow_pow)
qed
qed
lemma (in group) int_pow_diff:
"x ∈ carrier G ⟹ x [^] (n - m :: int) = x [^] n ⊗ inv (x [^] m)"
by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)
lemma (in group) inj_on_multc: "c ∈ carrier G ⟹ inj_on (λx. x ⊗ c) (carrier G)"
by(simp add: inj_on_def)
lemma (in group) inj_on_cmult: "c ∈ carrier G ⟹ inj_on (λx. c ⊗ x) (carrier G)"
by(simp add: inj_on_def)
lemma (in monoid) group_commutes_pow:
fixes n::nat
shows "⟦x ⊗ y = y ⊗ x; x ∈ carrier G; y ∈ carrier G⟧ ⟹ x [^] n ⊗ y = y ⊗ x [^] n"
apply (induction n, auto)
by (metis m_assoc nat_pow_closed)
lemma (in monoid) pow_mult_distrib:
assumes eq: "x ⊗ y = y ⊗ x" and xy: "x ∈ carrier G" "y ∈ carrier G"
shows "(x ⊗ y) [^] (n::nat) = x [^] n ⊗ y [^] n"
proof (induct n)
case (Suc n)
have "x ⊗ (y [^] n ⊗ y) = y [^] n ⊗ x ⊗ y"
by (simp add: eq group_commutes_pow m_assoc xy)
then show ?case
using assms Suc.hyps m_assoc by auto
qed auto
lemma (in group) int_pow_mult_distrib:
assumes eq: "x ⊗ y = y ⊗ x" and xy: "x ∈ carrier G" "y ∈ carrier G"
shows "(x ⊗ y) [^] (i::int) = x [^] i ⊗ y [^] i"
proof (cases i rule: int_cases)
case (nonneg n)
then show ?thesis
by (metis eq int_pow_int pow_mult_distrib xy)
next
case (neg n)
then show ?thesis
unfolding neg
apply (simp add: xy int_pow_neg_int del: of_nat_Suc)
by (metis eq inv_mult_group local.nat_pow_Suc nat_pow_closed pow_mult_distrib xy)
qed
lemma (in group) pow_eq_div2:
fixes m n :: nat
assumes x_car: "x ∈ carrier G"
assumes pow_eq: "x [^] m = x [^] n"
shows "x [^] (m - n) = 𝟭"
proof (cases "m < n")
case False
have "𝟭 ⊗ x [^] m = x [^] m" by (simp add: x_car)
also have "… = x [^] (m - n) ⊗ x [^] n"
using False by (simp add: nat_pow_mult x_car)
also have "… = x [^] (m - n) ⊗ x [^] m"
by (simp add: pow_eq)
finally show ?thesis
by (metis nat_pow_closed one_closed right_cancel x_car)
qed simp
subsection ‹Submonoids›
locale submonoid =
fixes H and G (structure)
assumes subset: "H ⊆ carrier G"
and m_closed [intro, simp]: "⟦x ∈ H; y ∈ H⟧ ⟹ x ⊗ y ∈ H"
and one_closed [simp]: "𝟭 ∈ H"
lemma (in submonoid) is_submonoid:
"submonoid H G" by (rule submonoid_axioms)
lemma (in submonoid) mem_carrier [simp]:
"x ∈ H ⟹ x ∈ carrier G"
using subset by blast
lemma (in submonoid) submonoid_is_monoid [intro]:
assumes "monoid G"
shows "monoid (G⦇carrier := H⦈)"
proof -
interpret monoid G by fact
show ?thesis
by (simp add: monoid_def m_assoc)
qed
lemma submonoid_nonempty:
"~ submonoid {} G"
by (blast dest: submonoid.one_closed)
lemma (in submonoid) finite_monoid_imp_card_positive:
"finite (carrier G) ==> 0 < card H"
proof (rule classical)
assume "finite (carrier G)" and a: "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with is_submonoid a have "submonoid {} G" by simp
with submonoid_nonempty show ?thesis by contradiction
qed
lemma (in monoid) monoid_incl_imp_submonoid :
assumes "H ⊆ carrier G"
and "monoid (G⦇carrier := H⦈)"
shows "submonoid H G"
proof (intro submonoid.intro[OF assms(1)])
have ab_eq : "⋀ a b. a ∈ H ⟹ b ∈ H ⟹ a ⊗⇘G⦇carrier := H⦈⇙ b = a ⊗ b" using assms by simp
have "⋀a b. a ∈ H ⟹ b ∈ H ⟹ a ⊗ b ∈ carrier (G⦇carrier := H⦈) "
using assms ab_eq unfolding group_def using monoid.m_closed by fastforce
thus "⋀a b. a ∈ H ⟹ b ∈ H ⟹ a ⊗ b ∈ H" by simp
show "𝟭 ∈ H " using monoid.one_closed[OF assms(2)] assms by simp
qed
lemma (in monoid) inv_unique':
assumes "x ∈ carrier G" "y ∈ carrier G"
shows "⟦ x ⊗ y = 𝟭; y ⊗ x = 𝟭 ⟧ ⟹ y = inv x"
proof -
assume "x ⊗ y = 𝟭" and l_inv: "y ⊗ x = 𝟭"
hence unit: "x ∈ Units G"
using assms unfolding Units_def by auto
show "y = inv x"
using inv_unique[OF l_inv Units_r_inv[OF unit] assms Units_inv_closed[OF unit]] .
qed
lemma (in monoid) m_inv_monoid_consistent:
assumes "x ∈ Units (G ⦇ carrier := H ⦈)" and "submonoid H G"
shows "inv⇘(G ⦇ carrier := H ⦈)⇙ x = inv x"
proof -
have monoid: "monoid (G ⦇ carrier := H ⦈)"
using submonoid.submonoid_is_monoid[OF assms(2) monoid_axioms] .
obtain y where y: "y ∈ H" "x ⊗ y = 𝟭" "y ⊗ x = 𝟭"
using assms(1) unfolding Units_def by auto
have x: "x ∈ H" and in_carrier: "x ∈ carrier G" "y ∈ carrier G"
using y(1) submonoid.subset[OF assms(2)] assms(1) unfolding Units_def by auto
show ?thesis
using monoid.inv_unique'[OF monoid, of x y] x y
using inv_unique'[OF in_carrier y(2-3)] by auto
qed
subsection ‹Subgroups›
locale subgroup =
fixes H and G (structure)
assumes subset: "H ⊆ carrier G"
and m_closed [intro, simp]: "⟦x ∈ H; y ∈ H⟧ ⟹ x ⊗ y ∈ H"
and one_closed [simp]: "𝟭 ∈ H"
and m_inv_closed [intro,simp]: "x ∈ H ⟹ inv x ∈ H"
lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)
declare (in subgroup) group.intro [intro]
lemma (in subgroup) mem_carrier [simp]:
"x ∈ H ⟹ x ∈ carrier G"
using subset by blast
lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G⦇carrier := H⦈)"
proof -
interpret group G by fact
have "Group.monoid (G⦇carrier := H⦈)"
by (simp add: monoid_axioms submonoid.intro submonoid.submonoid_is_monoid subset)
then show ?thesis
by (rule monoid.group_l_invI) (auto intro: l_inv mem_carrier)
qed
lemma (in group) triv_subgroup: "subgroup {𝟭} G"
by (auto simp: subgroup_def)
lemma subgroup_is_submonoid:
assumes "subgroup H G" shows "submonoid H G"
using assms by (auto intro: submonoid.intro simp add: subgroup_def)
lemma (in group) subgroup_Units:
assumes "subgroup H G" shows "H ⊆ Units (G ⦇ carrier := H ⦈)"
using group.Units[OF subgroup.subgroup_is_group[OF assms group_axioms]] by simp
lemma (in group) m_inv_consistent [simp]:
assumes "subgroup H G" "x ∈ H"
shows "inv⇘(G ⦇ carrier := H ⦈)⇙ x = inv x"
using assms m_inv_monoid_consistent[OF _ subgroup_is_submonoid] subgroup_Units[of H] by auto
lemma (in group) int_pow_consistent:
assumes "subgroup H G" "x ∈ H"
shows "x [^] (n :: int) = x [^]⇘(G ⦇ carrier := H ⦈)⇙ n"
proof (cases)
assume ge: "n ≥ 0"
hence "x [^] n = x [^] (nat n)"
using int_pow_def2 [of G] by auto
also have " ... = x [^]⇘(G ⦇ carrier := H ⦈)⇙ (nat n)"
using nat_pow_consistent by simp
also have " ... = x [^]⇘(G ⦇ carrier := H ⦈)⇙ n"
by (metis ge int_nat_eq int_pow_int)
finally show ?thesis .
next
assume "¬ n ≥ 0" hence lt: "n < 0" by simp
hence "x [^] n = inv (x [^] (nat (- n)))"
using int_pow_def2 [of G] by auto
also have " ... = (inv x) [^] (nat (- n))"
by (metis assms nat_pow_inv subgroup.mem_carrier)
also have " ... = (inv⇘(G ⦇ carrier := H ⦈)⇙ x) [^]⇘(G ⦇ carrier := H ⦈)⇙ (nat (- n))"
using m_inv_consistent[OF assms] nat_pow_consistent by auto
also have " ... = inv⇘(G ⦇ carrier := H ⦈)⇙ (x [^]⇘(G ⦇ carrier := H ⦈)⇙ (nat (- n)))"
using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1) is_group]] assms(2) by auto
also have " ... = x [^]⇘(G ⦇ carrier := H ⦈)⇙ n"
by (simp add: int_pow_def2 lt)
finally show ?thesis .
qed
text ‹
Since \<^term>‹H› is nonempty, it contains some element \<^term>‹x›. Since
it is closed under inverse, it contains ‹inv x›. Since
it is closed under product, it contains ‹x ⊗ inv x = 𝟭›.
›
lemma (in group) one_in_subset:
"⟦H ⊆ carrier G; H ≠ {}; ∀a ∈ H. inv a ∈ H; ∀a∈H. ∀b∈H. a ⊗ b ∈ H⟧
⟹ 𝟭 ∈ H"
by force
text ‹A characterization of subgroups: closed, non-empty subset.›
lemma (in group) subgroupI:
assumes subset: "H ⊆ carrier G" and non_empty: "H ≠ {}"
and inv: "!!a. a ∈ H ⟹ inv a ∈ H"
and mult: "!!a b. ⟦a ∈ H; b ∈ H⟧ ⟹ a ⊗ b ∈ H"
shows "subgroup H G"
proof (simp add: subgroup_def assms)
show "𝟭 ∈ H" by (rule one_in_subset) (auto simp only: assms)
qed
lemma (in group) subgroupE:
assumes "subgroup H G"
shows "H ⊆ carrier G"
and "H ≠ {}"
and "⋀a. a ∈ H ⟹ inv a ∈ H"
and "⋀a b. ⟦ a ∈ H; b ∈ H ⟧ ⟹ a ⊗ b ∈ H"
using assms unfolding subgroup_def[of H G] by auto
declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
lemma subgroup_nonempty:
"¬ subgroup {} G"
by (blast dest: subgroup.one_closed)
lemma (in subgroup) finite_imp_card_positive: "finite (carrier G) ⟹ 0 < card H"
using subset one_closed card_gt_0_iff finite_subset by blast
lemma (in subgroup) subgroup_is_submonoid :
"submonoid H G"
by (simp add: submonoid.intro subset)
lemma (in group) submonoid_subgroupI :
assumes "submonoid H G"
and "⋀a. a ∈ H ⟹ inv a ∈ H"
shows "subgroup H G"
by (metis assms subgroup_def submonoid_def)
lemma (in group) group_incl_imp_subgroup:
assumes "H ⊆ carrier G"
and "group (G⦇carrier := H⦈)"
shows "subgroup H G"
proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]])
show "monoid (G⦇carrier := H⦈)" using group_def assms by blast
have ab_eq : "⋀ a b. a ∈ H ⟹ b ∈ H ⟹ a ⊗⇘G⦇carrier := H⦈⇙ b = a ⊗ b" using assms by simp
fix a assume aH : "a ∈ H"
have " inv⇘G⦇carrier := H⦈⇙ a ∈ carrier G"
using assms aH group.inv_closed[OF assms(2)] by auto
moreover have "𝟭⇘G⦇carrier := H⦈⇙ = 𝟭" using assms monoid.one_closed ab_eq one_def by simp
hence "a ⊗⇘G⦇carrier := H⦈⇙ inv⇘G⦇carrier := H⦈⇙ a= 𝟭"
using assms ab_eq aH group.r_inv[OF assms(2)] by simp
hence "a ⊗ inv⇘G⦇carrier := H⦈⇙ a= 𝟭"
using aH assms group.inv_closed[OF assms(2)] ab_eq by simp
ultimately have "inv⇘G⦇carrier := H⦈⇙ a = inv a"
by (metis aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality)
moreover have "inv⇘G⦇carrier := H⦈⇙ a ∈ H"
using aH group.inv_closed[OF assms(2)] by auto
ultimately show "inv a ∈ H" by auto
qed
subsection ‹Direct Products›
definition
DirProd :: "_ ⇒ _ ⇒ ('a × 'b) monoid" (infixr ‹××› 80) where
"G ×× H =
⦇carrier = carrier G × carrier H,
mult = (λ(g, h) (g', h'). (g ⊗⇘G⇙ g', h ⊗⇘H⇙ h')),
one = (𝟭⇘G⇙, 𝟭⇘H⇙)⦈"
lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G ×× H)"
proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)
qed
text‹Does not use the previous result because it's easier just to use auto.›
lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G ×× H)"
proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)
qed
lemma carrier_DirProd [simp]: "carrier (G ×× H) = carrier G × carrier H"
by (simp add: DirProd_def)
lemma one_DirProd [simp]: "𝟭⇘G ×× H⇙ = (𝟭⇘G⇙, 𝟭⇘H⇙)"
by (simp add: DirProd_def)
lemma mult_DirProd [simp]: "(g, h) ⊗⇘(G ×× H)⇙ (g', h') = (g ⊗⇘G⇙ g', h ⊗⇘H⇙ h')"
by (simp add: DirProd_def)
lemma mult_DirProd': "x ⊗⇘(G ×× H)⇙ y = (fst x ⊗⇘G⇙ fst y, snd x ⊗⇘H⇙ snd y)"
by (subst mult_DirProd [symmetric]) simp
lemma DirProd_assoc: "(G ×× H ×× I) = (G ×× (H ×× I))"
by auto
lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g ∈ carrier G"
and h: "h ∈ carrier H"
shows "m_inv (G ×× H) (g, h) = (inv⇘G⇙ g, inv⇘H⇙ h)"
proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G ×× H"
by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed
lemma DirProd_subgroups :
assumes "group G"
and "subgroup H G"
and "group K"
and "subgroup I K"
shows "subgroup (H × I) (G ×× K)"
proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
have "H ⊆ carrier G" "I ⊆ carrier K" using subgroup.subset assms by blast+
thus "(H × I) ⊆ carrier (G ×× K)" unfolding DirProd_def by auto
have "Group.group ((G⦇carrier := H⦈) ×× (K⦇carrier := I⦈))"
using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
subgroup.subgroup_is_group[OF assms(4)assms(3)]].
moreover have "((G⦇carrier := H⦈) ×× (K⦇carrier := I⦈)) = ((G ×× K)⦇carrier := H × I⦈)"
unfolding DirProd_def using assms by simp
ultimately show "Group.group ((G ×× K)⦇carrier := H × I⦈)" by simp
qed
subsection ‹Homomorphisms (mono and epi) and Isomorphisms›
definition
hom :: "_ => _ => ('a => 'b) set" where
"hom G H =
{h. h ∈ carrier G → carrier H ∧
(∀x ∈ carrier G. ∀y ∈ carrier G. h (x ⊗⇘G⇙ y) = h x ⊗⇘H⇙ h y)}"
lemma homI:
"⟦⋀x. x ∈ carrier G ⟹ h x ∈ carrier H;
⋀x y. ⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ h (x ⊗⇘G⇙ y) = h x ⊗⇘H⇙ h y⟧ ⟹ h ∈ hom G H"
by (auto simp: hom_def)
lemma hom_carrier: "h ∈ hom G H ⟹ h ` carrier G ⊆ carrier H"
by (auto simp: hom_def)
lemma hom_in_carrier: "⟦h ∈ hom G H; x ∈ carrier G⟧ ⟹ h x ∈ carrier H"
by (auto simp: hom_def)
lemma hom_compose:
"⟦ f ∈ hom G H; g ∈ hom H I ⟧ ⟹ g ∘ f ∈ hom G I"
unfolding hom_def by (auto simp add: Pi_iff)
lemma (in group) hom_restrict:
assumes "h ∈ hom G H" and "⋀g. g ∈ carrier G ⟹ h g = t g" shows "t ∈ hom G H"
using assms unfolding hom_def by (auto simp add: Pi_iff)
lemma (in group) hom_compose:
"[|h ∈ hom G H; i ∈ hom H I|] ==> compose (carrier G) i h ∈ hom G I"
by (fastforce simp add: hom_def compose_def)
lemma (in group) restrict_hom_iff [simp]:
"(λx. if x ∈ carrier G then f x else g x) ∈ hom G H ⟷ f ∈ hom G H"
by (simp add: hom_def Pi_iff)
definition iso :: "_ => _ => ('a => 'b) set"
where "iso G H = {h. h ∈ hom G H ∧ bij_betw h (carrier G) (carrier H)}"
definition is_iso :: "_ ⇒ _ ⇒ bool" (infixr ‹≅› 60)
where "G ≅ H = (iso G H ≠ {})"
definition mon where "mon G H = {f ∈ hom G H. inj_on f (carrier G)}"
definition epi where "epi G H = {f ∈ hom G H. f ` (carrier G) = carrier H}"
lemma isoI:
"⟦h ∈ hom G H; bij_betw h (carrier G) (carrier H)⟧ ⟹ h ∈ iso G H"
by (auto simp: iso_def)
lemma is_isoI: "h ∈ iso G H ⟹ G ≅ H"
using is_iso_def by auto
lemma epi_iff_subset:
"f ∈ epi G G' ⟷ f ∈ hom G G' ∧ carrier G' ⊆ f ` carrier G"
by (auto simp: epi_def hom_def)
lemma iso_iff_mon_epi: "f ∈ iso G H ⟷ f ∈ mon G H ∧ f ∈ epi G H"
by (auto simp: iso_def mon_def epi_def bij_betw_def)
lemma iso_set_refl: "(λx. x) ∈ iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma id_iso: "id ∈ iso G G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
corollary iso_refl [simp]: "G ≅ G"
using iso_set_refl unfolding is_iso_def by auto
lemma iso_iff:
"h ∈ iso G H ⟷ h ∈ hom G H ∧ h ` (carrier G) = carrier H ∧ inj_on h (carrier G)"
by (auto simp: iso_def hom_def bij_betw_def)
lemma iso_imp_homomorphism:
"h ∈ iso G H ⟹ h ∈ hom G H"
by (simp add: iso_iff)
lemma trivial_hom:
"group H ⟹ (λx. one H) ∈ hom G H"
by (auto simp: hom_def Group.group_def)
lemma (in group) hom_eq:
assumes "f ∈ hom G H" "⋀x. x ∈ carrier G ⟹ f' x = f x"
shows "f' ∈ hom G H"
using assms by (auto simp: hom_def)
lemma (in group) iso_eq:
assumes "f ∈ iso G H" "⋀x. x ∈ carrier G ⟹ f' x = f x"
shows "f' ∈ iso G H"
using assms by (fastforce simp: iso_def inj_on_def bij_betw_def hom_eq image_iff)
lemma (in group) iso_set_sym:
assumes "h ∈ iso G H"
shows "inv_into (carrier G) h ∈ iso H G"
proof -
have h: "h ∈ hom G H" "bij_betw h (carrier G) (carrier H)"
using assms by (auto simp add: iso_def bij_betw_inv_into)
then have HG: "bij_betw (inv_into (carrier G) h) (carrier H) (carrier G)"
by (simp add: bij_betw_inv_into)
have "inv_into (carrier G) h ∈ hom H G"
unfolding hom_def
proof safe
show *: "⋀x. x ∈ carrier H ⟹ inv_into (carrier G) h x ∈ carrier G"
by (meson HG bij_betwE)
show "inv_into (carrier G) h (x ⊗⇘H⇙ y) = inv_into (carrier G) h x ⊗ inv_into (carrier G) h y"
if "x ∈ carrier H" "y ∈ carrier H" for x y
proof (rule inv_into_f_eq)
show "inj_on h (carrier G)"
using bij_betw_def h(2) by blast
show "inv_into (carrier G) h x ⊗ inv_into (carrier G) h y ∈ carrier G"
by (simp add: * that)
show "h (inv_into (carrier G) h x ⊗ inv_into (carrier G) h y) = x ⊗⇘H⇙ y"
using h bij_betw_inv_into_right [of h] unfolding hom_def by (simp add: "*" that)
qed
qed
then show ?thesis
by (simp add: Group.iso_def bij_betw_inv_into h)
qed
corollary (in group) iso_sym: "G ≅ H ⟹ H ≅ G"
using iso_set_sym unfolding is_iso_def by auto
lemma iso_set_trans:
"⟦h ∈ Group.iso G H; i ∈ Group.iso H I⟧ ⟹ i ∘ h ∈ Group.iso G I"
by (force simp: iso_def hom_compose intro: bij_betw_trans)
corollary iso_trans [trans]: "⟦G ≅ H ; H ≅ I⟧ ⟹ G ≅ I"
using iso_set_trans unfolding is_iso_def by blast
lemma iso_same_card: "G ≅ H ⟹ card (carrier G) = card (carrier H)"
using bij_betw_same_card unfolding is_iso_def iso_def by auto
lemma iso_finite: "G ≅ H ⟹ finite(carrier G) ⟷ finite(carrier H)"
by (auto simp: is_iso_def iso_def bij_betw_finite)
lemma mon_compose:
"⟦f ∈ mon G H; g ∈ mon H K⟧ ⟹ (g ∘ f) ∈ mon G K"
by (auto simp: mon_def intro: hom_compose comp_inj_on inj_on_subset [OF _ hom_carrier])
lemma mon_compose_rev:
"⟦f ∈ hom G H; g ∈ hom H K; (g ∘ f) ∈ mon G K⟧ ⟹ f ∈ mon G H"
using inj_on_imageI2 by (auto simp: mon_def)
lemma epi_compose:
"⟦f ∈ epi G H; g ∈ epi H K⟧ ⟹ (g ∘ f) ∈ epi G K"
using hom_compose by (force simp: epi_def hom_compose simp flip: image_image)
lemma epi_compose_rev:
"⟦f ∈ hom G H; g ∈ hom H K; (g ∘ f) ∈ epi G K⟧ ⟹ g ∈ epi H K"
by (fastforce simp: epi_def hom_def Pi_iff image_def set_eq_iff)
lemma iso_compose_rev:
"⟦f ∈ hom G H; g ∈ hom H K; (g ∘ f) ∈ iso G K⟧ ⟹ f ∈ mon G H ∧ g ∈ epi H K"
unfolding iso_iff_mon_epi using mon_compose_rev epi_compose_rev by blast
lemma epi_iso_compose_rev:
assumes "f ∈ epi G H" "g ∈ hom H K" "(g ∘ f) ∈ iso G K"
shows "f ∈ iso G H ∧ g ∈ iso H K"
proof
show "f ∈ iso G H"
by (metis (no_types, lifting) assms epi_def iso_compose_rev iso_iff_mon_epi mem_Collect_eq)
then have "f ∈ hom G H ∧ bij_betw f (carrier G) (carrier H)"
using Group.iso_def ‹f ∈ Group.iso G H› by blast
then have "bij_betw g (carrier H) (carrier K)"
using Group.iso_def assms(3) bij_betw_comp_iff by blast
then show "g ∈ iso H K"
using Group.iso_def assms(2) by blast
qed
lemma mon_left_invertible:
"⟦f ∈ hom G H; ⋀x. x ∈ carrier G ⟹ g(f x) = x⟧ ⟹ f ∈ mon G H"
by (simp add: mon_def inj_on_def) metis
lemma epi_right_invertible:
"⟦g ∈ hom H G; f ∈ carrier G → carrier H; ⋀x. x ∈ carrier G ⟹ g(f x) = x⟧ ⟹ g ∈ epi H G"
by (force simp: Pi_iff epi_iff_subset image_subset_iff_funcset subset_iff)
lemma (in monoid) hom_imp_img_monoid:
assumes "h ∈ hom G H"
shows "monoid (H ⦇ carrier := h ` (carrier G), one := h 𝟭⇘G⇙ ⦈)" (is "monoid ?h_img")
proof (rule monoidI)
show "𝟭⇘?h_img⇙ ∈ carrier ?h_img"
by auto
next
fix x y z assume "x ∈ carrier ?h_img" "y ∈ carrier ?h_img" "z ∈ carrier ?h_img"
then obtain g1 g2 g3
where g1: "g1 ∈ carrier G" "x = h g1"
and g2: "g2 ∈ carrier G" "y = h g2"
and g3: "g3 ∈ carrier G" "z = h g3"
using image_iff[where ?f = h and ?A = "carrier G"] by auto
have aux_lemma:
"⋀a b. ⟦ a ∈ carrier G; b ∈ carrier G ⟧ ⟹ h a ⊗⇘(?h_img)⇙ h b = h (a ⊗ b)"
using assms unfolding hom_def by auto
show "x ⊗⇘(?h_img)⇙ 𝟭⇘(?h_img)⇙ = x"
using aux_lemma[OF g1(1) one_closed] g1(2) r_one[OF g1(1)] by simp
show "𝟭⇘(?h_img)⇙ ⊗⇘(?h_img)⇙ x = x"
using aux_lemma[OF one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp
have "x ⊗⇘(?h_img)⇙ y = h (g1 ⊗ g2)"
using aux_lemma g1 g2 by auto
thus "x ⊗⇘(?h_img)⇙ y ∈ carrier ?h_img"
using g1(1) g2(1) by simp
have "(x ⊗⇘(?h_img)⇙ y) ⊗⇘(?h_img)⇙ z = h ((g1 ⊗ g2) ⊗ g3)"
using aux_lemma g1 g2 g3 by auto
also have " ... = h (g1 ⊗ (g2 ⊗ g3))"
using m_assoc[OF g1(1) g2(1) g3(1)] by simp
also have " ... = x ⊗⇘(?h_img)⇙ (y ⊗⇘(?h_img)⇙ z)"
using aux_lemma g1 g2 g3 by auto
finally show "(x ⊗⇘(?h_img)⇙ y) ⊗⇘(?h_img)⇙ z = x ⊗⇘(?h_img)⇙ (y ⊗⇘(?h_img)⇙ z)" .
qed
lemma (in group) hom_imp_img_group:
assumes "h ∈ hom G H"
shows "group (H ⦇ carrier := h ` (carrier G), one := h 𝟭⇘G⇙ ⦈)" (is "group ?h_img")
proof -
interpret monoid ?h_img
using hom_imp_img_monoid[OF assms] .
show ?thesis
proof (unfold_locales)
show "carrier ?h_img ⊆ Units ?h_img"
proof (auto simp add: Units_def)
have aux_lemma:
"⋀g1 g2. ⟦ g1 ∈ carrier G; g2 ∈ carrier G ⟧ ⟹ h g1 ⊗⇘H⇙ h g2 = h (g1 ⊗ g2)"
using assms unfolding hom_def by auto
fix g1 assume g1: "g1 ∈ carrier G"
thus "∃g2 ∈ carrier G. (h g2) ⊗⇘H⇙ (h g1) = h 𝟭 ∧ (h g1) ⊗⇘H⇙ (h g2) = h 𝟭"
using aux_lemma[OF g1 inv_closed[OF g1]]
aux_lemma[OF inv_closed[OF g1] g1]
inv_closed by auto
qed
qed
qed
lemma (in group) iso_imp_group:
assumes "G ≅ H" and "monoid H"
shows "group H"
proof -
obtain φ where phi: "φ ∈ iso G H" "inv_into (carrier G) φ ∈ iso H G"
using iso_set_sym assms unfolding is_iso_def by blast
define ψ where psi_def: "ψ = inv_into (carrier G) φ"
have surj: "φ ` (carrier G) = (carrier H)" "ψ ` (carrier H) = (carrier G)"
and inj: "inj_on φ (carrier G)" "inj_on ψ (carrier H)"
and phi_hom: "⋀g1 g2. ⟦ g1 ∈ carrier G; g2 ∈ carrier G ⟧ ⟹ φ (g1 ⊗ g2) = (φ g1) ⊗⇘H⇙ (φ g2)"
and psi_hom: "⋀h1 h2. ⟦ h1 ∈ carrier H; h2 ∈ carrier H ⟧ ⟹ ψ (h1 ⊗⇘H⇙ h2) = (ψ h1) ⊗ (ψ h2)"
using phi psi_def unfolding iso_def bij_betw_def hom_def by auto
have phi_one: "φ 𝟭 = 𝟭⇘H⇙"
proof -
have "(φ 𝟭) ⊗⇘H⇙ 𝟭⇘H⇙ = (φ 𝟭) ⊗⇘H⇙ (φ 𝟭)"
by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one surj(1))
thus ?thesis
by (metis (no_types, opaque_lifting) Units_eq Units_one_closed assms(2) f_inv_into_f imageI
monoid.l_one monoid.one_closed phi_hom psi_def r_one surj)
qed
have "carrier H ⊆ Units H"
proof
fix h assume h: "h ∈ carrier H"
let ?inv_h = "φ (inv (ψ h))"
have "h ⊗⇘H⇙ ?inv_h = φ (ψ h) ⊗⇘H⇙ ?inv_h"
by (simp add: f_inv_into_f h psi_def surj(1))
also have " ... = φ ((ψ h) ⊗ inv (ψ h))"
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = φ 𝟭"
by (simp add: h inv_into_into psi_def surj(1))
finally have 1: "h ⊗⇘H⇙ ?inv_h = 𝟭⇘H⇙"
using phi_one by simp
have "?inv_h ⊗⇘H⇙ h = ?inv_h ⊗⇘H⇙ φ (ψ h)"
by (simp add: f_inv_into_f h psi_def surj(1))
also have " ... = φ (inv (ψ h) ⊗ (ψ h))"
by (metis h imageI inv_closed phi_hom surj(2))
also have " ... = φ 𝟭"
by (simp add: h inv_into_into psi_def surj(1))
finally have 2: "?inv_h ⊗⇘H⇙ h = 𝟭⇘H⇙"
using phi_one by simp
thus "h ∈ Units H" unfolding Units_def using 1 2 h surj by fastforce
qed
thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp
qed
corollary (in group) iso_imp_img_group:
assumes "h ∈ iso G H"
shows "group (H ⦇ one := h 𝟭 ⦈)"
proof -
let ?h_img = "H ⦇ carrier := h ` (carrier G), one := h 𝟭 ⦈"
have "h ∈ iso G ?h_img"
using assms unfolding iso_def hom_def bij_betw_def by auto
hence "G ≅ ?h_img"
unfolding is_iso_def by auto
hence "group ?h_img"
using iso_imp_group[of ?h_img] hom_imp_img_monoid[of h H] assms unfolding iso_def by simp
moreover have "carrier H = carrier ?h_img"
using assms unfolding iso_def bij_betw_def by simp
hence "H ⦇ one := h 𝟭 ⦈ = ?h_img"
by simp
ultimately show ?thesis by simp
qed
subsubsection ‹HOL Light's concept of an isomorphism pair›
definition group_isomorphisms
where
"group_isomorphisms G H f g ≡
f ∈ hom G H ∧ g ∈ hom H G ∧
(∀x ∈ carrier G. g(f x) = x) ∧
(∀y ∈ carrier H. f(g y) = y)"
lemma group_isomorphisms_sym: "group_isomorphisms G H f g ⟹ group_isomorphisms H G g f"
by (auto simp: group_isomorphisms_def)
lemma group_isomorphisms_imp_iso: "group_isomorphisms G H f g ⟹ f ∈ iso G H"
by (auto simp: iso_def inj_on_def image_def group_isomorphisms_def hom_def bij_betw_def Pi_iff, metis+)
lemma (in group) iso_iff_group_isomorphisms:
"f ∈ iso G H ⟷ (∃g. group_isomorphisms G H f g)"
proof safe
show "∃g. group_isomorphisms G H f g" if "f ∈ Group.iso G H"
unfolding group_isomorphisms_def
proof (intro exI conjI)
let ?g = "inv_into (carrier G) f"
show "∀x∈carrier G. ?g (f x) = x"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_left mem_Collect_eq that)
show "∀y∈carrier H. f (?g y) = y"
by (metis (no_types, lifting) Group.iso_def bij_betw_inv_into_right mem_Collect_eq that)
qed (use Group.iso_def iso_set_sym that in ‹blast+›)
next
fix g
assume "group_isomorphisms G H f g"
then show "f ∈ Group.iso G H"
by (auto simp: iso_def group_isomorphisms_def hom_in_carrier intro: bij_betw_byWitness)
qed
subsubsection ‹Involving direct products›
lemma DirProd_commute_iso_set:
shows "(λ(x,y). (y,x)) ∈ iso (G ×× H) (H ×× G)"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
corollary DirProd_commute_iso :
"(G ×× H) ≅ (H ×× G)"
using DirProd_commute_iso_set unfolding is_iso_def by blast
lemma DirProd_assoc_iso_set:
shows "(λ(x,y,z). (x,(y,z))) ∈ iso (G ×× H ×× I) (G ×× (H ×× I))"
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
lemma (in group) DirProd_iso_set_trans:
assumes "g ∈ iso G G2"
and "h ∈ iso H I"
shows "(λ(x,y). (g x, h y)) ∈ iso (G ×× H) (G2 ×× I)"
proof-
have "(λ(x,y). (g x, h y)) ∈ hom (G ×× H) (G2 ×× I)"
using assms unfolding iso_def hom_def by auto
moreover have " inj_on (λ(x,y). (g x, h y)) (carrier (G ×× H))"
using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto
moreover have "(λ(x, y). (g x, h y)) ` carrier (G ×× H) = carrier (G2 ×× I)"
using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce
ultimately show "(λ(x,y). (g x, h y)) ∈ iso (G ×× H) (G2 ×× I)"
unfolding iso_def bij_betw_def by auto
qed
corollary (in group) DirProd_iso_trans :
assumes "G ≅ G2" and "H ≅ I"
shows "G ×× H ≅ G2 ×× I"
using DirProd_iso_set_trans assms unfolding is_iso_def by blast
lemma hom_pairwise: "f ∈ hom G (DirProd H K) ⟷ (fst ∘ f) ∈ hom G H ∧ (snd ∘ f) ∈ hom G K"
apply (auto simp: hom_def mult_DirProd' dest: Pi_mem)
apply (metis Product_Type.mem_Times_iff comp_eq_dest_lhs funcset_mem)
by (metis mult_DirProd prod.collapse)
lemma hom_paired:
"(λx. (f x,g x)) ∈ hom G (DirProd H K) ⟷ f ∈ hom G H ∧ g ∈ hom G K"
by (simp add: hom_pairwise o_def)
lemma hom_paired2:
assumes "group G" "group H"
shows "(λ(x,y). (f x,g y)) ∈ hom (DirProd G H) (DirProd G' H') ⟷ f ∈ hom G G' ∧ g ∈ hom H H'"
using assms
by (fastforce simp: hom_def Pi_def dest!: group.is_monoid)
lemma iso_paired2:
assumes "group G" "group H"
shows "(λ(x,y). (f x,g y)) ∈ iso (DirProd G H) (DirProd G' H') ⟷ f ∈ iso G G' ∧ g ∈ iso H H'"
using assms
by (fastforce simp add: iso_def inj_on_def bij_betw_def hom_paired2 image_paired_Times
times_eq_iff group_def monoid.carrier_not_empty)
lemma hom_of_fst:
assumes "group H"
shows "(f ∘ fst) ∈ hom (DirProd G H) K ⟷ f ∈ hom G K"
proof -
interpret group H
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed
lemma hom_of_snd:
assumes "group G"
shows "(f ∘ snd) ∈ hom (DirProd G H) K ⟷ f ∈ hom H K"
proof -
interpret group G
by (rule assms)
show ?thesis
using one_closed by (auto simp: hom_def Pi_def)
qed
subsection‹The locale for a homomorphism between two groups›
text‹Basis for homomorphism proofs: we assume two groups \<^term>‹G› and
\<^term>‹H›, with a homomorphism \<^term>‹h› between them›
locale group_hom = G?: group G + H?: group H for G (structure) and H (structure) +
fixes h
assumes homh [simp]: "h ∈ hom G H"
declare group_hom.homh [simp]
lemma (in group_hom) hom_mult [simp]:
"[| x ∈ carrier G; y ∈ carrier G |] ==> h (x ⊗⇘G⇙ y) = h x ⊗⇘H⇙ h y"
proof -
assume "x ∈ carrier G" "y ∈ carrier G"
with homh [unfolded hom_def] show ?thesis by simp
qed
lemma (in group_hom) hom_closed [simp]:
"x ∈ carrier G ==> h x ∈ carrier H"
proof -
assume "x ∈ carrier G"
with homh [unfolded hom_def] show ?thesis by auto
qed
lemma (in group_hom) one_closed: "h 𝟭 ∈ carrier H"
by simp
lemma (in group_hom) hom_one [simp]: "h 𝟭 = 𝟭⇘H⇙"
proof -
have "h 𝟭 ⊗⇘H⇙ 𝟭⇘H⇙ = h 𝟭 ⊗⇘H⇙ h 𝟭"
by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis
by (metis H.Units_eq H.Units_l_cancel H.one_closed local.one_closed)
qed
lemma hom_one:
assumes "h ∈ hom G H" "group G" "group H"
shows "h (one G) = one H"
apply (rule group_hom.hom_one)
by (simp add: assms group_hom_axioms_def group_hom_def)
lemma hom_mult:
"⟦h ∈ hom G H; x ∈ carrier G; y ∈ carrier G⟧ ⟹ h (x ⊗⇘G⇙ y) = h x ⊗⇘H⇙ h y"
by (auto simp: hom_def)
lemma (in group_hom) inv_closed [simp]:
"x ∈ carrier G ==> h (inv x) ∈ carrier H"
by simp
lemma (in group_hom) hom_inv [simp]:
assumes "x ∈ carrier G" shows "h (inv x) = inv⇘H⇙ (h x)"
proof -
have "h x ⊗⇘H⇙ h (inv x) = h x ⊗⇘H⇙ inv⇘H⇙ (h x)"
using assms by (simp flip: hom_mult)
with assms show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed
lemma (in group) int_pow_is_hom:
"x ∈ carrier G ⟹ (([^]) x) ∈ hom ⦇ carrier = UNIV, mult = (+), one = 0::int ⦈ G "
unfolding hom_def by (simp add: int_pow_mult)
lemma (in group_hom) img_is_subgroup: "subgroup (h ` (carrier G)) H"
apply (rule subgroupI)
apply (auto simp add: image_subsetI)
apply (metis G.inv_closed hom_inv image_iff)
by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed)
lemma (in group_hom) subgroup_img_is_subgroup:
assumes "subgroup I G"
shows "subgroup (h ` I) H"
proof -
have "h ∈ hom (G ⦇ carrier := I ⦈) H"
using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh
unfolding hom_def by auto
hence "group_hom (G ⦇ carrier := I ⦈) H h"
using subgroup.subgroup_is_group[OF assms G.is_group] is_group
unfolding group_hom_def group_hom_axioms_def by simp
thus ?thesis
using group_hom.img_is_subgroup[of "G ⦇ carrier := I ⦈" H h] by simp
qed
lemma (in subgroup) iso_subgroup:
assumes "group G" "group F"
assumes "φ ∈ iso G F"
shows "subgroup (φ ` H) F"
by (metis assms Group.iso_iff group_hom.intro group_hom_axioms_def group_hom.subgroup_img_is_subgroup subgroup_axioms)
lemma (in group_hom) induced_group_hom:
assumes "subgroup I G"
shows "group_hom (G ⦇ carrier := I ⦈) (H ⦇ carrier := h ` I ⦈) h"
proof -
have "h ∈ hom (G ⦇ carrier := I ⦈) (H ⦇ carrier := h ` I ⦈)"
using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto
thus ?thesis
unfolding group_hom_def group_hom_axioms_def
using subgroup.subgroup_is_group[OF assms G.is_group]
subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms] is_group] by simp
qed
text ‹An isomorphism restricts to an isomorphism of subgroups.›
lemma iso_restrict:
assumes "φ ∈ iso G F"
assumes groups: "group G" "group F"
assumes HG: "subgroup H G"
shows "(restrict φ H) ∈ iso (G⦇carrier := H⦈) (F⦇carrier := φ ` H⦈)"
proof -
have "⋀x y. ⟦x ∈ H; y ∈ H; x ⊗⇘G⇙ y ∈ H⟧ ⟹ φ (x ⊗⇘G⇙ y) = φ x ⊗⇘F⇙ φ y"
by (meson assms hom_mult iso_imp_homomorphism subgroup.mem_carrier)
moreover have "⋀x y. ⟦x ∈ H; y ∈ H; x ⊗⇘G⇙ y ∉ H⟧ ⟹ φ x ⊗⇘F⇙ φ y = undefined"
by (simp add: HG subgroup.m_closed)
moreover have "⋀x y. ⟦x ∈ H; y ∈ H; φ x = φ y⟧ ⟹ x = y"
by (smt (verit, ccfv_SIG) assms group.iso_iff_group_isomorphisms group_isomorphisms_def subgroup.mem_carrier)
ultimately show ?thesis
by (auto simp: iso_def hom_def bij_betw_def inj_on_def)
qed
lemma (in group) canonical_inj_is_hom:
assumes "subgroup H G"
shows "group_hom (G ⦇ carrier := H ⦈) G id"
unfolding group_hom_def group_hom_axioms_def hom_def
using subgroup.subgroup_is_group[OF assms is_group]
is_group subgroup.subset[OF assms] by auto
lemma (in group_hom) hom_nat_pow:
"x ∈ carrier G ⟹ h (x [^] (n :: nat)) = (h x) [^]⇘H⇙ n"
by (induction n) auto
lemma (in group_hom) hom_int_pow:
"x ∈ carrier G ⟹ h (x [^] (n :: int)) = (h x) [^]⇘H⇙ n"
using hom_nat_pow by (simp add: int_pow_def2)
lemma hom_nat_pow:
"⟦h ∈ hom G H; x ∈ carrier G; group G; group H⟧ ⟹ h (x [^]⇘G⇙ (n :: nat)) = (h x) [^]⇘H⇙ n"
by (simp add: group_hom.hom_nat_pow group_hom_axioms_def group_hom_def)
lemma hom_int_pow:
"⟦h ∈ hom G H; x ∈ carrier G; group G; group H⟧ ⟹ h (x [^]⇘G⇙ (n :: int)) = (h x) [^]⇘H⇙ n"
by (simp add: group_hom.hom_int_pow group_hom_axioms.intro group_hom_def)
subsection ‹Commutative Structures›
text ‹
Naming convention: multiplicative structures that are commutative
are called \emph{commutative}, additive structures are called
\emph{Abelian}.
›
locale comm_monoid = monoid +
assumes m_comm: "⟦x ∈ carrier G; y ∈ carrier G⟧ ⟹ x ⊗ y = y ⊗ x"
lemma (in comm_monoid) m_lcomm:
"⟦x ∈ carrier G; y ∈ carrier G; z ∈ carrier G⟧ ⟹
x ⊗ (y ⊗ z) = y ⊗ (x ⊗ z)"
proof -
assume xyz: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
from xyz have "x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z" by (simp add: m_assoc)