Theory Generator

(*  Author: Gertrud Bauer, Tobias Nipkow *)

section ‹Enumeration of Tame Plane Graphs›

theory Generator
imports Plane1 Tame
begin


text‹\paragraph{Lower bounds for total weight}›


definition faceSquanderLowerBound :: "graph  nat" where
"faceSquanderLowerBound g  ∑⇘f  finals g𝖽 |vertices f|"

definition d3_const :: nat where
"d3_const == 𝖽 3"

definition  d4_const :: nat where
"d4_const == 𝖽 4"

definition excessAtType :: "nat  nat  nat  nat" where
"excessAtType t q e 
    if e = 0 then if 7 < t + q then squanderTarget
                  else 𝖻 t q - t * d3_const - q * d4_const
    else if t + q + e  6 then 0
         else if t=5 then 𝖺 else squanderTarget"

declare d3_const_def[simp] d4_const_def[simp]


definition ExcessAt :: "graph  vertex  nat" where
 "ExcessAt g v  if ¬ finalVertex g v then 0
     else excessAtType (tri g v) (quad g v) (except g v)"


definition ExcessTable :: "graph  vertex list  (vertex × nat) list" where
 "ExcessTable g vs 
     [(v, ExcessAt g v). v  [v  vs. 0 < ExcessAt g v ]]"
text‹Implementation:›
lemma [code]:
  "ExcessTable g =
   List.map_filter (λv. let e = ExcessAt g v in if 0 < e then Some (v, e) else None)"
 by (rule ext) (simp add: ExcessTable_def map_filter_def)

(* FIXME delete stupid removeKeyList *)
definition deleteAround :: "graph  vertex  (vertex × nat) list  (vertex × nat) list" where
 "deleteAround g v ps 
      let fs = facesAt g v;
      ws = ⨆⇘ffsif |vertices f| = 4 then [fv, f2v] else [fv] in
      removeKeyList ws ps"
text‹Implementation:›
lemma [code]: "deleteAround g v ps =
      (let vs = (λf. let n = fv
                     in if |vertices f| = 4 then [n, fn] else [n])
       in removeKeyList (concat(map vs (facesAt g v))) ps)"
  by (simp only: concat_map_singleton Let_def deleteAround_def nextV2)

lemma length_deleteAround: "length (deleteAround g v ps)  length ps"
  by (auto simp only: deleteAround_def length_removeKeyList Let_def)

function ExcessNotAtRec :: "(nat, nat) table  graph  nat" where
 "ExcessNotAtRec [] = (λg. 0)"
 | "ExcessNotAtRec ((x, y)#ps) = (λg.  max (ExcessNotAtRec ps g)
         (y + ExcessNotAtRec (deleteAround g x ps) g))"
by pat_completeness auto
termination by (relation "measure size") 
  (auto simp add: length_deleteAround less_Suc_eq_le)

definition ExcessNotAt :: "graph  vertex option  nat" where
 "ExcessNotAt g v_opt 
     let ps = ExcessTable g (vertices g) in
     case v_opt of None   ExcessNotAtRec ps g
      | Some v  ExcessNotAtRec (deleteAround g v ps) g"

definition squanderLowerBound :: "graph  nat" where
 "squanderLowerBound g   faceSquanderLowerBound g + ExcessNotAt g None"



text‹\paragraph{Tame graph enumeration}›

definition is_tame13a :: "graph  bool" where
"is_tame13a g  squanderLowerBound g < squanderTarget"

definition notame :: "graph  bool" where
"notame g  ¬ (tame10ub g  tame11b g)"

definition notame7 :: "graph  bool" where
"notame7 g  ¬ (tame10ub g  tame11b g  is_tame13a g)"

definition generatePolygonTame :: "nat  vertex  face  graph  graph list" where
"generatePolygonTame n v f g 
     let
     enumeration = enum n |vertices f|;
     enumeration = [is  enumeration. ¬ containsDuplicateEdge g f v is];
     vertexLists = [indexToVertexList f v is. is  enumeration]
     in
     [g'  [subdivFace g f vs. vs  vertexLists] . ¬ notame g']"

definition polysizes :: "nat  graph  nat list" where
"polysizes p g 
    let lb = squanderLowerBound g in
    [n  [3 ..< Suc(maxGon p)]. lb + 𝖽 n < squanderTarget]"

definition next_tame0 :: "nat  graph  graph list" (next'_tame0⇘_) where
"next_tame0⇘pg 
     let fs = nonFinals g in
     if fs = [] then []
     else let f = minimalFace fs; v = minimalVertex g f
          in ⨆⇘i  polysizes p ggeneratePolygonTame i v f g"

text‹\noindent Extensionally, @{const next_tame0} is just
@{term"filter P  next_plane p"} for some suitable P›. But
efficiency suffers considerably if we first create many graphs and
then filter out the ones not in @{const polysizes}.›

end