Theory Generator
section ‹Enumeration of Tame Plane Graphs›
theory Generator
imports Plane1 Tame
begin
text‹\paragraph{Lower bounds for total weight}›
definition faceSquanderLowerBound :: "graph ⇒ nat" where
"faceSquanderLowerBound g ≡ ∑⇘f ∈ finals g⇙ 𝖽 |vertices f|"
definition d3_const :: nat where
"d3_const == 𝖽 3"
definition d4_const :: nat where
"d4_const == 𝖽 4"
definition excessAtType :: "nat ⇒ nat ⇒ nat ⇒ nat" where
"excessAtType t q e ≡
if e = 0 then if 7 < t + q then squanderTarget
else 𝖻 t q - t * d3_const - q * d4_const
else if t + q + e ≠ 6 then 0
else if t=5 then 𝖺 else squanderTarget"
declare d3_const_def[simp] d4_const_def[simp]
definition ExcessAt :: "graph ⇒ vertex ⇒ nat" where
"ExcessAt g v ≡ if ¬ finalVertex g v then 0
else excessAtType (tri g v) (quad g v) (except g v)"
definition ExcessTable :: "graph ⇒ vertex list ⇒ (vertex × nat) list" where
"ExcessTable g vs ≡
[(v, ExcessAt g v). v ← [v ← vs. 0 < ExcessAt g v ]]"
text‹Implementation:›
lemma [code]:
"ExcessTable g =
List.map_filter (λv. let e = ExcessAt g v in if 0 < e then Some (v, e) else None)"
by (rule ext) (simp add: ExcessTable_def map_filter_def)
definition deleteAround :: "graph ⇒ vertex ⇒ (vertex × nat) list ⇒ (vertex × nat) list" where
"deleteAround g v ps ≡
let fs = facesAt g v;
ws = ⨆⇘f∈fs⇙ if |vertices f| = 4 then [f∙v, f⇗2⇖∙v] else [f∙v] in
removeKeyList ws ps"
text‹Implementation:›
lemma [code]: "deleteAround g v ps =
(let vs = (λf. let n = f∙v
in if |vertices f| = 4 then [n, f∙n] else [n])
in removeKeyList (concat(map vs (facesAt g v))) ps)"
by (simp only: concat_map_singleton Let_def deleteAround_def nextV2)
lemma length_deleteAround: "length (deleteAround g v ps) ≤ length ps"
by (auto simp only: deleteAround_def length_removeKeyList Let_def)
function ExcessNotAtRec :: "(nat, nat) table ⇒ graph ⇒ nat" where
"ExcessNotAtRec [] = (λg. 0)"
| "ExcessNotAtRec ((x, y)#ps) = (λg. max (ExcessNotAtRec ps g)
(y + ExcessNotAtRec (deleteAround g x ps) g))"
by pat_completeness auto
termination by (relation "measure size")
(auto simp add: length_deleteAround less_Suc_eq_le)
definition ExcessNotAt :: "graph ⇒ vertex option ⇒ nat" where
"ExcessNotAt g v_opt ≡
let ps = ExcessTable g (vertices g) in
case v_opt of None ⇒ ExcessNotAtRec ps g
| Some v ⇒ ExcessNotAtRec (deleteAround g v ps) g"
definition squanderLowerBound :: "graph ⇒ nat" where
"squanderLowerBound g ≡ faceSquanderLowerBound g + ExcessNotAt g None"
text‹\paragraph{Tame graph enumeration}›
definition is_tame13a :: "graph ⇒ bool" where
"is_tame13a g ≡ squanderLowerBound g < squanderTarget"
definition notame :: "graph ⇒ bool" where
"notame g ≡ ¬ (tame10ub g ∧ tame11b g)"
definition notame7 :: "graph ⇒ bool" where
"notame7 g ≡ ¬ (tame10ub g ∧ tame11b g ∧ is_tame13a g)"
definition generatePolygonTame :: "nat ⇒ vertex ⇒ face ⇒ graph ⇒ graph list" where
"generatePolygonTame n v f g ≡
let
enumeration = enum n |vertices f|;
enumeration = [is ← enumeration. ¬ containsDuplicateEdge g f v is];
vertexLists = [indexToVertexList f v is. is ← enumeration]
in
[g' ← [subdivFace g f vs. vs ← vertexLists] . ¬ notame g']"
definition polysizes :: "nat ⇒ graph ⇒ nat list" where
"polysizes p g ≡
let lb = squanderLowerBound g in
[n ← [3 ..< Suc(maxGon p)]. lb + 𝖽 n < squanderTarget]"
definition next_tame0 :: "nat ⇒ graph ⇒ graph list" (‹next'_tame0⇘_⇙›) where
"next_tame0⇘p⇙ g ≡
let fs = nonFinals g in
if fs = [] then []
else let f = minimalFace fs; v = minimalVertex g f
in ⨆⇘i ∈ polysizes p g⇙ generatePolygonTame i v f g"
text‹\noindent Extensionally, @{const next_tame0} is just
@{term"filter P ∘ next_plane p"} for some suitable ‹P›. But
efficiency suffers considerably if we first create many graphs and
then filter out the ones not in @{const polysizes}.›
end