Theory Plane
section‹Plane Graph Enumeration›
theory Plane
imports Enumerator FaceDivision RTranCl
begin
definition maxGon :: "nat ⇒ nat" where
"maxGon p ≡ p+3"
declare maxGon_def [simp]
definition duplicateEdge :: "graph ⇒ face ⇒ vertex ⇒ vertex ⇒ bool" where
"duplicateEdge g f a b ≡
2 ≤ directedLength f a b ∧ 2 ≤ directedLength f b a ∧ b ∈ set (neighbors g a)"
primrec containsUnacceptableEdgeSnd ::
"(nat ⇒ nat ⇒ bool) ⇒ nat ⇒ nat list ⇒ bool" where
"containsUnacceptableEdgeSnd N v [] = False" |
"containsUnacceptableEdgeSnd N v (w#ws) =
(case ws of [] ⇒ False
| (w'#ws') ⇒ if v < w ∧ w < w' ∧ N w w' then True
else containsUnacceptableEdgeSnd N w ws)"
primrec containsUnacceptableEdge :: "(nat ⇒ nat ⇒ bool) ⇒ nat list ⇒ bool" where
"containsUnacceptableEdge N [] = False" |
"containsUnacceptableEdge N (v#vs) =
(case vs of [] ⇒ False
| (w#ws) ⇒ if v < w ∧ N v w then True
else containsUnacceptableEdgeSnd N v vs)"
definition containsDuplicateEdge :: "graph ⇒ face ⇒ vertex ⇒ nat list ⇒ bool" where
"containsDuplicateEdge g f v is ≡
containsUnacceptableEdge (λi j. duplicateEdge g f (f⇗i⇖∙v) (f⇗j⇖∙v)) is"
definition containsDuplicateEdge' :: "graph ⇒ face ⇒ vertex ⇒ nat list ⇒ bool" where
"containsDuplicateEdge' g f v is ≡
2 ≤ |is| ∧
((∃k < |is| - 2. let i0 = is!k; i1 = is!(k+1); i2 = is!(k+2) in
(duplicateEdge g f (f⇗i1 ⇖∙v) (f⇗i2 ⇖∙v)) ∧ (i0 < i1) ∧ (i1 < i2))
∨ (let i0 = is!0; i1 = is!1 in
(duplicateEdge g f (f⇗i0 ⇖∙v) (f⇗i1 ⇖∙v)) ∧ (i0 < i1)))"
definition generatePolygon :: "nat ⇒ vertex ⇒ face ⇒ graph ⇒ graph list" where
"generatePolygon n v f g ≡
let enumeration = enumerator n |vertices f|;
enumeration = [is ← enumeration. ¬ containsDuplicateEdge g f v is];
vertexLists = [indexToVertexList f v is. is ← enumeration] in
[subdivFace g f vs. vs ← vertexLists]"
definition next_plane0 :: "nat ⇒ graph ⇒ graph list" (‹next'_plane0⇘_⇙›) where
"next_plane0⇘p⇙ g ≡
if final g then []
else ⨆⇘f∈nonFinals g⇙ ⨆⇘v∈vertices f⇙ ⨆⇘i∈[3..<Suc(maxGon p)]⇙ generatePolygon i v f g"
definition Seed :: "nat ⇒ graph" (‹Seed⇘_⇙›) where
"Seed⇘p⇙ ≡ graph(maxGon p)"
lemma Seed_not_final[iff]: "¬ final (Seed p)"
by(simp add:Seed_def graph_def finalGraph_def nonFinals_def)
definition PlaneGraphs0 :: "graph set" where
"PlaneGraphs0 ≡ ⋃p. {g. Seed⇘p⇙ [next_plane0⇘p⇙]→* g ∧ final g}"
end