Theory Internalizations
section‹Aids to internalize formulas›
theory Internalizations
imports
"ZF-Constructible.DPow_absolute"
begin
text‹We found it useful to have slightly different versions of some
results in ZF-Constructible:›
lemma nth_closed :
assumes "0∈A" "env∈list(A)"
shows "nth(n,env)∈A"
using assms(2,1) unfolding nth_def by (induct env; simp)
lemmas FOL_sats_iff = sats_Nand_iff sats_Forall_iff sats_Neg_iff sats_And_iff
sats_Or_iff sats_Implies_iff sats_Iff_iff sats_Exists_iff
lemma nth_ConsI: "⟦nth(n,l) = x; n ∈ nat⟧ ⟹ nth(succ(n), Cons(a,l)) = x"
by simp
lemmas nth_rules = nth_0 nth_ConsI nat_0I nat_succI
lemmas sep_rules = nth_0 nth_ConsI FOL_iff_sats function_iff_sats
fun_plus_iff_sats successor_iff_sats
omega_iff_sats FOL_sats_iff Replace_iff_sats
text‹Also a different compilation of lemmas (term‹sep_rules›) used in formula
synthesis›
lemmas fm_defs = omega_fm_def limit_ordinal_fm_def empty_fm_def typed_function_fm_def
pair_fm_def upair_fm_def domain_fm_def function_fm_def succ_fm_def
cons_fm_def fun_apply_fm_def image_fm_def big_union_fm_def union_fm_def
relation_fm_def composition_fm_def field_fm_def ordinal_fm_def range_fm_def
transset_fm_def subset_fm_def Replace_fm_def
end