Theory Relative_Completeness
section ‹Completeness Proofs under hypothetical computations›
theory Relative_Completeness
imports ArchCompProps
begin
definition Archive :: "vertex fgraph set" where
"Archive ≡ set(Tri @ Quad @ Pent @ Hex)"
locale archive_by_computation =
assumes pre_iso_test3: "∀g ∈ set Tri. pre_iso_test g"
assumes pre_iso_test4: "∀g ∈ set Quad. pre_iso_test g"
assumes pre_iso_test5: "∀g ∈ set Pent. pre_iso_test g"
assumes pre_iso_test6: "∀g ∈ set Hex. pre_iso_test g"
assumes same3: "samet (tameEnumFilter 0) Tri"
assumes same4: "samet (tameEnumFilter 1) Quad"
assumes same5: "samet (tameEnumFilter 2) Pent"
assumes same6: "samet (tameEnumFilter 3) Hex"
begin
theorem TameEnum_Archive: "fgraph ` TameEnum ⊆⇩≃ Archive"
using combine_evals_filter[OF pre_iso_test3 same3]
combine_evals_filter[OF pre_iso_test4 same4]
combine_evals_filter[OF pre_iso_test5 same5]
combine_evals_filter[OF pre_iso_test6 same6]
by(fastforce simp:TameEnum_def Archive_def image_def qle_gr.defs
eval_nat_numeral le_Suc_eq)
lemma TameEnum_comp:
assumes "Seed⇘p⇙ [next_plane⇘p⇙]→* g" and "final g" and "tame g"
shows "Seed⇘p⇙ [next_tame⇘p⇙]→* g"
proof -
from assms have "Seed⇘p⇙ [next_tame0 p]→* g" by(rule next_tame0_comp)
with assms show "Seed⇘p⇙ [next_tame⇘p⇙]→* g" by(blast intro: next_tame_comp)
qed
lemma tame5:
assumes g: "Seed⇘p⇙ [next_plane0⇘p⇙]→* g" and "final g" and "tame g"
shows "p ≤ 3"
proof -
from ‹tame g› have bound: "∀f ∈ ℱ g. |vertices f| ≤ 6"
by (simp add: tame_def tame9a_def)
show "p ≤ 3"
proof (rule ccontr)
assume 6: "¬ p ≤ 3"
obtain f where "f ∈ set (finals g) ∧ |vertices f| = p+3"
using max_face_ex[OF g] by auto
also from ‹final g› have "set (finals g) = set (faces g)" by simp
finally have "f ∈ ℱ g ∧ 6 < |vertices f|" using 6 by arith
with bound show False by auto
qed
qed
theorem completeness:
assumes "g ∈ PlaneGraphs" and "tame g" shows "fgraph g ∈⇩≃ Archive"
proof -
from ‹g ∈ PlaneGraphs› obtain p where g1: "Seed⇘p⇙ [next_plane⇘p⇙]→* g"
and "final g"
by(auto simp:PlaneGraphs_def PlaneGraphsP_def)
have "Seed⇘p⇙ [next_plane0⇘p⇙]→* g"
by(rule RTranCl_subset2[OF g1])
(blast intro:inv_mgp inv_Seed mgp_next_plane0_if_next_plane
dest:RTranCl_inv[OF inv_inv_next_plane])
with ‹tame g› ‹final g› have "p ≤ 3" by(blast intro:tame5)
with g1 ‹tame g› ‹final g› show ?thesis using TameEnum_Archive
by(simp add: qle_gr.defs TameEnum_def TameEnumP_def)
(blast intro: TameEnum_comp)
qed
end
end