Theory Projective_Measurements.Linear_Algebra_Complements
theory Linear_Algebra_Complements imports
"Isabelle_Marries_Dirac.Tensor"
"Isabelle_Marries_Dirac.More_Tensor"
"QHLProver.Gates"
"HOL-Types_To_Sets.Group_On_With"
"HOL-Probability.Probability"
begin
hide_const(open) S
section ‹Preliminaries›
subsection ‹Misc›
lemma mult_real_cpx:
fixes a::complex
fixes b::complex
assumes "a∈ Reals"
shows "a* (Re b) = Re (a * b)" using assms
by (metis Reals_cases complex.exhaust complex.sel(1) complex_of_real_mult_Complex of_real_mult)
lemma fct_bound:
fixes f::"complex⇒ real"
assumes "f(-1) + f 1 = 1"
and "0 ≤ f 1"
and "0 ≤ f (-1)"
shows "-1 ≤ f 1 - f(-1) ∧ f 1 - f(-1) ≤ 1"
proof
have "f 1 - f(-1) = 1 - f(-1) - f(-1)" using assms by simp
also have "...≥ -1" using assms by simp
finally show "-1 ≤ f 1 - f(-1)" .
next
have "f(-1) - f 1 = 1 - f 1 - f 1 " using assms by simp
also have "... ≥ -1" using assms by simp
finally have "-1 ≤ f(-1) - f 1" .
thus "f 1 - f (-1) ≤ 1" by simp
qed
lemma fct_bound':
fixes f::"complex⇒ real"
assumes "f(-1) + f 1 = 1"
and "0 ≤ f 1"
and "0 ≤ f (-1)"
shows "¦f 1 - f(-1)¦ ≤ 1" using assms fct_bound by auto
lemma pos_sum_1_le:
assumes "finite I"
and "∀ i ∈ I. (0::real) ≤ f i"
and "(∑i∈ I. f i) = 1"
and "j∈ I"
shows "f j ≤ 1"
proof (rule ccontr)
assume "¬ f j ≤ 1"
hence "1 < f j" by simp
hence "1 < (∑i∈ I. f i)" using assms by (metis ‹¬ f j ≤ 1› sum_nonneg_leq_bound)
thus False using assms by simp
qed
lemma last_subset:
assumes "A ⊆ {a,b}"
and "a≠ b"
and "A ≠ {a, b}"
and "A≠ {}"
and "A ≠ {a}"
shows "A = {b}" using assms by blast
lemma disjoint_Un:
assumes "disjoint_family_on A (insert x F)"
and "x∉ F"
shows "(A x) ∩ (⋃ a∈ F. A a) = {}"
proof -
have "(A x) ∩ (⋃ a∈ F. A a) = (⋃i∈F. (A x) ∩ A i)" using Int_UN_distrib by simp
also have "... = (⋃i∈F. {})" using assms disjoint_family_onD by fastforce
also have "... = {}" using SUP_bot_conv(2) by simp
finally show ?thesis .
qed
lemma sum_but_one:
assumes "∀j < (n::nat). j ≠i ⟶ f j = (0::'a::ring)"
and "i < n"
shows "(∑ j ∈ {0 ..< n}. f j * g j) = f i * g i"
proof -
have "sum (λx. f x * g x) (({0 ..< n} - {i}) ∪ {i}) = sum (λx. f x * g x) ({0 ..< n} - {i}) +
sum (λx. f x * g x) {i}" by (rule sum.union_disjoint, auto)
also have "... = sum (λx. f x * g x) {i}" using assms by auto
also have "... = f i * g i" by simp
finally have "sum (λx. f x * g x) (({0 ..< n} - {i}) ∪ {i}) = f i * g i" .
moreover have "{0 ..< n} = ({0 ..< n} - {i}) ∪ {i}" using assms by auto
ultimately show ?thesis by simp
qed
lemma sum_2_elems:
assumes "I = {a,b}"
and "a≠ b"
shows "(∑a∈I. f a) = f a + f b"
proof -
have "(∑a∈I. f a) = (∑a∈(insert a {b}). f a)" using assms by simp
also have "... = f a + (∑a∈{b}. f a)"
proof (rule sum.insert)
show "finite {b}" by simp
show "a∉ {b}" using assms by simp
qed
also have "... = f a + f b" by simp
finally show ?thesis .
qed
lemma sum_4_elems:
shows "(∑i<(4::nat). f i) = f 0 + f 1 + f 2 + f 3"
proof -
have "(∑i<(4::nat). f i) = (∑i<(3::nat). f i) + f 3"
by (metis Suc_numeral semiring_norm(2) semiring_norm(8) sum.lessThan_Suc)
moreover have "(∑i<(3::nat). f i) = (∑i<(2::nat). f i) + f 2"
by (metis Suc_1 add_2_eq_Suc' nat_1_add_1 numeral_code(3) numerals(1)
one_plus_numeral_commute sum.lessThan_Suc)
moreover have "(∑i<(2::nat). f i) = (∑i<(1::nat). f i) + f 1"
by (metis Suc_1 sum.lessThan_Suc)
ultimately show ?thesis by simp
qed
lemma disj_family_sum:
shows "finite I ⟹ disjoint_family_on A I ⟹ (⋀i. i ∈ I ⟹ finite (A i)) ⟹
(∑ i ∈ (⋃n ∈ I. A n). f i) = (∑ n∈ I. (∑ i ∈ A n. f i))"
proof (induct rule:finite_induct)
case empty
then show ?case by simp
next
case (insert x F)
hence "disjoint_family_on A F"
by (meson disjoint_family_on_mono subset_insertI)
have "(⋃n ∈ (insert x F). A n) = A x ∪ (⋃n ∈ F. A n)" using insert by simp
hence "(∑ i ∈ (⋃n ∈ (insert x F). A n). f i) = (∑ i ∈ (A x ∪ (⋃n ∈ F. A n)). f i)" by simp
also have "... = (∑ i ∈ A x. f i) + (∑ i ∈ (⋃n ∈ F. A n). f i)"
by (rule sum.union_disjoint, (simp add: insert disjoint_Un)+)
also have "... = (∑ i ∈ A x. f i) + (∑n∈F. sum f (A n))" using ‹disjoint_family_on A F›
by (simp add: insert)
also have "... = (∑n∈(insert x F). sum f (A n))" using insert by simp
finally show ?case .
qed
lemma integrable_real_mult_right:
fixes c::real
assumes "integrable M f"
shows "integrable M (λw. c * f w)"
proof (cases "c = 0")
case True
thus ?thesis by simp
next
case False
thus ?thesis using integrable_mult_right[of c] assms by simp
qed
subsection ‹Unifying notions between Isabelle Marries Dirac and QHLProver›
lemma mult_conj_cmod_square:
fixes z::complex
shows "z * conjugate z = (cmod z)⇧2"
proof -
have "z * conjugate z = (Re z)⇧2 + (Im z)⇧2" using complex_mult_cnj by auto
also have "... = (cmod z)⇧2" unfolding cmod_def by simp
finally show ?thesis .
qed
lemma vec_norm_sq_cpx_vec_length_sq:
shows "(vec_norm v)⇧2 = (cpx_vec_length v)⇧2"
proof -
have "(vec_norm v)⇧2 = inner_prod v v" unfolding vec_norm_def using power2_csqrt by blast
also have "... = (∑i<dim_vec v. (cmod (Matrix.vec_index v i))⇧2)" unfolding Matrix.scalar_prod_def
proof -
have "⋀i. i < dim_vec v ⟹ Matrix.vec_index v i * conjugate (Matrix.vec_index v i) =
(cmod (Matrix.vec_index v i))⇧2" using mult_conj_cmod_square by simp
thus "(∑i = 0..<dim_vec (conjugate v). Matrix.vec_index v i *
Matrix.vec_index (conjugate v) i) = (∑i<dim_vec v. (cmod (Matrix.vec_index v i))⇧2)"
by (simp add: lessThan_atLeast0)
qed
finally show "(vec_norm v)⇧2 = (cpx_vec_length v)⇧2" unfolding cpx_vec_length_def
by (simp add: sum_nonneg)
qed
lemma vec_norm_eq_cpx_vec_length:
shows "vec_norm v = cpx_vec_length v" using vec_norm_sq_cpx_vec_length_sq
by (metis cpx_vec_length_inner_prod inner_prod_csqrt power2_csqrt vec_norm_def)
lemma cpx_vec_length_square:
shows "∥v∥⇧2 = (∑i = 0..<dim_vec v. (cmod (Matrix.vec_index v i))⇧2)" unfolding cpx_vec_length_def
by (simp add: lessThan_atLeast0 sum_nonneg)
lemma state_qbit_norm_sq:
assumes "v∈ state_qbit n"
shows "(cpx_vec_length v)⇧2 = 1"
proof -
have "cpx_vec_length v = 1" using assms unfolding state_qbit_def by simp
thus ?thesis by simp
qed
lemma dagger_adjoint:
shows "dagger M = Complex_Matrix.adjoint M" unfolding dagger_def Complex_Matrix.adjoint_def
by (simp add: cong_mat)
subsection ‹Types to sets lemmata transfers›
context ab_group_add_on_with begin
context includes lifting_syntax assumes ltd: "∃(Rep::'s ⇒ 'a) (Abs::'a ⇒ 's).
type_definition Rep Abs S" begin
interpretation local_typedef_ab_group_add_on_with pls z mns um S "TYPE('s)" by unfold_locales fact
lemmas lt_sum_union_disjoint = sum.union_disjoint
[var_simplified explicit_ab_group_add,
unoverload_type 'c,
OF type.comm_monoid_add_axioms,
untransferred]
lemmas lt_disj_family_sum = disj_family_sum
[var_simplified explicit_ab_group_add,
unoverload_type 'd,
OF type.comm_monoid_add_axioms,
untransferred]
lemmas lt_sum_reindex_cong = sum.reindex_cong
[var_simplified explicit_ab_group_add,
unoverload_type 'd,
OF type.comm_monoid_add_axioms,
untransferred]
end
lemmas sum_with_union_disjoint =
lt_sum_union_disjoint
[cancel_type_definition,
OF carrier_ne,
simplified pred_fun_def, simplified]
lemmas disj_family_sum_with =
lt_disj_family_sum
[cancel_type_definition,
OF carrier_ne,
simplified pred_fun_def, simplified]
lemmas sum_with_reindex_cong =
lt_sum_reindex_cong
[cancel_type_definition,
OF carrier_ne,
simplified pred_fun_def, simplified]
end
lemma (in comm_monoid_add_on_with) sum_with_cong':
shows "finite I ⟹ (⋀i. i∈ I ⟹ A i = B i) ⟹ (⋀i. i∈ I ⟹ A i ∈ S) ⟹
(⋀i. i∈ I ⟹ B i ∈ S) ⟹ sum_with pls z A I = sum_with pls z B I"
proof (induct rule: finite_induct)
case empty
then show ?case by simp
next
case (insert x F)
have "sum_with pls z A (insert x F) = pls (A x) (sum_with pls z A F)" using insert
sum_with_insert[of A] by (simp add: image_subset_iff)
also have "... = pls (B x) (sum_with pls z B F)" using insert by simp
also have "... = sum_with pls z B (insert x F)" using insert sum_with_insert[of B]
by (simp add: image_subset_iff)
finally show ?case .
qed
section ‹Linear algebra complements›
subsection ‹Additional properties of matrices›
lemma smult_one:
shows "(1::'a::monoid_mult) ⋅⇩m A = A" by (simp add:eq_matI)
lemma times_diag_index:
fixes A::"'a::comm_ring Matrix.mat"
assumes "A ∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and "diagonal_mat B"
and "j < n"
and "i < n"
shows "Matrix.vec_index (Matrix.row (A*B) j) i = diag_mat B ! i *A $$ (j, i)"
proof -
have "Matrix.vec_index (Matrix.row (A*B) j) i = (A*B) $$ (j,i)"
using Matrix.row_def[of "A*B" ] assms by simp
also have "... = Matrix.scalar_prod (Matrix.row A j) (Matrix.col B i)" using assms
times_mat_def[of A] by simp
also have "... = Matrix.scalar_prod (Matrix.col B i) (Matrix.row A j)"
using comm_scalar_prod[of "Matrix.row A j" n] assms by auto
also have "... = (Matrix.vec_index (Matrix.col B i) i) * (Matrix.vec_index (Matrix.row A j) i)"
unfolding Matrix.scalar_prod_def
proof (rule sum_but_one)
show "i < dim_vec (Matrix.row A j)" using assms by simp
show "∀ia<dim_vec (Matrix.row A j). ia ≠ i ⟶ Matrix.vec_index (Matrix.col B i) ia = 0" using assms
by (metis carrier_matD(1) carrier_matD(2) diagonal_mat_def index_col index_row(2))
qed
also have "... = B $$(i,i) * (Matrix.vec_index (Matrix.row A j) i)" using assms by auto
also have "... = diag_mat B ! i * (Matrix.vec_index (Matrix.row A j) i)" unfolding diag_mat_def
using assms by simp
also have "... = diag_mat B ! i * A $$ (j, i)" using assms by simp
finally show ?thesis .
qed
lemma inner_prod_adjoint_comp:
assumes "(U::'a::conjugatable_field Matrix.mat) ∈ carrier_mat n n"
and "(V::'a::conjugatable_field Matrix.mat) ∈ carrier_mat n n"
and "i < n"
and "j < n"
shows "Complex_Matrix.inner_prod (Matrix.col V i) (Matrix.col U j) =
((Complex_Matrix.adjoint V) * U) $$ (i, j)"
proof -
have "Complex_Matrix.inner_prod (Matrix.col V i) (Matrix.col U j) =
Matrix.scalar_prod (Matrix.col U j) (Matrix.row (Complex_Matrix.adjoint V) i)"
using adjoint_row[of i V] assms by simp
also have "... = Matrix.scalar_prod (Matrix.row (Complex_Matrix.adjoint V) i) (Matrix.col U j)"
by (metis adjoint_row assms(1) assms(2) assms(3) carrier_matD(1) carrier_matD(2) Matrix.col_dim
conjugate_vec_sprod_comm)
also have "... = ((Complex_Matrix.adjoint V) * U) $$ (i, j)" using assms
by (simp add:times_mat_def)
finally show ?thesis .
qed
lemma mat_unit_vec_col:
assumes "(A::'a::conjugatable_field Matrix.mat) ∈ carrier_mat n n"
and "i < n"
shows "A *⇩v (unit_vec n i) = Matrix.col A i"
proof
show "dim_vec (A *⇩v unit_vec n i) = dim_vec (Matrix.col A i)" using assms by simp
show "⋀j. j < dim_vec (Matrix.col A i) ⟹ Matrix.vec_index (A *⇩v unit_vec n i) j =
Matrix.vec_index (Matrix.col A i) j"
proof -
fix j
assume "j < dim_vec (Matrix.col A i)"
hence "Matrix.vec_index (A *⇩v unit_vec n i) j =
Matrix.scalar_prod (Matrix.row A j) (unit_vec n i)" unfolding mult_mat_vec_def by simp
also have "... = Matrix.scalar_prod (unit_vec n i) (Matrix.row A j)" using comm_scalar_prod
assms by auto
also have "... = (Matrix.vec_index (unit_vec n i) i) * (Matrix.vec_index (Matrix.row A j) i)"
unfolding Matrix.scalar_prod_def
proof (rule sum_but_one)
show "i < dim_vec (Matrix.row A j)" using assms by auto
show "∀ia<dim_vec (Matrix.row A j). ia ≠ i ⟶ Matrix.vec_index (unit_vec n i) ia = 0"
using assms unfolding unit_vec_def by auto
qed
also have "... = (Matrix.vec_index (Matrix.row A j) i)" using assms by simp
also have "... = A $$ (j, i)" using assms ‹j < dim_vec (Matrix.col A i)› by simp
also have "... = Matrix.vec_index (Matrix.col A i) j" using assms ‹j < dim_vec (Matrix.col A i)› by simp
finally show "Matrix.vec_index (A *⇩v unit_vec n i) j =
Matrix.vec_index (Matrix.col A i) j" .
qed
qed
lemma mat_prod_unit_vec_cong:
assumes "(A::'a::conjugatable_field Matrix.mat) ∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and "⋀i. i < n ⟹ A *⇩v (unit_vec n i) = B *⇩v (unit_vec n i)"
shows "A = B"
proof
show "dim_row A = dim_row B" using assms by simp
show "dim_col A = dim_col B" using assms by simp
show "⋀i j. i < dim_row B ⟹ j < dim_col B ⟹ A $$ (i, j) = B $$ (i, j)"
proof -
fix i j
assume ij: "i < dim_row B" "j < dim_col B"
hence "A $$ (i,j) = Matrix.vec_index (Matrix.col A j) i" using assms by simp
also have "... = Matrix.vec_index (A *⇩v (unit_vec n j)) i" using mat_unit_vec_col[of A] ij assms
by simp
also have "... = Matrix.vec_index (B *⇩v (unit_vec n j)) i" using assms ij by simp
also have "... = Matrix.vec_index (Matrix.col B j) i" using mat_unit_vec_col ij assms by simp
also have "... = B $$ (i,j)" using assms ij by simp
finally show "A $$ (i, j) = B $$ (i, j)" .
qed
qed
lemma smult_smult_times:
fixes a::"'a::semigroup_mult"
shows "a⋅⇩m (k ⋅⇩m A) = (a * k)⋅⇩m A"
proof
show r:"dim_row (a ⋅⇩m (k ⋅⇩m A)) = dim_row (a * k ⋅⇩m A)" by simp
show c:"dim_col (a ⋅⇩m (k ⋅⇩m A)) = dim_col (a * k ⋅⇩m A)" by simp
show "⋀i j. i < dim_row (a * k ⋅⇩m A) ⟹
j < dim_col (a * k ⋅⇩m A) ⟹ (a ⋅⇩m (k ⋅⇩m A)) $$ (i, j) = (a * k ⋅⇩m A) $$ (i, j)"
proof -
fix i j
assume "i < dim_row (a * k ⋅⇩m A)" and "j < dim_col (a * k ⋅⇩m A)" note ij = this
hence "(a ⋅⇩m (k ⋅⇩m A)) $$ (i, j) = a * (k ⋅⇩m A) $$ (i, j)" by simp
also have "... = a * (k * A $$ (i,j))" using ij by simp
also have "... = (a * k) * A $$ (i,j)"
by (simp add: semigroup_mult_class.mult.assoc)
also have "... = (a * k ⋅⇩m A) $$ (i, j)" using r c ij by simp
finally show "(a ⋅⇩m (k ⋅⇩m A)) $$ (i, j) = (a * k ⋅⇩m A) $$ (i, j)" .
qed
qed
lemma mat_minus_minus:
fixes A :: "'a :: ab_group_add Matrix.mat"
assumes "A ∈ carrier_mat n m"
and "B∈ carrier_mat n m"
and "C∈ carrier_mat n m"
shows "A - (B - C) = A - B + C"
proof
show "dim_row (A - (B - C)) = dim_row (A - B + C)" using assms by simp
show "dim_col (A - (B - C)) = dim_col (A - B + C)" using assms by simp
show "⋀i j. i < dim_row (A - B + C) ⟹ j < dim_col (A - B + C) ⟹
(A - (B - C)) $$ (i, j) = (A - B + C) $$ (i, j)"
proof -
fix i j
assume "i < dim_row (A - B + C)" and "j < dim_col (A - B + C)" note ij = this
have "(A - (B - C)) $$ (i, j) = (A $$ (i,j) - B $$ (i,j) + C $$ (i,j))" using ij assms by simp
also have "... = (A - B + C) $$ (i, j)" using assms ij by simp
finally show "(A - (B - C)) $$ (i, j) = (A - B + C) $$ (i, j)" .
qed
qed
subsection ‹Complements on complex matrices›
lemma hermitian_square:
assumes "hermitian M"
shows "M ∈ carrier_mat (dim_row M) (dim_row M)"
proof -
have "dim_col M = dim_row M" using assms unfolding hermitian_def adjoint_def
by (metis adjoint_dim_col)
thus ?thesis by auto
qed
lemma hermitian_add:
assumes "A∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and "hermitian A"
and "hermitian B"
shows "hermitian (A + B)" unfolding hermitian_def
by (metis adjoint_add assms hermitian_def)
lemma hermitian_minus:
assumes "A∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and "hermitian A"
and "hermitian B"
shows "hermitian (A - B)" unfolding hermitian_def
by (metis adjoint_minus assms hermitian_def)
lemma hermitian_smult:
fixes a::real
fixes A::"complex Matrix.mat"
assumes "A ∈ carrier_mat n n"
and "hermitian A"
shows "hermitian (a ⋅⇩m A)"
proof -
have dim: "Complex_Matrix.adjoint A ∈ carrier_mat n n" using assms by (simp add: adjoint_dim)
{
fix i j
assume "i < n" and "j < n"
hence "Complex_Matrix.adjoint (a ⋅⇩m A) $$ (i,j) = a * (Complex_Matrix.adjoint A $$ (i,j))"
using adjoint_scale[of a A] assms by simp
also have "... = a * (A $$ (i,j))" using assms unfolding hermitian_def by simp
also have "... = (a ⋅⇩m A) $$ (i,j)" using ‹i < n› ‹j < n› assms by simp
finally have "Complex_Matrix.adjoint (a ⋅⇩m A) $$ (i,j) = (a ⋅⇩m A) $$ (i,j)" .
}
thus ?thesis using dim assms unfolding hermitian_def by auto
qed
lemma unitary_eigenvalues_norm_square:
fixes U::"complex Matrix.mat"
assumes "unitary U"
and "U ∈ carrier_mat n n"
and "eigenvalue U k"
shows "conjugate k * k = 1"
proof -
have "∃v. eigenvector U v k" using assms unfolding eigenvalue_def by simp
from this obtain v where "eigenvector U v k" by auto
define vn where "vn = vec_normalize v"
have "eigenvector U vn k" using normalize_keep_eigenvector ‹eigenvector U v k›
using assms(2) eigenvector_def vn_def by blast
have "vn ∈ carrier_vec n"
using ‹eigenvector U v k› assms(2) eigenvector_def normalized_vec_dim vn_def by blast
have "Complex_Matrix.inner_prod vn vn = 1" using ‹vn = vec_normalize v› ‹eigenvector U v k›
eigenvector_def normalized_vec_norm by blast
hence "conjugate k * k = conjugate k * k * Complex_Matrix.inner_prod vn vn" by simp
also have "... = conjugate k * Complex_Matrix.inner_prod vn (k ⋅⇩v vn)"
proof -
have "k * Complex_Matrix.inner_prod vn vn = Complex_Matrix.inner_prod vn (k ⋅⇩v vn)"
using inner_prod_smult_left[of vn n vn k] ‹vn ∈ carrier_vec n› by simp
thus ?thesis by simp
qed
also have "... = Complex_Matrix.inner_prod (k ⋅⇩v vn) (k ⋅⇩v vn)"
using inner_prod_smult_right[of vn n _ k] by (simp add: ‹vn ∈ carrier_vec n›)
also have "... = Complex_Matrix.inner_prod (U *⇩v vn) (U *⇩v vn)"
using ‹eigenvector U vn k› unfolding eigenvector_def by simp
also have "... =
Complex_Matrix.inner_prod (Complex_Matrix.adjoint U *⇩v (U *⇩v vn)) vn"
using adjoint_def_alter[of "U *⇩v vn" n vn n U] assms
by (metis ‹eigenvector U vn k› carrier_matD(1) carrier_vec_dim_vec dim_mult_mat_vec
eigenvector_def)
also have "... = Complex_Matrix.inner_prod vn vn"
proof -
have "Complex_Matrix.adjoint U *⇩v (U *⇩v vn) = (Complex_Matrix.adjoint U * U) *⇩v vn"
using assms
by (metis ‹eigenvector U vn k› adjoint_dim assoc_mult_mat_vec carrier_matD(1) eigenvector_def)
also have "... = vn" using assms unfolding unitary_def inverts_mat_def
by (metis ‹eigenvector U vn k› assms(1) eigenvector_def one_mult_mat_vec unitary_simps(1))
finally show ?thesis by simp
qed
also have "... = 1" using ‹vn = vec_normalize v› ‹eigenvector U v k› eigenvector_def
normalized_vec_norm by blast
finally show ?thesis .
qed
lemma outer_prod_smult_left:
fixes v::"complex Matrix.vec"
shows "outer_prod (a ⋅⇩v v) w = a ⋅⇩m outer_prod v w"
proof -
define paw where "paw = outer_prod (a ⋅⇩v v) w"
define apw where "apw = a ⋅⇩m outer_prod v w"
have "paw = apw"
proof
have "dim_row paw = dim_vec v" unfolding paw_def using outer_prod_dim
by (metis carrier_matD(1) carrier_vec_dim_vec index_smult_vec(2))
also have "... = dim_row apw" unfolding apw_def using outer_prod_dim
by (metis carrier_matD(1) carrier_vec_dim_vec index_smult_mat(2))
finally show dr: "dim_row paw = dim_row apw" .
have "dim_col paw = dim_vec w" unfolding paw_def using outer_prod_dim
using carrier_vec_dim_vec by blast
also have "... = dim_col apw" unfolding apw_def using outer_prod_dim
by (metis apw_def carrier_matD(2) carrier_vec_dim_vec smult_carrier_mat)
finally show dc: "dim_col paw = dim_col apw" .
show "⋀i j. i < dim_row apw ⟹ j < dim_col apw ⟹ paw $$ (i, j) = apw $$ (i, j)"
proof -
fix i j
assume "i < dim_row apw" and "j < dim_col apw" note ij = this
hence "paw $$ (i,j) = a * (Matrix.vec_index v i) * cnj (Matrix.vec_index w j)"
using dr dc unfolding paw_def outer_prod_def by simp
also have "... = apw $$ (i,j)" using dr dc ij unfolding apw_def outer_prod_def by simp
finally show "paw $$ (i, j) = apw $$ (i, j)" .
qed
qed
thus ?thesis unfolding paw_def apw_def by simp
qed
lemma outer_prod_smult_right:
fixes v::"complex Matrix.vec"
shows "outer_prod v (a ⋅⇩v w) = (conjugate a) ⋅⇩m outer_prod v w"
proof -
define paw where "paw = outer_prod v (a ⋅⇩v w)"
define apw where "apw = (conjugate a) ⋅⇩m outer_prod v w"
have "paw = apw"
proof
have "dim_row paw = dim_vec v" unfolding paw_def using outer_prod_dim
by (metis carrier_matD(1) carrier_vec_dim_vec)
also have "... = dim_row apw" unfolding apw_def using outer_prod_dim
by (metis carrier_matD(1) carrier_vec_dim_vec index_smult_mat(2))
finally show dr: "dim_row paw = dim_row apw" .
have "dim_col paw = dim_vec w" unfolding paw_def using outer_prod_dim
using carrier_vec_dim_vec by (metis carrier_matD(2) index_smult_vec(2))
also have "... = dim_col apw" unfolding apw_def using outer_prod_dim
by (metis apw_def carrier_matD(2) carrier_vec_dim_vec smult_carrier_mat)
finally show dc: "dim_col paw = dim_col apw" .
show "⋀i j. i < dim_row apw ⟹ j < dim_col apw ⟹ paw $$ (i, j) = apw $$ (i, j)"
proof -
fix i j
assume "i < dim_row apw" and "j < dim_col apw" note ij = this
hence "paw $$ (i,j) = (conjugate a) * (Matrix.vec_index v i) * cnj (Matrix.vec_index w j)"
using dr dc unfolding paw_def outer_prod_def by simp
also have "... = apw $$ (i,j)" using dr dc ij unfolding apw_def outer_prod_def by simp
finally show "paw $$ (i, j) = apw $$ (i, j)" .
qed
qed
thus ?thesis unfolding paw_def apw_def by simp
qed
lemma outer_prod_add_left:
fixes v::"complex Matrix.vec"
assumes "dim_vec v = dim_vec x"
shows "outer_prod (v + x) w = outer_prod v w + (outer_prod x w)"
proof -
define paw where "paw = outer_prod (v+x) w"
define apw where "apw = outer_prod v w + (outer_prod x w)"
have "paw = apw"
proof
have rv: "dim_row paw = dim_vec v" unfolding paw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_add_vec(2) paw_def)
also have "... = dim_row apw" unfolding apw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_add_mat(2))
finally show dr: "dim_row paw = dim_row apw" .
have cw: "dim_col paw = dim_vec w" unfolding paw_def using outer_prod_dim assms
using carrier_vec_dim_vec by (metis carrier_matD(2))
also have "... = dim_col apw" unfolding apw_def using outer_prod_dim
by (metis apw_def carrier_matD(2) carrier_vec_dim_vec add_carrier_mat)
finally show dc: "dim_col paw = dim_col apw" .
show "⋀i j. i < dim_row apw ⟹ j < dim_col apw ⟹ paw $$ (i, j) = apw $$ (i, j)"
proof -
fix i j
assume "i < dim_row apw" and "j < dim_col apw" note ij = this
hence "paw $$ (i,j) = (Matrix.vec_index v i + Matrix.vec_index x i) *
cnj (Matrix.vec_index w j)"
using dr dc unfolding paw_def outer_prod_def by simp
also have "... = Matrix.vec_index v i * cnj (Matrix.vec_index w j) +
Matrix.vec_index x i * cnj (Matrix.vec_index w j)"
by (simp add: ring_class.ring_distribs(2))
also have "... = (outer_prod v w) $$ (i,j) + (outer_prod x w) $$ (i,j)"
using rv cw dr dc ij assms unfolding outer_prod_def by auto
also have "... = apw $$ (i,j)" using dr dc ij unfolding apw_def outer_prod_def by simp
finally show "paw $$ (i, j) = apw $$ (i, j)" .
qed
qed
thus ?thesis unfolding paw_def apw_def by simp
qed
lemma outer_prod_add_right:
fixes v::"complex Matrix.vec"
assumes "dim_vec w = dim_vec x"
shows "outer_prod v (w + x) = outer_prod v w + (outer_prod v x)"
proof -
define paw where "paw = outer_prod v (w+x)"
define apw where "apw = outer_prod v w + (outer_prod v x)"
have "paw = apw"
proof
have rv: "dim_row paw = dim_vec v" unfolding paw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_add_vec(2) paw_def)
also have "... = dim_row apw" unfolding apw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_add_mat(2))
finally show dr: "dim_row paw = dim_row apw" .
have cw: "dim_col paw = dim_vec w" unfolding paw_def using outer_prod_dim assms
using carrier_vec_dim_vec
by (metis carrier_matD(2) index_add_vec(2) paw_def)
also have "... = dim_col apw" unfolding apw_def using outer_prod_dim
by (metis assms carrier_matD(2) carrier_vec_dim_vec index_add_mat(3))
finally show dc: "dim_col paw = dim_col apw" .
show "⋀i j. i < dim_row apw ⟹ j < dim_col apw ⟹ paw $$ (i, j) = apw $$ (i, j)"
proof -
fix i j
assume "i < dim_row apw" and "j < dim_col apw" note ij = this
hence "paw $$ (i,j) = Matrix.vec_index v i *
(cnj (Matrix.vec_index w j + (Matrix.vec_index x j)))"
using dr dc unfolding paw_def outer_prod_def by simp
also have "... = Matrix.vec_index v i * cnj (Matrix.vec_index w j) +
Matrix.vec_index v i * cnj (Matrix.vec_index x j)"
by (simp add: ring_class.ring_distribs(1))
also have "... = (outer_prod v w) $$ (i,j) + (outer_prod v x) $$ (i,j)"
using rv cw dr dc ij assms unfolding outer_prod_def by auto
also have "... = apw $$ (i,j)" using dr dc ij unfolding apw_def outer_prod_def by simp
finally show "paw $$ (i, j) = apw $$ (i, j)" .
qed
qed
thus ?thesis unfolding paw_def apw_def by simp
qed
lemma outer_prod_minus_left:
fixes v::"complex Matrix.vec"
assumes "dim_vec v = dim_vec x"
shows "outer_prod (v - x) w = outer_prod v w - (outer_prod x w)"
proof -
define paw where "paw = outer_prod (v-x) w"
define apw where "apw = outer_prod v w - (outer_prod x w)"
have "paw = apw"
proof
have rv: "dim_row paw = dim_vec v" unfolding paw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_minus_vec(2) paw_def)
also have "... = dim_row apw" unfolding apw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_minus_mat(2))
finally show dr: "dim_row paw = dim_row apw" .
have cw: "dim_col paw = dim_vec w" unfolding paw_def using outer_prod_dim assms
using carrier_vec_dim_vec by (metis carrier_matD(2))
also have "... = dim_col apw" unfolding apw_def using outer_prod_dim
by (metis apw_def carrier_matD(2) carrier_vec_dim_vec minus_carrier_mat)
finally show dc: "dim_col paw = dim_col apw" .
show "⋀i j. i < dim_row apw ⟹ j < dim_col apw ⟹ paw $$ (i, j) = apw $$ (i, j)"
proof -
fix i j
assume "i < dim_row apw" and "j < dim_col apw" note ij = this
hence "paw $$ (i,j) = (Matrix.vec_index v i - Matrix.vec_index x i) *
cnj (Matrix.vec_index w j)"
using dr dc unfolding paw_def outer_prod_def by simp
also have "... = Matrix.vec_index v i * cnj (Matrix.vec_index w j) -
Matrix.vec_index x i * cnj (Matrix.vec_index w j)"
by (simp add: ring_class.ring_distribs)
also have "... = (outer_prod v w) $$ (i,j) - (outer_prod x w) $$ (i,j)"
using rv cw dr dc ij assms unfolding outer_prod_def by auto
also have "... = apw $$ (i,j)" using dr dc ij unfolding apw_def outer_prod_def by simp
finally show "paw $$ (i, j) = apw $$ (i, j)" .
qed
qed
thus ?thesis unfolding paw_def apw_def by simp
qed
lemma outer_prod_minus_right:
fixes v::"complex Matrix.vec"
assumes "dim_vec w = dim_vec x"
shows "outer_prod v (w - x) = outer_prod v w - (outer_prod v x)"
proof -
define paw where "paw = outer_prod v (w-x)"
define apw where "apw = outer_prod v w - (outer_prod v x)"
have "paw = apw"
proof
have rv: "dim_row paw = dim_vec v" unfolding paw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec paw_def)
also have "... = dim_row apw" unfolding apw_def using outer_prod_dim assms
by (metis carrier_matD(1) carrier_vec_dim_vec index_minus_mat(2))
finally show dr: "dim_row paw = dim_row apw" .
have cw: "dim_col paw = dim_vec w" unfolding paw_def using outer_prod_dim assms
using carrier_vec_dim_vec
by (metis carrier_matD(2) index_minus_vec(2) paw_def)
also have "... = dim_col apw" unfolding apw_def using outer_prod_dim
by (metis assms carrier_matD(2) carrier_vec_dim_vec index_minus_mat(3))
finally show dc: "dim_col paw = dim_col apw" .
show "⋀i j. i < dim_row apw ⟹ j < dim_col apw ⟹ paw $$ (i, j) = apw $$ (i, j)"
proof -
fix i j
assume "i < dim_row apw" and "j < dim_col apw" note ij = this
hence "paw $$ (i,j) = Matrix.vec_index v i *
(cnj (Matrix.vec_index w j - (Matrix.vec_index x j)))"
using dr dc unfolding paw_def outer_prod_def by simp
also have "... = Matrix.vec_index v i * cnj (Matrix.vec_index w j) -
Matrix.vec_index v i * cnj (Matrix.vec_index x j)"
by (simp add: ring_class.ring_distribs)
also have "... = (outer_prod v w) $$ (i,j) - (outer_prod v x) $$ (i,j)"
using rv cw dr dc ij assms unfolding outer_prod_def by auto
also have "... = apw $$ (i,j)" using dr dc ij unfolding apw_def outer_prod_def by simp
finally show "paw $$ (i, j) = apw $$ (i, j)" .
qed
qed
thus ?thesis unfolding paw_def apw_def by simp
qed
lemma outer_minus_minus:
fixes a::"complex Matrix.vec"
assumes "dim_vec a = dim_vec b"
and "dim_vec u = dim_vec v"
shows "outer_prod (a - b) (u - v) = outer_prod a u - outer_prod a v -
outer_prod b u + outer_prod b v"
proof -
have "outer_prod (a - b) (u - v) = outer_prod a (u - v)
- outer_prod b (u - v)" using outer_prod_minus_left assms by simp
also have "... = outer_prod a u - outer_prod a v -
outer_prod b (u - v)" using assms outer_prod_minus_right by simp
also have "... = outer_prod a u - outer_prod a v -
(outer_prod b u - outer_prod b v)" using assms outer_prod_minus_right by simp
also have "... = outer_prod a u - outer_prod a v -
outer_prod b u + outer_prod b v"
proof (rule mat_minus_minus)
show "outer_prod b u ∈ carrier_mat (dim_vec b) (dim_vec u)" by simp
show "outer_prod b v ∈ carrier_mat (dim_vec b) (dim_vec u)" using assms by simp
show "outer_prod a u - outer_prod a v ∈ carrier_mat (dim_vec b) (dim_vec u)" using assms
by (metis carrier_vecI minus_carrier_mat outer_prod_dim)
qed
finally show ?thesis .
qed
lemma outer_trace_inner:
assumes "A ∈ carrier_mat n n"
and "dim_vec u = n"
and "dim_vec v = n"
shows "Complex_Matrix.trace (outer_prod u v * A) = Complex_Matrix.inner_prod v (A *⇩v u)"
proof -
have "Complex_Matrix.trace (outer_prod u v * A) = Complex_Matrix.trace (A * outer_prod u v)"
proof (rule trace_comm)
show "A ∈ carrier_mat n n" using assms by simp
show "outer_prod u v ∈ carrier_mat n n" using assms
by (metis carrier_vec_dim_vec outer_prod_dim)
qed
also have "... = Complex_Matrix.inner_prod v (A *⇩v u)" using trace_outer_prod_right[of A n u v]
assms carrier_vec_dim_vec by metis
finally show ?thesis .
qed
lemma zero_hermitian:
shows "hermitian (0⇩m n n)" unfolding hermitian_def
by (metis adjoint_minus hermitian_def hermitian_one minus_r_inv_mat one_carrier_mat)
lemma trace_1:
shows "Complex_Matrix.trace ((1⇩m n)::complex Matrix.mat) =(n::complex)" using one_mat_def
by (simp add: Complex_Matrix.trace_def Matrix.mat_def)
lemma trace_add:
assumes "square_mat A"
and "square_mat B"
and "dim_row A = dim_row B"
shows "Complex_Matrix.trace (A + B) = Complex_Matrix.trace A + Complex_Matrix.trace B"
using assms by (simp add: Complex_Matrix.trace_def sum.distrib)
lemma bra_vec_carrier:
shows "bra_vec v ∈ carrier_mat 1 (dim_vec v)"
proof -
have "dim_row (ket_vec v) = dim_vec v" unfolding ket_vec_def by simp
thus ?thesis using bra_bra_vec[of v] bra_def[of "ket_vec v"] by simp
qed
lemma mat_mult_ket_carrier:
assumes "A∈ carrier_mat n m"
shows "A * |v⟩ ∈ carrier_mat n 1" using assms
by (metis bra_bra_vec bra_vec_carrier carrier_matD(1) carrier_matI dagger_of_ket_is_bra
dim_row_of_dagger index_mult_mat(2) index_mult_mat(3))
lemma mat_mult_ket:
assumes "A ∈ carrier_mat n m"
and "dim_vec v = m"
shows "A * |v⟩ = |A *⇩v v⟩"
proof -
have rn: "dim_row (A * |v⟩) = n" unfolding times_mat_def using assms by simp
have co: "dim_col |A *⇩v v⟩ = 1" using assms unfolding ket_vec_def by simp
have cov: "dim_col |v⟩ = 1" using assms unfolding ket_vec_def by simp
have er: "dim_row (A * |v⟩) = dim_row |A *⇩v v⟩" using assms
by (metis bra_bra_vec bra_vec_carrier carrier_matD(2) dagger_of_ket_is_bra dim_col_of_dagger
dim_mult_mat_vec index_mult_mat(2))
have ec: "dim_col (A * |v⟩) = dim_col |A *⇩v v⟩" using assms
by (metis carrier_matD(2) index_mult_mat(3) mat_mult_ket_carrier)
{
fix i::nat
fix j::nat
assume "i < n"
and "j < 1"
hence "j = 0" by simp
have "(A * |v⟩) $$ (i,0) = Matrix.scalar_prod (Matrix.row A i) (Matrix.col |v⟩ 0)"
using times_mat_def[of A] ‹i < n› rn cov by simp
also have "... = Matrix.scalar_prod (Matrix.row A i) v" using ket_vec_col by simp
also have "... = |A *⇩v v⟩ $$ (i,j)" unfolding mult_mat_vec_def
using ‹i < n› ‹j = 0› assms(1) by auto
} note idx = this
have "A * |v⟩ = Matrix.mat n 1 (λ(i, j). Matrix.scalar_prod (Matrix.row A i) (Matrix.col |v⟩ j))"
using assms unfolding times_mat_def ket_vec_def by simp
also have "... = |A *⇩v v⟩" using er ec idx rn co by auto
finally show ?thesis .
qed
lemma unitary_density:
assumes "density_operator R"
and "unitary U"
and "R∈ carrier_mat n n"
and "U∈ carrier_mat n n"
shows "density_operator (U * R * (Complex_Matrix.adjoint U))" unfolding density_operator_def
proof (intro conjI)
show "Complex_Matrix.positive (U * R * Complex_Matrix.adjoint U)"
proof (rule positive_close_under_left_right_mult_adjoint)
show "U ∈ carrier_mat n n" using assms by simp
show "R ∈ carrier_mat n n" using assms by simp
show "Complex_Matrix.positive R" using assms unfolding density_operator_def by simp
qed
have "Complex_Matrix.trace (U * R * Complex_Matrix.adjoint U) =
Complex_Matrix.trace (Complex_Matrix.adjoint U * U * R)"
using trace_comm[of "U * R" n "Complex_Matrix.adjoint U"] assms
by (metis adjoint_dim mat_assoc_test(10))
also have "... = Complex_Matrix.trace R" using assms by simp
also have "... = 1" using assms unfolding density_operator_def by simp
finally show "Complex_Matrix.trace (U * R * Complex_Matrix.adjoint U) = 1" .
qed
subsection ‹Tensor product complements›
lemma tensor_vec_dim[simp]:
shows "dim_vec (tensor_vec u v) = dim_vec u * (dim_vec v)"
proof -
have "length (mult.vec_vec_Tensor (*) (list_of_vec u) (list_of_vec v)) =
length (list_of_vec u) * length (list_of_vec v)"
using mult.vec_vec_Tensor_length[of "1::real" "(*)" "list_of_vec u" "list_of_vec v"]
by (simp add: Matrix_Tensor.mult_def)
thus ?thesis unfolding tensor_vec_def by simp
qed
lemma index_tensor_vec[simp]:
assumes "0 < dim_vec v"
and "i < dim_vec u * dim_vec v"
shows "vec_index (tensor_vec u v) i =
vec_index u (i div (dim_vec v)) * vec_index v (i mod dim_vec v)"
proof -
have m: "Matrix_Tensor.mult (1::complex) (*)" by (simp add: Matrix_Tensor.mult_def)
have "length (list_of_vec v) = dim_vec v" using assms by simp
hence "vec_index (tensor_vec u v) i = (*) (vec_index u (i div dim_vec v)) (vec_index v (i mod dim_vec v))"
unfolding tensor_vec_def using mult.vec_vec_Tensor_elements assms m
by (metis (mono_tags, lifting) length_greater_0_conv length_list_of_vec list_of_vec_index
mult.vec_vec_Tensor_elements vec_of_list_index)
thus ?thesis by simp
qed
lemma outer_prod_tensor_comm:
fixes a::"complex Matrix.vec"
fixes u::"complex Matrix.vec"
assumes "0 < dim_vec a"
and "0 < dim_vec b"
shows "outer_prod (tensor_vec u v) (tensor_vec a b) = tensor_mat (outer_prod u a) (outer_prod v b)"
proof -
define ot where "ot = outer_prod (tensor_vec u v) (tensor_vec a b)"
define to where "to = tensor_mat (outer_prod u a) (outer_prod v b)"
define dv where "dv = dim_vec v"
define db where "db = dim_vec b"
have "ot = to"
proof
have ro: "dim_row ot = dim_vec u * dim_vec v" unfolding ot_def outer_prod_def by simp
have "dim_row to = dim_row (outer_prod u a) * dim_row (outer_prod v b)"
unfolding to_def by simp
also have "... = dim_vec u * dim_vec v" using outer_prod_dim
by (metis carrier_matD(1) carrier_vec_dim_vec)
finally have rt: "dim_row to = dim_vec u * dim_vec v" .
show "dim_row ot = dim_row to" using ro rt by simp
have co: "dim_col ot = dim_vec a * dim_vec b" unfolding ot_def outer_prod_def by simp
have "dim_col to = dim_col (outer_prod u a) * dim_col (outer_prod v b)" unfolding to_def by simp
also have "... = dim_vec a * dim_vec b" using outer_prod_dim
by (metis carrier_matD(2) carrier_vec_dim_vec)
finally have ct: "dim_col to = dim_vec a * dim_vec b" .
show "dim_col ot = dim_col to" using co ct by simp
show "⋀i j. i < dim_row to ⟹ j < dim_col to ⟹ ot $$ (i, j) = to $$ (i, j)"
proof -
fix i j
assume "i < dim_row to" and "j < dim_col to" note ij = this
have "ot $$ (i,j) = Matrix.vec_index (tensor_vec u v) i *
(conjugate (Matrix.vec_index (tensor_vec a b) j))"
unfolding ot_def outer_prod_def using ij rt ct by simp
also have "... = vec_index u (i div dv) * vec_index v (i mod dv) *
(conjugate (Matrix.vec_index (tensor_vec a b) j))" using ij rt assms
unfolding dv_def
by (metis index_tensor_vec less_nat_zero_code nat_0_less_mult_iff neq0_conv)
also have "... = vec_index u (i div dv) * vec_index v (i mod dv) *
(conjugate (vec_index a (j div db) * vec_index b (j mod db)))" using ij ct assms
unfolding db_def by simp
also have "... = vec_index u (i div dv) * vec_index v (i mod dv) *
(conjugate (vec_index a (j div db))) * (conjugate (vec_index b (j mod db)))" by simp
also have "... = vec_index u (i div dv) * (conjugate (vec_index a (j div db))) *
vec_index v (i mod dv) * (conjugate (vec_index b (j mod db)))" by simp
also have "... = (outer_prod u a) $$ (i div dv, j div db) *
vec_index v (i mod dv) * (conjugate (vec_index b (j mod db)))"
proof -
have "i div dv < dim_vec u" using ij rt unfolding dv_def
by (simp add: less_mult_imp_div_less)
moreover have "j div db < dim_vec a" using ij ct assms unfolding db_def
by (simp add: less_mult_imp_div_less)
ultimately have "vec_index u (i div dv) * (conjugate (vec_index a (j div db))) =
(outer_prod u a) $$ (i div dv, j div db)" unfolding outer_prod_def by simp
thus ?thesis by simp
qed
also have "... = (outer_prod u a) $$ (i div dv, j div db) *
(outer_prod v b) $$ (i mod dv, j mod db)"
proof -
have "i mod dv < dim_vec v" using ij rt unfolding dv_def
using assms mod_less_divisor
by (metis less_nat_zero_code mult.commute neq0_conv times_nat.simps(1))
moreover have "j mod db < dim_vec b" using ij ct assms unfolding db_def
by (simp add: less_mult_imp_div_less)
ultimately have "vec_index v (i mod dv) * (conjugate (vec_index b (j mod db))) =
(outer_prod v b) $$ (i mod dv, j mod db)" unfolding outer_prod_def by simp
thus ?thesis by simp
qed
also have "... = tensor_mat (outer_prod u a) (outer_prod v b) $$ (i, j)"
proof (rule index_tensor_mat[symmetric])
show "dim_row (outer_prod u a) = dim_vec u" unfolding outer_prod_def by simp
show "dim_row (outer_prod v b) = dv" unfolding outer_prod_def dv_def by simp
show "dim_col (outer_prod v b) = db" unfolding db_def outer_prod_def by simp
show "i < dim_vec u * dv" unfolding dv_def using ij rt by simp
show "dim_col (outer_prod u a) = dim_vec a" unfolding outer_prod_def by simp
show "j < dim_vec a * db" unfolding db_def using ij ct by simp
show "0 < dim_vec a" using assms by simp
show "0 < db" unfolding db_def using assms by simp
qed
finally show "ot $$ (i, j) = to $$ (i, j)" unfolding to_def .
qed
qed
thus ?thesis unfolding ot_def to_def by simp
qed
lemma tensor_mat_adjoint:
assumes "m1 ∈ carrier_mat r1 c1"
and "m2 ∈ carrier_mat r2 c2"
and "0 < c1"
and "0 < c2"
and "0 < r1"
and "0 < r2"
shows "Complex_Matrix.adjoint (tensor_mat m1 m2) =
tensor_mat (Complex_Matrix.adjoint m1) (Complex_Matrix.adjoint m2)"
apply (rule eq_matI, auto)
proof -
fix i j
assume "i < dim_col m1 * dim_col m2" and "j < dim_row m1 * dim_row m2" note ij = this
have c1: "dim_col m1 = c1" using assms by simp
have r1: "dim_row m1 = r1" using assms by simp
have c2: "dim_col m2 = c2" using assms by simp
have r2: "dim_row m2 = r2" using assms by simp
have "Complex_Matrix.adjoint (m1 ⨂ m2) $$ (i, j) = conjugate ((m1 ⨂ m2) $$ (j, i))"
using ij by (simp add: adjoint_eval)
also have "... = conjugate (m1 $$ (j div r2, i div c2) * m2 $$ (j mod r2, i mod c2))"
proof -
have "(m1 ⨂ m2) $$ (j, i) = m1 $$ (j div r2, i div c2) * m2 $$ (j mod r2, i mod c2)"
proof (rule index_tensor_mat[of m1 r1 c1 m2 r2 c2 j i], (auto simp add: assms ij c1 c2 r1 r2))
show "j < r1 * r2" using ij r1 r2 by simp
show "i < c1 * c2" using ij c1 c2 by simp
qed
thus ?thesis by simp
qed
also have "... = conjugate (m1 $$ (j div r2, i div c2)) * conjugate ( m2 $$ (j mod r2, i mod c2))"
by simp
also have "... = (Complex_Matrix.adjoint m1) $$ (i div c2, j div r2) *
conjugate ( m2 $$ (j mod r2, i mod c2))"
by (metis adjoint_eval c2 ij less_mult_imp_div_less r2)
also have "... = (Complex_Matrix.adjoint m1) $$ (i div c2, j div r2) *
(Complex_Matrix.adjoint m2) $$ (i mod c2, j mod r2)"
using ‹0 < c2› ‹0 < r2› by (simp add: adjoint_eval c2 r2)
also have "... = (tensor_mat (Complex_Matrix.adjoint m1) (Complex_Matrix.adjoint m2)) $$ (i,j)"
proof (rule index_tensor_mat[symmetric], (simp add: ij c1 c2 r1 r2) +)
show "i < c1 * c2" using ij c1 c2 by simp
show "j < r1 * r2" using ij r1 r2 by simp
show "0 < r1" using assms by simp
show "0 < r2" using assms by simp
qed
finally show "Complex_Matrix.adjoint (m1 ⨂ m2) $$ (i, j) =
(Complex_Matrix.adjoint m1 ⨂ Complex_Matrix.adjoint m2) $$ (i, j)" .
qed
lemma index_tensor_mat':
assumes "0 < dim_col A"
and "0 < dim_col B"
and "i < dim_row A * dim_row B"
and "j < dim_col A * dim_col B"
shows "(A ⨂ B) $$ (i, j) =
A $$ (i div (dim_row B), j div (dim_col B)) * B $$ (i mod (dim_row B), j mod (dim_col B))"
by (rule index_tensor_mat, (simp add: assms)+)
lemma tensor_mat_carrier:
shows "tensor_mat U V ∈ carrier_mat (dim_row U * dim_row V) (dim_col U * dim_col V)" by auto
lemma tensor_mat_id:
assumes "0 < d1"
and "0 < d2"
shows "tensor_mat (1⇩m d1) (1⇩m d2) = 1⇩m (d1 * d2)"
proof (rule eq_matI, auto)
show "tensor_mat (1⇩m d1) (1⇩m d2) $$ (i, i) = 1" if "i < (d1 * d2)" for i
using that index_tensor_mat'[of "1⇩m d1" "1⇩m d2"]
by (simp add: assms less_mult_imp_div_less)
next
show "tensor_mat (1⇩m d1) (1⇩m d2) $$ (i, j) = 0" if "i < d1 * d2" "j < d1 * d2" "i ≠ j" for i j
using that index_tensor_mat[of "1⇩m d1" d1 d1 "1⇩m d2" d2 d2 i j]
by (metis assms(1) assms(2) index_one_mat(1) index_one_mat(2) index_one_mat(3)
less_mult_imp_div_less mod_less_divisor mult_div_mod_eq mult_not_zero)
qed
lemma tensor_mat_hermitian:
assumes "A ∈ carrier_mat n n"
and "B ∈ carrier_mat n' n'"
and "0 < n"
and "0 < n'"
and "hermitian A"
and "hermitian B"
shows "hermitian (tensor_mat A B)" using assms by (metis hermitian_def tensor_mat_adjoint)
lemma tensor_mat_unitary:
assumes "Complex_Matrix.unitary U"
and "Complex_Matrix.unitary V"
and "0 < dim_row U"
and "0 < dim_row V"
shows "Complex_Matrix.unitary (tensor_mat U V)"
proof -
define UI where "UI = tensor_mat U V"
have "Complex_Matrix.adjoint UI =
tensor_mat (Complex_Matrix.adjoint U) (Complex_Matrix.adjoint V)" unfolding UI_def
proof (rule tensor_mat_adjoint)
show "U ∈ carrier_mat (dim_row U) (dim_row U)" using assms unfolding Complex_Matrix.unitary_def
by simp
show "V ∈ carrier_mat (dim_row V) (dim_row V)" using assms unfolding Complex_Matrix.unitary_def
by simp
show "0 < dim_row V" using assms by simp
show "0 < dim_row U" using assms by simp
show "0 < dim_row V" using assms by simp
show "0 < dim_row U" using assms by simp
qed
hence "UI * (Complex_Matrix.adjoint UI) =
tensor_mat (U * Complex_Matrix.adjoint U) (V * Complex_Matrix.adjoint V)"
using mult_distr_tensor[of U "Complex_Matrix.adjoint U" "V" "Complex_Matrix.adjoint V"]
unfolding UI_def
by (metis (no_types, lifting) Complex_Matrix.unitary_def adjoint_dim_col adjoint_dim_row
assms carrier_matD(2) )
also have "... = tensor_mat (1⇩m (dim_row U)) (1⇩m (dim_row V))" using assms unitary_simps(2)
by (metis Complex_Matrix.unitary_def)
also have "... = (1⇩m (dim_row U * dim_row V))" using tensor_mat_id assms by simp
finally have "UI * (Complex_Matrix.adjoint UI) = (1⇩m (dim_row U * dim_row V))" .
hence "inverts_mat UI (Complex_Matrix.adjoint UI)" unfolding inverts_mat_def UI_def by simp
thus ?thesis using assms unfolding Complex_Matrix.unitary_def UI_def
by (metis carrier_matD(2) carrier_matI dim_col_tensor_mat dim_row_tensor_mat)
qed
subsection ‹Fixed carrier matrices locale›
text ‹We define a locale for matrices with a fixed number of rows and columns, and define a
finite sum operation on this locale. The \verb+Type_To_Sets+ transfer tools then permits to obtain
lemmata on the locale for free. ›
locale fixed_carrier_mat =
fixes fc_mats::"'a::field Matrix.mat set"
fixes dimR dimC
assumes fc_mats_carrier: "fc_mats = carrier_mat dimR dimC"
begin
sublocale semigroup_add_on_with fc_mats "(+)"
proof (unfold_locales)
show "⋀a b. a ∈ fc_mats ⟹ b ∈ fc_mats ⟹ a + b ∈ fc_mats" using fc_mats_carrier by simp
show "⋀a b c. a ∈ fc_mats ⟹ b ∈ fc_mats ⟹ c ∈ fc_mats ⟹ a + b + c = a + (b + c)"
using fc_mats_carrier by simp
qed
sublocale ab_semigroup_add_on_with fc_mats "(+)"
proof (unfold_locales)
show "⋀a b. a ∈ fc_mats ⟹ b ∈ fc_mats ⟹ a + b = b + a" using fc_mats_carrier
by (simp add: comm_add_mat)
qed
sublocale comm_monoid_add_on_with fc_mats "(+)" "0⇩m dimR dimC"
proof (unfold_locales)
show "0⇩m dimR dimC ∈ fc_mats" using fc_mats_carrier by simp
show "⋀a. a ∈ fc_mats ⟹ 0⇩m dimR dimC + a = a" using fc_mats_carrier by simp
qed
sublocale ab_group_add_on_with fc_mats "(+)" "0⇩m dimR dimC" "(-)" "uminus"
proof (unfold_locales)
show "⋀a. a ∈ fc_mats ⟹ - a + a = 0⇩m dimR dimC" using fc_mats_carrier by simp
show "⋀a b. a ∈ fc_mats ⟹ b ∈ fc_mats ⟹ a - b = a + - b" using fc_mats_carrier
by (simp add: add_uminus_minus_mat)
show "⋀a. a ∈ fc_mats ⟹ - a ∈ fc_mats" using fc_mats_carrier by simp
qed
end
lemma (in fixed_carrier_mat) smult_mem:
assumes "A ∈ fc_mats"
shows "a ⋅⇩m A ∈ fc_mats" using fc_mats_carrier assms by auto
definition (in fixed_carrier_mat) sum_mat where
"sum_mat A I = sum_with (+) (0⇩m dimR dimC) A I"
lemma (in fixed_carrier_mat) sum_mat_empty[simp]:
shows "sum_mat A {} = 0⇩m dimR dimC" unfolding sum_mat_def by simp
lemma (in fixed_carrier_mat) sum_mat_carrier:
shows "(⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹ sum_mat A I ∈ carrier_mat dimR dimC"
unfolding sum_mat_def using sum_with_mem[of A I] fc_mats_carrier by auto
lemma (in fixed_carrier_mat) sum_mat_insert:
assumes "A x ∈ fc_mats" "A ` I ⊆ fc_mats"
and A: "finite I" and x: "x ∉ I"
shows "sum_mat A (insert x I) = A x + sum_mat A I" unfolding sum_mat_def
using assms sum_with_insert[of A x I] by simp
subsection ‹A locale for square matrices›
locale cpx_sq_mat = fixed_carrier_mat "fc_mats::complex Matrix.mat set" for fc_mats +
assumes dim_eq: "dimR = dimC"
and npos: "0 < dimR"
lemma (in cpx_sq_mat) one_mem:
shows "1⇩m dimR ∈ fc_mats" using fc_mats_carrier dim_eq by simp
lemma (in cpx_sq_mat) square_mats:
assumes "A ∈ fc_mats"
shows "square_mat A" using fc_mats_carrier dim_eq assms by simp
lemma (in cpx_sq_mat) cpx_sq_mat_mult:
assumes "A ∈ fc_mats"
and "B ∈ fc_mats"
shows "A * B ∈ fc_mats"
proof -
have "dim_row (A * B) = dimR" using assms fc_mats_carrier by simp
moreover have "dim_col (A * B) = dimR" using assms fc_mats_carrier dim_eq by simp
ultimately show ?thesis using fc_mats_carrier carrier_mat_def dim_eq by auto
qed
lemma (in cpx_sq_mat) sum_mat_distrib_left:
shows "finite I ⟹ R∈ fc_mats ⟹ (⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹
sum_mat (λi. R * (A i)) I = R * (sum_mat A I)"
proof (induct rule: finite_induct)
case empty
hence a: "sum_mat (λi. R * (A i)) {} = 0⇩m dimR dimC" unfolding sum_mat_def by simp
have "sum_mat A {} = 0⇩m dimR dimC" unfolding sum_mat_def by simp
hence "R * (sum_mat A {}) = 0⇩m dimR dimC" using fc_mats_carrier
right_mult_zero_mat[of R dimR dimC dimC] empty dim_eq by simp
thus ?case using a by simp
next
case (insert x F)
hence "sum_mat (λi. R * A i) (insert x F) = R * (A x) + sum_mat (λi. R * A i) F"
using sum_mat_insert[of "λi. R * A i" x F] by (simp add: image_subsetI fc_mats_carrier dim_eq)
also have "... = R * (A x) + R * (sum_mat A F)" using insert by simp
also have "... = R * (A x + (sum_mat A F))"
by (metis dim_eq fc_mats_carrier insert.prems(1) insert.prems(2) insertCI mult_add_distrib_mat
sum_mat_carrier)
also have "... = R * sum_mat A (insert x F)"
proof -
have "A x + (sum_mat A F) = sum_mat A (insert x F)"
by (rule sum_mat_insert[symmetric], (auto simp add: insert))
thus ?thesis by simp
qed
finally show ?case .
qed
lemma (in cpx_sq_mat) sum_mat_distrib_right:
shows "finite I ⟹ R∈ fc_mats ⟹ (⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹
sum_mat (λi. (A i) * R) I = (sum_mat A I) * R"
proof (induct rule: finite_induct)
case empty
hence a: "sum_mat (λi. (A i) * R) {} = 0⇩m dimR dimC" unfolding sum_mat_def by simp
have "sum_mat A {} = 0⇩m dimR dimC" unfolding sum_mat_def by simp
hence "(sum_mat A {}) * R = 0⇩m dimR dimC" using fc_mats_carrier right_mult_zero_mat[of R ]
dim_eq empty by simp
thus ?case using a by simp
next
case (insert x F)
have a: "(λi. A i * R) ` F ⊆ fc_mats" using insert cpx_sq_mat_mult
by (simp add: image_subsetI)
have "A x * R ∈ fc_mats" using insert
by (metis insertI1 local.fc_mats_carrier mult_carrier_mat dim_eq)
hence "sum_mat (λi. A i * R) (insert x F) = (A x) * R + sum_mat (λi. A i * R) F" using insert a
using sum_mat_insert[of "λi. A i * R" x F] by (simp add: image_subsetI local.fc_mats_carrier)
also have "... = (A x) * R + (sum_mat A F) * R" using insert by simp
also have "... = (A x + (sum_mat A F)) * R"
proof (rule add_mult_distrib_mat[symmetric])
show "A x ∈ carrier_mat dimR dimC" using insert fc_mats_carrier by simp
show "sum_mat A F ∈ carrier_mat dimR dimC" using insert fc_mats_carrier sum_mat_carrier by blast
show "R ∈ carrier_mat dimC dimC" using insert fc_mats_carrier dim_eq by simp
qed
also have "... = sum_mat A (insert x F) * R"
proof -
have "A x + (sum_mat A F) = sum_mat A (insert x F)"
by (rule sum_mat_insert[symmetric], (auto simp add: insert))
thus ?thesis by simp
qed
finally show ?case .
qed
lemma (in cpx_sq_mat) trace_sum_mat:
fixes A::"'b ⇒ complex Matrix.mat"
shows "finite I ⟹ (⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹
Complex_Matrix.trace (sum_mat A I) = (∑ i∈ I. Complex_Matrix.trace (A i))" unfolding sum_mat_def
proof (induct rule: finite_induct)
case empty
then show ?case using trace_zero dim_eq by simp
next
case (insert x F)
have "Complex_Matrix.trace (sum_with (+) (0⇩m dimR dimC) A (insert x F)) =
Complex_Matrix.trace (A x + sum_with (+) (0⇩m dimR dimC) A F)"
using sum_with_insert[of A x F] insert by (simp add: image_subset_iff dim_eq)
also have "... = Complex_Matrix.trace (A x) +
Complex_Matrix.trace (sum_with (+) (0⇩m dimR dimC) A F)" using trace_add square_mats insert
by (metis carrier_matD(1) fc_mats_carrier image_subset_iff insert_iff sum_with_mem)
also have "... = Complex_Matrix.trace (A x) + (∑ i∈ F. Complex_Matrix.trace (A i))"
using insert by simp
also have "... = (∑ i∈ (insert x F). Complex_Matrix.trace (A i))"
using sum_with_insert[of A x F] insert by (simp add: image_subset_iff)
finally show ?case .
qed
lemma (in cpx_sq_mat) cpx_sq_mat_smult:
assumes "A ∈ fc_mats"
shows "x ⋅⇩m A ∈ fc_mats"
using assms fc_mats_carrier by auto
lemma (in cpx_sq_mat) mult_add_distrib_right:
assumes "A∈ fc_mats" "B∈ fc_mats" "C∈ fc_mats"
shows "A * (B + C) = A * B + A * C"
using assms fc_mats_carrier mult_add_distrib_mat dim_eq by simp
lemma (in cpx_sq_mat) mult_add_distrib_left:
assumes "A∈ fc_mats" "B∈ fc_mats" "C∈ fc_mats"
shows "(B + C) * A = B * A + C * A"
using assms fc_mats_carrier add_mult_distrib_mat dim_eq by simp
lemma (in cpx_sq_mat) mult_sum_mat_distrib_left:
shows "finite I ⟹ (⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹ B ∈ fc_mats ⟹
(sum_mat (λi. B * (A i)) I) = B * (sum_mat A I)"
proof (induct rule: finite_induct)
case empty
hence "sum_mat A {} = 0⇩m dimR dimC" using sum_mat_empty by simp
hence "B * (sum_mat A {}) = 0⇩m dimR dimC" using empty by (simp add: fc_mats_carrier dim_eq)
moreover have "sum_mat (λi. B * (A i)) {} = 0⇩m dimR dimC" using sum_mat_empty[of "λi. B * (A i)"]
by simp
ultimately show ?case by simp
next
case (insert x F)
have "sum_mat (λi. B * (A i)) (insert x F) = B * (A x) + sum_mat (λi. B * (A i)) F"
using sum_with_insert[of "λi. B * (A i)" x F] insert
by (simp add: image_subset_iff local.sum_mat_def cpx_sq_mat_mult)
also have "... = B * (A x) + B * (sum_mat A F)" using insert by simp
also have "... = B * (A x + (sum_mat A F))"
proof (rule mult_add_distrib_right[symmetric])
show "B∈ fc_mats" using insert by simp
show "A x ∈ fc_mats" using insert by simp
show "sum_mat A F ∈ fc_mats" using insert by (simp add: fc_mats_carrier sum_mat_carrier)
qed
also have "... = B * (sum_mat A (insert x F))" using sum_with_insert[of A x F] insert
by (simp add: image_subset_iff sum_mat_def)
finally show ?case .
qed
lemma (in cpx_sq_mat) mult_sum_mat_distrib_right:
shows "finite I ⟹ (⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹ B ∈ fc_mats ⟹
(sum_mat (λi. (A i) * B) I) = (sum_mat A I) * B"
proof (induct rule: finite_induct)
case empty
hence "sum_mat A {} = 0⇩m dimR dimC" using sum_mat_empty by simp
hence "(sum_mat A {}) * B = 0⇩m dimR dimC" using empty by (simp add: fc_mats_carrier dim_eq)
moreover have "sum_mat (λi. (A i) * B) {} = 0⇩m dimR dimC" by simp
ultimately show ?case by simp
next
case (insert x F)
have "sum_mat (λi. (A i) * B) (insert x F) = (A x) * B + sum_mat (λi. (A i) * B) F"
using sum_with_insert[of "λi. (A i) * B" x F] insert
by (simp add: image_subset_iff local.sum_mat_def cpx_sq_mat_mult)
also have "... = (A x) * B + (sum_mat A F) * B" using insert by simp
also have "... = (A x + (sum_mat A F)) * B"
proof (rule mult_add_distrib_left[symmetric])
show "B∈ fc_mats" using insert by simp
show "A x ∈ fc_mats" using insert by simp
show "sum_mat A F ∈ fc_mats" using insert by (simp add: fc_mats_carrier sum_mat_carrier)
qed
also have "... = (sum_mat A (insert x F)) * B" using sum_with_insert[of A x F] insert
by (simp add: image_subset_iff sum_mat_def)
finally show ?case .
qed
lemma (in cpx_sq_mat) trace_sum_mat_mat_distrib:
assumes "finite I"
and "⋀i. i∈ I ⟹ B i ∈ fc_mats"
and "A∈ fc_mats"
and "C ∈ fc_mats"
shows "(∑ i∈ I. Complex_Matrix.trace(A * (B i) * C)) =
Complex_Matrix.trace (A * (sum_mat B I) * C)"
proof -
have seq: "sum_mat (λi. A * (B i) * C) I = A * (sum_mat B I) * C"
proof -
have "sum_mat (λi. A * (B i) * C) I = (sum_mat (λi. A * (B i)) I) * C"
proof (rule mult_sum_mat_distrib_right)
show "finite I" using assms by simp
show "C∈ fc_mats" using assms by simp
show "⋀i. i ∈ I ⟹ A * B i ∈ fc_mats" using assms cpx_sq_mat_mult by simp
qed
moreover have "sum_mat (λi. A * (B i)) I = A * (sum_mat B I)"
by (rule mult_sum_mat_distrib_left, (auto simp add: assms))
ultimately show "sum_mat (λi. A * (B i) * C) I = A * (sum_mat B I) * C" by simp
qed
have "(∑ i∈ I. Complex_Matrix.trace(A * (B i) * C)) =
Complex_Matrix.trace (sum_mat (λi. A * (B i) * C) I)"
proof (rule trace_sum_mat[symmetric])
show "finite I" using assms by simp
fix i
assume "i∈ I"
thus "A * B i * C ∈ fc_mats" using assms by (simp add: cpx_sq_mat_mult)
qed
also have "... = Complex_Matrix.trace (A * (sum_mat B I) * C)" using seq by simp
finally show ?thesis .
qed
definition (in cpx_sq_mat) zero_col where
"zero_col U = (λi. if i < dimR then Matrix.col U i else 0⇩v dimR)"
lemma (in cpx_sq_mat) zero_col_dim:
assumes "U ∈ fc_mats"
shows "dim_vec (zero_col U i) = dimR" using assms fc_mats_carrier unfolding zero_col_def by simp
lemma (in cpx_sq_mat) zero_col_col:
assumes "i < dimR"
shows "zero_col U i = Matrix.col U i" using assms unfolding zero_col_def by simp
lemma (in cpx_sq_mat) sum_mat_index:
shows "finite I ⟹ (⋀i. i ∈ I ⟹ (A i)∈ fc_mats) ⟹ i < dimR ⟹ j < dimC ⟹
(sum_mat (λk. (A k)) I) $$ (i,j) = (∑ k∈I. (A k) $$ (i,j))"
proof (induct rule: finite_induct)
case empty
thus ?case unfolding sum_mat_def by simp
next
case (insert x F)
hence "(sum_mat (λk. (A k)) (insert x F)) $$ (i,j) =
(A x + (sum_mat (λk. (A k)) F)) $$ (i,j)" using insert sum_mat_insert[of A]
by (simp add: image_subsetI local.fc_mats_carrier)
also have "... = (A x) $$ (i,j) + (sum_mat (λk. (A k)) F) $$ (i,j)" using insert
sum_mat_carrier[of F A] fc_mats_carrier by simp
also have "... = (A x) $$ (i,j) + (∑ k∈F. (A k) $$ (i,j))" using insert by simp
also have "... = (∑ k∈(insert x F). (A k) $$ (i,j))" using insert by simp
finally show ?case .
qed
lemma (in cpx_sq_mat) sum_mat_cong:
shows "finite I ⟹ (⋀i. i∈ I ⟹ A i = B i) ⟹ (⋀i. i∈ I ⟹ A i ∈ fc_mats) ⟹
(⋀i. i∈ I ⟹ B i ∈ fc_mats) ⟹ sum_mat A I = sum_mat B I"
proof (induct rule: finite_induct)
case empty
then show ?case by simp
next
case (insert x F)
have "sum_mat A (insert x F) = A x + sum_mat A F" using insert sum_mat_insert[of A]
by (simp add: image_subset_iff)
also have "... = B x + sum_mat B F" using insert by simp
also have "... = sum_mat B (insert x F)" using insert sum_mat_insert[of B]
by (simp add: image_subset_iff)
finally show ?case .
qed
lemma (in cpx_sq_mat) smult_sum_mat:
shows "finite I ⟹ (⋀i. i∈ I ⟹ A i ∈ fc_mats) ⟹ a ⋅⇩m sum_mat A I = sum_mat (λi. a ⋅⇩m (A i)) I"
proof (induct rule: finite_induct)
case empty
then show ?case by simp
next
case (insert x F)
have "a ⋅⇩m sum_mat A (insert x F) = a ⋅⇩m (A x + sum_mat A F)" using insert sum_mat_insert[of A]
by (simp add: image_subset_iff)
also have "... = a ⋅⇩m A x + a ⋅⇩m (sum_mat A F)" using insert
by (metis add_smult_distrib_left_mat fc_mats_carrier insert_iff sum_mat_carrier)
also have "... = a ⋅⇩m A x + sum_mat (λi. a ⋅⇩m (A i)) F" using insert by simp
also have "... = sum_mat (λi. a ⋅⇩m (A i)) (insert x F)" using insert
sum_mat_insert[of "(λi. a ⋅⇩m (A i))"] by (simp add: image_subset_iff cpx_sq_mat_smult)
finally show ?case .
qed
lemma (in cpx_sq_mat) zero_sum_mat:
shows "finite I ⟹ sum_mat (λi. ((0⇩m dimR dimR)::complex Matrix.mat)) I = ((0⇩m dimR dimR)::complex Matrix.mat)"
proof (induct rule:finite_induct)
case empty
then show ?case using dim_eq sum_mat_empty by auto
next
case (insert x F)
have "sum_mat (λi. ((0⇩m dimR dimR)::complex Matrix.mat)) (insert x F) =
0⇩m dimR dimR + sum_mat (λi. 0⇩m dimR dimR) F"
using insert dim_eq zero_mem sum_mat_insert[of "λi. ((0⇩m dimR dimR)::complex Matrix.mat)"]
by fastforce
also have "... = ((0⇩m dimR dimR)::complex Matrix.mat)" using insert by auto
finally show ?case .
qed
lemma (in cpx_sq_mat) sum_mat_adjoint:
shows "finite I ⟹ (⋀i. i∈ I ⟹ A i ∈ fc_mats) ⟹
Complex_Matrix.adjoint (sum_mat A I) = sum_mat (λi. Complex_Matrix.adjoint (A i)) I"
proof (induct rule: finite_induct)
case empty
then show ?case using zero_hermitian[of dimR]
by (metis (no_types) dim_eq hermitian_def sum_mat_empty)
next
case (insert x F)
have "Complex_Matrix.adjoint (sum_mat A (insert x F)) =
Complex_Matrix.adjoint (A x + sum_mat A F)" using insert sum_mat_insert[of A]
by (simp add: image_subset_iff)
also have "... = Complex_Matrix.adjoint (A x) + Complex_Matrix.adjoint (sum_mat A F)"
proof (rule adjoint_add)
show "A x ∈ carrier_mat dimR dimC" using insert fc_mats_carrier by simp
show "sum_mat A F ∈ carrier_mat dimR dimC" using insert fc_mats_carrier sum_mat_carrier[of F]
by simp
qed
also have "... = Complex_Matrix.adjoint (A x) + sum_mat (λi. Complex_Matrix.adjoint (A i)) F"
using insert by simp
also have "... = sum_mat (λi. Complex_Matrix.adjoint (A i)) (insert x F)"
proof (rule sum_mat_insert[symmetric], (auto simp add: insert))
show "Complex_Matrix.adjoint (A x) ∈ fc_mats" using insert fc_mats_carrier dim_eq
by (simp add: adjoint_dim)
show "⋀i. i ∈ F ⟹ Complex_Matrix.adjoint (A i) ∈ fc_mats" using insert fc_mats_carrier dim_eq
by (simp add: adjoint_dim)
qed
finally show ?case .
qed
lemma (in cpx_sq_mat) sum_mat_hermitian:
assumes "finite I"
and "∀i∈ I. hermitian (A i)"
and "∀i∈ I. A i∈ fc_mats"
shows "hermitian (sum_mat A I)"
proof -
have "Complex_Matrix.adjoint (sum_mat A I) = sum_mat (λi. Complex_Matrix.adjoint (A i)) I"
using assms sum_mat_adjoint[of I] by simp
also have "... = sum_mat A I"
proof (rule sum_mat_cong, (auto simp add: assms))
show "⋀i. i ∈ I ⟹ Complex_Matrix.adjoint (A i) = A i" using assms
unfolding hermitian_def by simp
show "⋀i. i ∈ I ⟹ Complex_Matrix.adjoint (A i) ∈ fc_mats" using assms fc_mats_carrier dim_eq
by (simp add: adjoint_dim)
qed
finally show ?thesis unfolding hermitian_def .
qed
lemma (in cpx_sq_mat) sum_mat_positive:
shows "finite I ⟹ (⋀i. i∈ I ⟹ Complex_Matrix.positive (A i)) ⟹
(⋀i. i ∈ I ⟹ A i ∈ fc_mats) ⟹ Complex_Matrix.positive (sum_mat A I)"
proof (induct rule: finite_induct)
case empty
then show ?case using positive_zero[of dimR] by (metis (no_types) dim_eq sum_mat_empty)
next
case (insert x F)
hence "sum_mat A (insert x F) = A x + (sum_mat A F)" using sum_mat_insert[of A]
by (simp add: image_subset_iff)
moreover have "Complex_Matrix.positive (A x + (sum_mat A F))"
proof (rule positive_add, (auto simp add: insert))
show "A x ∈ carrier_mat dimR dimR" using insert fc_mats_carrier dim_eq by simp
show "sum_mat A F ∈ carrier_mat dimR dimR" using insert sum_mat_carrier dim_eq
by (metis insertCI)
qed
ultimately show "Complex_Matrix.positive (sum_mat A (insert x F))" by simp
qed
lemma (in cpx_sq_mat) sum_mat_left_ortho_zero:
shows "finite I ⟹
(⋀i. i∈ I ⟹ A i ∈ fc_mats) ⟹ (B ∈ fc_mats) ⟹
(⋀ i. i∈ I ⟹ A i * B = (0⇩m dimR dimR)) ⟹
(sum_mat A I) * B = 0⇩m dimR dimR"
proof (induct rule:finite_induct)
case empty
then show ?case using dim_eq
by (metis finite.intros(1) sum_mat_empty mult_sum_mat_distrib_right)
next
case (insert x F)
have "(sum_mat A (insert x F)) * B =
(A x + sum_mat A F) * B" using insert sum_mat_insert[of A]
by (simp add: image_subset_iff)
also have "... = A x * B + sum_mat A F * B"
proof (rule add_mult_distrib_mat)
show "A x ∈ carrier_mat dimR dimC" using insert fc_mats_carrier by simp
show "sum_mat A F ∈ carrier_mat dimR dimC" using insert
by (metis insert_iff local.fc_mats_carrier sum_mat_carrier)
show "B ∈ carrier_mat dimC dimR" using insert fc_mats_carrier dim_eq by simp
qed
also have "... = A x * B + (0⇩m dimR dimR)" using insert by simp
also have "... = 0⇩m dimR dimR" using insert by simp
finally show ?case .
qed
lemma (in cpx_sq_mat) sum_mat_right_ortho_zero:
shows "finite I ⟹
(⋀i. i∈ I ⟹ A i ∈ fc_mats) ⟹ (B ∈ fc_mats) ⟹
(⋀ i. i∈ I ⟹ B * A i = (0⇩m dimR dimR)) ⟹
B * (sum_mat A I) = 0⇩m dimR dimR"
proof (induct rule:finite_induct)
case empty
then show ?case using dim_eq
by (metis finite.intros(1) sum_mat_empty mult_sum_mat_distrib_left)
next
case (insert x F)
have "B * (sum_mat A (insert x F)) =
B * (A x + sum_mat A F)" using insert sum_mat_insert[of A]
by (simp add: image_subset_iff)
also have "... = B * A x + B * sum_mat A F"
proof (rule mult_add_distrib_mat)
show "A x ∈ carrier_mat dimR dimC" using insert fc_mats_carrier by simp
show "sum_mat A F ∈ carrier_mat dimR dimC" using insert
by (metis insert_iff local.fc_mats_carrier sum_mat_carrier)
show "B ∈ carrier_mat dimC dimR" using insert fc_mats_carrier dim_eq by simp
qed
also have "... = B * A x + (0⇩m dimR dimR)" using insert by simp
also have "... = 0⇩m dimR dimR" using insert by simp
finally show ?case .
qed
lemma (in cpx_sq_mat) sum_mat_ortho_square:
shows "finite I ⟹ (⋀i. i∈ I ⟹ ((A i)::complex Matrix.mat) * (A i) = A i) ⟹
(⋀i. i∈ I ⟹ A i ∈ fc_mats) ⟹
(⋀ i j. i∈ I ⟹ j∈ I ⟹ i≠ j ⟹ A i * (A j) = (0⇩m dimR dimR)) ⟹
(sum_mat A I) * (sum_mat A I) = (sum_mat A I)"
proof (induct rule:finite_induct)
case empty
then show ?case using dim_eq
by (metis fc_mats_carrier right_mult_zero_mat sum_mat_empty zero_mem)
next
case (insert x F)
have "(sum_mat A (insert x F)) * (sum_mat A (insert x F)) =
(A x + sum_mat A F) * (A x + sum_mat A F)" using insert sum_mat_insert[of A]
by (simp add: ‹⋀i. i ∈ insert x F ⟹ A i * A i = A i› image_subset_iff)
also have "... = A x * (A x + sum_mat A F) + sum_mat A F * (A x + sum_mat A F)"
proof (rule add_mult_distrib_mat)
show "A x ∈ carrier_mat dimR dimC" using insert fc_mats_carrier by simp
show "sum_mat A F ∈ carrier_mat dimR dimC" using insert
by (metis insert_iff local.fc_mats_carrier sum_mat_carrier)
thus "A x + sum_mat A F ∈ carrier_mat dimC dimC" using insert dim_eq by simp
qed
also have "... = A x * A x + A x * (sum_mat A F) + sum_mat A F * (A x + sum_mat A F)"
proof -
have "A x * (A x + sum_mat A F) = A x * A x + A x * (sum_mat A F)"
using dim_eq insert.prems(2) mult_add_distrib_right sum_mat_carrier
by (metis fc_mats_carrier insertI1 subsetD subset_insertI)
thus ?thesis by simp
qed
also have "... = A x * A x + A x * (sum_mat A F) + sum_mat A F * A x +
sum_mat A F * (sum_mat A F)"
proof -
have "sum_mat A F * (A x + local.sum_mat A F) =
sum_mat A F * A x + local.sum_mat A F * local.sum_mat A F"
using insert dim_eq add_assoc add_mem mult_add_distrib_right cpx_sq_mat_mult sum_mat_carrier
by (metis fc_mats_carrier insertI1 subsetD subset_insertI)
hence "A x * A x + A x * sum_mat A F + sum_mat A F * (A x + sum_mat A F) =
A x * A x + A x * sum_mat A F + (sum_mat A F * A x + sum_mat A F * sum_mat A F)" by simp
also have "... = A x * A x + A x * sum_mat A F + sum_mat A F * A x + sum_mat A F * sum_mat A F"
proof (rule assoc_add_mat[symmetric])
show "A x * A x + A x * sum_mat A F ∈ carrier_mat dimR dimR" using sum_mat_carrier insert
dim_eq fc_mats_carrier by (metis add_mem cpx_sq_mat_mult insertCI)
show "sum_mat A F * A x ∈ carrier_mat dimR dimR" using sum_mat_carrier insert
dim_eq fc_mats_carrier by (metis cpx_sq_mat_mult insertCI)
show "sum_mat A F * sum_mat A F ∈ carrier_mat dimR dimR" using sum_mat_carrier insert
dim_eq fc_mats_carrier by (metis cpx_sq_mat_mult insertCI)
qed
finally show ?thesis .
qed
also have "... = A x + sum_mat A F"
proof -
have "A x * A x = A x" using insert by simp
moreover have "sum_mat A F * sum_mat A F = sum_mat A F" using insert by simp
moreover have "A x * (sum_mat A F) = 0⇩m dimR dimR"
proof -
have "A x * (sum_mat A F) = sum_mat (λi. A x * (A i)) F"
by (rule sum_mat_distrib_left[symmetric], (simp add: insert)+)
also have "... = sum_mat (λi. 0⇩m dimR dimR) F"
proof (rule sum_mat_cong, (auto simp add: insert zero_mem))
show "⋀i. i ∈ F ⟹ A x * A i = 0⇩m dimR dimR" using insert by auto
show "⋀i. i ∈ F ⟹ A x * A i ∈ fc_mats" using insert cpx_sq_mat_mult by auto
show "⋀i. i ∈ F ⟹ 0⇩m dimR dimR ∈ fc_mats" using zero_mem dim_eq by simp
qed
also have "... = 0⇩m dimR dimR" using zero_sum_mat insert by simp
finally show ?thesis .
qed
moreover have "sum_mat A F * A x = 0⇩m dimR dimR"
proof -
have "sum_mat A F * A x = sum_mat (λi. A i * (A x)) F"
by (rule sum_mat_distrib_right[symmetric], (simp add: insert)+)
also have "... = sum_mat (λi. 0⇩m dimR dimR) F"
proof (rule sum_mat_cong, (auto simp add: insert zero_mem))
show "⋀i. i ∈ F ⟹ A i * A x = 0⇩m dimR dimR" using insert by auto
show "⋀i. i ∈ F ⟹ A i * A x ∈ fc_mats" using insert cpx_sq_mat_mult by auto
show "⋀i. i ∈ F ⟹ 0⇩m dimR dimR ∈ fc_mats" using zero_mem dim_eq by simp
qed
also have "... = 0⇩m dimR dimR" using zero_sum_mat insert by simp
finally show ?thesis .
qed
ultimately show ?thesis using add_commute add_zero insert.prems(2) zero_mem dim_eq by auto
qed
also have "... = sum_mat A (insert x F)" using insert sum_mat_insert[of A x F]
by (simp add: ‹⋀i. i ∈ insert x F ⟹ A i * A i = A i› image_subsetI)
finally show ?case .
qed
lemma diagonal_unit_vec:
assumes "B ∈ carrier_mat n n"
and "diagonal_mat (B::complex Matrix.mat)"
shows "B *⇩v (unit_vec n i) = B $$ (i,i) ⋅⇩v (unit_vec n i)"
proof -
define v::"complex Matrix.vec" where "v = unit_vec n i"
have "B *⇩v v = Matrix.vec n (λ i. Matrix.scalar_prod (Matrix.row B i) v)"
using assms unfolding mult_mat_vec_def by simp
also have "... = Matrix.vec n (λ i. B $$(i,i) * Matrix.vec_index v i)"
proof -
have "∀i < n. (Matrix.scalar_prod (Matrix.row B i) v = B $$(i,i) * Matrix.vec_index v i)"
proof (intro allI impI)
fix i
assume "i < n"
have "(Matrix.scalar_prod (Matrix.row B i) v) =
(∑ j ∈ {0 ..< n}. Matrix.vec_index (Matrix.row B i) j * Matrix.vec_index v j)" using assms
unfolding Matrix.scalar_prod_def v_def by simp
also have "... = Matrix.vec_index (Matrix.row B i) i * Matrix.vec_index v i"
proof (rule sum_but_one)
show "∀j < n. j ≠ i ⟶ Matrix.vec_index (Matrix.row B i) j = 0"
proof (intro allI impI)
fix j
assume "j < n" and "j ≠ i"
hence "Matrix.vec_index (Matrix.row B i) j = B $$ (i,j)" using ‹i < n› ‹j < n› assms
by auto
also have "... = 0" using assms ‹i < n› ‹j < n› ‹j≠ i› unfolding diagonal_mat_def by simp
finally show "Matrix.vec_index (Matrix.row B i) j = 0" .
qed
show "i < n" using ‹i < n› .
qed
also have "... = B $$(i,i) * Matrix.vec_index v i" using assms ‹i < n› by auto
finally show "(Matrix.scalar_prod (Matrix.row B i) v) = B $$(i,i) * Matrix.vec_index v i" .
qed
thus ?thesis by auto
qed
also have "... = B $$ (i,i) ⋅⇩v v" unfolding v_def unit_vec_def by auto
finally have "B *⇩v v = B $$ (i,i) ⋅⇩v v" .
thus ?thesis unfolding v_def by simp
qed
lemma mat_vec_mult_assoc:
assumes "A ∈ carrier_mat n p"
and "B∈ carrier_mat p q"
and "dim_vec v = q"
shows "A *⇩v (B *⇩v v) = (A * B) *⇩v v" using assms by auto
lemma (in cpx_sq_mat) similar_eigenvectors:
assumes "A∈ fc_mats"
and "B∈ fc_mats"
and "P∈ fc_mats"
and "similar_mat_wit A B P (Complex_Matrix.adjoint P)"
and "diagonal_mat B"
and "i < n"
shows "A *⇩v (P *⇩v (unit_vec dimR i)) = B $$ (i,i) ⋅⇩v (P *⇩v (unit_vec dimR i))"
proof -
have "A *⇩v (P *⇩v (unit_vec dimR i)) =
(P * B * (Complex_Matrix.adjoint P)) *⇩v (P *⇩v (unit_vec dimR i))"
using assms unfolding similar_mat_wit_def by metis
also have "... = P * B * (Complex_Matrix.adjoint P) * P *⇩v (unit_vec dimR i)"
proof (rule mat_vec_mult_assoc[of _ dimR dimR], (auto simp add: assms fc_mats_carrier))
show "P ∈ carrier_mat dimR dimR" using assms fc_mats_carrier dim_eq by simp
show "P * B * Complex_Matrix.adjoint P ∈ carrier_mat dimR dimR"
using assms fc_mats_carrier by auto
qed
also have "... = P * B * ((Complex_Matrix.adjoint P) * P) *⇩v (unit_vec dimR i)" using assms dim_eq
by (smt (verit) fc_mats_carrier mat_assoc_test(1) similar_mat_witD2(6) similar_mat_wit_sym)
also have "... = P * B *⇩v (unit_vec dimR i)"
proof -
have "(Complex_Matrix.adjoint P) * P = 1⇩m dimR" using assms dim_eq unfolding similar_mat_wit_def
by (simp add: fc_mats_carrier)
thus ?thesis using assms(2) local.fc_mats_carrier dim_eq by auto
qed
also have "... = P *⇩v (B *⇩v (unit_vec dimR i))" using mat_vec_mult_assoc assms fc_mats_carrier
dim_eq by simp
also have "... = P *⇩v (B $$ (i,i) ⋅⇩v (unit_vec dimR i))" using assms diagonal_unit_vec
fc_mats_carrier dim_eq by simp
also have "... = B $$ (i,i) ⋅⇩v (P *⇩v (unit_vec dimR i))"
proof (rule mult_mat_vec)
show "P ∈ carrier_mat dimR dimC" using assms fc_mats_carrier by simp
show "unit_vec dimR i ∈ carrier_vec dimC" using dim_eq by simp
qed
finally show ?thesis .
qed
subsection ‹Projectors›
definition projector where
"projector M ⟷ (hermitian M ∧ M * M = M)"
lemma projector_hermitian:
assumes "projector M"
shows "hermitian M" using assms unfolding projector_def by simp
lemma zero_projector[simp]:
shows "projector (0⇩m n n)" unfolding projector_def
proof
show "hermitian (0⇩m n n)" using zero_hermitian[of n] by simp
show "0⇩m n n * 0⇩m n n = 0⇩m n n" by simp
qed
lemma projector_square_eq:
assumes "projector M"
shows "M * M = M" using assms unfolding projector_def by simp
lemma projector_positive:
assumes "projector M"
shows "Complex_Matrix.positive M"
proof (rule positive_if_decomp)
show "M ∈ carrier_mat (dim_row M) (dim_row M)" using assms projector_hermitian hermitian_square
by auto
next
have "M = Complex_Matrix.adjoint M" using assms projector_hermitian[of M]
unfolding hermitian_def by simp
hence "M * Complex_Matrix.adjoint M = M * M" by simp
also have "... = M" using assms projector_square_eq by auto
finally have "M * Complex_Matrix.adjoint M = M" .
thus "∃Ma. Ma * Complex_Matrix.adjoint Ma = M" by auto
qed
lemma projector_collapse_trace:
assumes "projector (P::complex Matrix.mat)"
and "P ∈ carrier_mat n n"
and "R∈ carrier_mat n n"
shows "Complex_Matrix.trace (P * R * P) = Complex_Matrix.trace (R * P)"
proof -
have "Complex_Matrix.trace (R * P) = Complex_Matrix.trace (P * R)" using trace_comm assms by auto
also have "... = Complex_Matrix.trace ((P * P) * R)" using assms projector_square_eq[of P] by simp
also have "... = Complex_Matrix.trace (P * (P * R))" using assms by auto
also have "... = Complex_Matrix.trace (P * R * P)" using trace_comm[of P n "P * R"] assms by auto
finally have "Complex_Matrix.trace (R * P) = Complex_Matrix.trace (P * R * P)" .
thus ?thesis by simp
qed
lemma positive_proj_trace:
assumes "projector (P::complex Matrix.mat)"
and "Complex_Matrix.positive R"
and "P ∈ carrier_mat n n"
and "R∈ carrier_mat n n"
shows "Complex_Matrix.trace (R * P) ≥ 0"
proof -
have "Complex_Matrix.trace (R * P) = Complex_Matrix.trace ((P * R) * P)"
using assms projector_collapse_trace by auto
also have "... = Complex_Matrix.trace ((P * R) * (Complex_Matrix.adjoint P))"
using assms projector_hermitian[of P]
unfolding hermitian_def by simp
also have "... ≥ 0"
proof (rule positive_trace)
show " P * R * Complex_Matrix.adjoint P ∈ carrier_mat n n" using assms by auto
show "Complex_Matrix.positive (P * R * Complex_Matrix.adjoint P)"
by (rule positive_close_under_left_right_mult_adjoint[of _ n], (auto simp add: assms))
qed
finally show ?thesis .
qed
lemma trace_proj_pos_real:
assumes "projector (P::complex Matrix.mat)"
and "Complex_Matrix.positive R"
and "P ∈ carrier_mat n n"
and "R∈ carrier_mat n n"
shows "Re (Complex_Matrix.trace (R * P)) = Complex_Matrix.trace (R * P)"
proof -
have "Complex_Matrix.trace (R * P) ≥ 0" using assms positive_proj_trace by simp
thus ?thesis by (simp add: complex_eqI less_eq_complex_def)
qed
lemma (in cpx_sq_mat) trace_sum_mat_proj_pos_real:
fixes f::"'a ⇒ real"
assumes "finite I"
and "∀ i∈ I. projector (P i)"
and "Complex_Matrix.positive R"
and "∀i∈ I. P i ∈ fc_mats"
and "R ∈ fc_mats"
shows "Complex_Matrix.trace (R * (sum_mat (λi. f i ⋅⇩m (P i)) I)) =
Re (Complex_Matrix.trace (R * (sum_mat (λi. f i ⋅⇩m (P i)) I)))"
proof -
have sm: "⋀x. x ∈ I ⟹ Complex_Matrix.trace (f x ⋅⇩m (R * P x)) =
f x * Complex_Matrix.trace (R * P x)"
proof -
fix i
assume "i∈ I"
show "Complex_Matrix.trace (f i ⋅⇩m (R * P i)) = f i * Complex_Matrix.trace (R * P i)"
proof (rule trace_smult)
show "R * P i ∈ carrier_mat dimR dimR" using assms cpx_sq_mat_mult fc_mats_carrier ‹i∈ I›
dim_eq by simp
qed
qed
have sw: "⋀x. x ∈ I ⟹ R * (f x ⋅⇩m P x) = f x ⋅⇩m (R * P x)"
proof -
fix i
assume "i ∈ I"
show "R * (f i ⋅⇩m P i) = f i ⋅⇩m (R * P i)"
proof (rule mult_smult_distrib)
show "R∈ carrier_mat dimR dimR" using assms fc_mats_carrier dim_eq by simp
show "P i ∈ carrier_mat dimR dimR" using assms ‹i∈ I› fc_mats_carrier dim_eq by simp
qed
qed
have dr: "Complex_Matrix.trace (R * (sum_mat (λi. f i ⋅⇩m (P i)) I)) =
Complex_Matrix.trace (sum_mat (λi. (R * (f i ⋅⇩m (P i)))) I)"
using sum_mat_distrib_left[of I] assms by (simp add: cpx_sq_mat_smult)
also have trs: "... = (∑ i∈ I. Complex_Matrix.trace (R * (f i ⋅⇩m (P i))))"
proof (rule trace_sum_mat, (simp add: assms))
show "⋀i. i ∈ I ⟹ R * (f i ⋅⇩m P i) ∈ fc_mats" using assms
by (simp add: cpx_sq_mat_smult cpx_sq_mat_mult)
qed
also have "... = (∑ i∈ I. Complex_Matrix.trace (f i ⋅⇩m (R * (P i))))"
by (rule sum.cong, (simp add: sw)+)
also have "... = (∑ i∈ I. f i * Complex_Matrix.trace (R * (P i)))"
by (rule sum.cong, (simp add: sm)+)
also have "... = (∑ i∈ I. complex_of_real (f i * Re (Complex_Matrix.trace (R * (P i)))))"
proof (rule sum.cong, simp)
show "⋀x. x ∈ I ⟹
complex_of_real (f x) * Complex_Matrix.trace (R * P x) =
complex_of_real (f x * Re (Complex_Matrix.trace (R * P x)))"
proof -
fix x
assume "x∈ I"
have "complex_of_real (f x) * Complex_Matrix.trace (R * P x) =
complex_of_real (f x) * complex_of_real (Re (Complex_Matrix.trace (R * P x)))"
using assms sum.cong[of I I] fc_mats_carrier trace_proj_pos_real ‹x ∈ I› dim_eq by auto
also have "... = complex_of_real (f x * Re (Complex_Matrix.trace (R * P x)))" by simp
finally show "complex_of_real (f x) * Complex_Matrix.trace (R * P x) =
complex_of_real (f x * Re (Complex_Matrix.trace (R * P x)))" .
qed
qed
also have "... = (∑ i∈ I. f i * Re (Complex_Matrix.trace (R * (P i))))" by simp
also have "... = (∑ i∈ I. Re (Complex_Matrix.trace (f i ⋅⇩m (R * (P i)))))"
proof -
have "(∑ i∈ I. f i * Re (Complex_Matrix.trace (R * (P i)))) =
(∑ i∈ I. Re (Complex_Matrix.trace (f i ⋅⇩m (R * (P i)))))"
by (rule sum.cong, (simp add: sm)+)
thus ?thesis by simp
qed
also have "... = (∑ i∈ I. Re (Complex_Matrix.trace (R * (f i ⋅⇩m (P i)))))"
proof -
have "⋀i. i ∈ I ⟹ f i ⋅⇩m (R * (P i)) = R * (f i ⋅⇩m (P i))" using sw by simp
thus ?thesis by simp
qed
also have "... = Re (∑ i∈ I. (Complex_Matrix.trace (R * (f i ⋅⇩m (P i)))))" by simp
also have "... = Re (Complex_Matrix.trace (sum_mat (λi. R * (f i ⋅⇩m (P i))) I))" using trs by simp
also have "... = Re (Complex_Matrix.trace (R * (sum_mat (λi. f i ⋅⇩m (P i))) I))" using dr by simp
finally show ?thesis .
qed
subsection ‹Rank 1 projection›
definition rank_1_proj where
"rank_1_proj v = outer_prod v v"
lemma rank_1_proj_square_mat:
shows "square_mat (rank_1_proj v)" using outer_prod_dim unfolding rank_1_proj_def
by (metis carrier_matD(1) carrier_matD(2) carrier_vec_dim_vec square_mat.simps)
lemma rank_1_proj_dim[simp]:
shows "dim_row (rank_1_proj v) = dim_vec v" using outer_prod_dim unfolding rank_1_proj_def
using carrier_vecI by blast
lemma rank_1_proj_carrier[simp]:
shows "rank_1_proj v ∈ carrier_mat (dim_vec v) (dim_vec v)" using outer_prod_dim
unfolding rank_1_proj_def using carrier_vecI by blast
lemma rank_1_proj_coord:
assumes "i < dim_vec v"
and "j < dim_vec v"
shows "(rank_1_proj v) $$ (i, j) = Matrix.vec_index v i * (cnj (Matrix.vec_index v j))" using assms
unfolding rank_1_proj_def outer_prod_def by auto
lemma rank_1_proj_adjoint:
shows "Complex_Matrix.adjoint (rank_1_proj (v::complex Matrix.vec)) = rank_1_proj v"
proof
show "dim_row (Complex_Matrix.adjoint (rank_1_proj v)) = dim_row (rank_1_proj v)"
using rank_1_proj_square_mat by auto
thus "dim_col (Complex_Matrix.adjoint (rank_1_proj v)) = dim_col (rank_1_proj v)" by auto
fix i j
assume "i < dim_row (rank_1_proj v)" and "j < dim_col (rank_1_proj v)" note ij = this
have "Complex_Matrix.adjoint (rank_1_proj v) $$ (i, j) = conjugate ((rank_1_proj v) $$ (j, i))"
using ij ‹dim_col (Complex_Matrix.adjoint (rank_1_proj v)) = dim_col (rank_1_proj v)›
adjoint_eval by fastforce
also have "... = conjugate (Matrix.vec_index v j * (cnj (Matrix.vec_index v i)))"
using rank_1_proj_coord ij
by (metis ‹dim_col (Complex_Matrix.adjoint (rank_1_proj v)) = dim_col (rank_1_proj v)›
adjoint_dim_col rank_1_proj_dim)
also have "... = Matrix.vec_index v i * (cnj (Matrix.vec_index v j))" by simp
also have "... = rank_1_proj v $$ (i, j)" using ij rank_1_proj_coord
by (metis ‹dim_col (Complex_Matrix.adjoint (rank_1_proj v)) = dim_col (rank_1_proj v)›
adjoint_dim_col rank_1_proj_dim)
finally show "Complex_Matrix.adjoint (rank_1_proj v) $$ (i, j) = rank_1_proj v $$ (i, j)".
qed
lemma rank_1_proj_hermitian:
shows "hermitian (rank_1_proj (v::complex Matrix.vec))" using rank_1_proj_adjoint
unfolding hermitian_def by simp
lemma rank_1_proj_trace:
assumes "∥v∥ = 1"
shows "Complex_Matrix.trace (rank_1_proj v) = 1"
proof -
have "Complex_Matrix.trace (rank_1_proj v) = inner_prod v v" using trace_outer_prod
unfolding rank_1_proj_def using carrier_vecI by blast
also have "... = (vec_norm v)⇧2" unfolding vec_norm_def using power2_csqrt by presburger
also have "... = ∥v∥⇧2" using vec_norm_sq_cpx_vec_length_sq by simp
also have "... = 1" using assms by simp
finally show ?thesis .
qed
lemma rank_1_proj_mat_col:
assumes "A ∈ carrier_mat n n"
and "i < n"
and "j < n"
and "k < n"
shows "(rank_1_proj (Matrix.col A i)) $$ (j, k) = A $$ (j, i) * conjugate (A $$ (k,i))"
proof -
have "(rank_1_proj (Matrix.col A i)) $$ (j, k) = Matrix.vec_index (Matrix.col A i) j *
conjugate (Matrix.vec_index (Matrix.col A i) k)" using index_outer_prod[of "Matrix.col A i" n "Matrix.col A i" n]
assms unfolding rank_1_proj_def by simp
also have "... = A $$ (j, i) * conjugate (A $$ (k,i))" using assms by simp
finally show ?thesis .
qed
lemma (in cpx_sq_mat) weighted_sum_rank_1_proj_unitary_index:
assumes "A ∈ fc_mats"
and "B ∈ fc_mats"
and "diagonal_mat B"
and "Complex_Matrix.unitary A"
and "j < dimR"
and "k < dimR"
shows "(sum_mat (λi. (diag_mat B)!i ⋅⇩m rank_1_proj (Matrix.col A i)) {..< dimR}) $$ (j,k) =
(A * B * (Complex_Matrix.adjoint A)) $$ (j,k)"
proof -
have "(sum_mat (λi. (diag_mat B)!i ⋅⇩m rank_1_proj (Matrix.col A i)) {..< dimR}) $$ (j,k) =
(∑ i∈ {..< dimR}. ((diag_mat B)!i ⋅⇩m rank_1_proj (Matrix.col A i)) $$ (j,k))"
proof (rule sum_mat_index, (auto simp add: fc_mats_carrier assms))
show "⋀i. i < dimR ⟹ (diag_mat B)!i ⋅⇩m rank_1_proj (Matrix.col A i) ∈ carrier_mat dimR dimC"
using rank_1_proj_carrier assms fc_mats_carrier dim_eq
by (metis smult_carrier_mat zero_col_col zero_col_dim)
show "k < dimC" using assms dim_eq by simp
qed
also have "... = (∑ i∈ {..< dimR}. (diag_mat B)!i* A $$ (j, i) * conjugate (A $$ (k,i)))"
proof (rule sum.cong, simp)
have idx: "⋀x. x ∈ {..<dimR} ⟹ (rank_1_proj (Matrix.col A x)) $$ (j, k) =
A $$ (j, x) * conjugate (A $$ (k, x))" using rank_1_proj_mat_col assms fc_mats_carrier dim_eq
by blast
show "⋀x. x ∈ {..<dimR} ⟹ ((diag_mat B)!x ⋅⇩m rank_1_proj (Matrix.col A x)) $$ (j, k) =
(diag_mat B)!x * A $$ (j, x) * conjugate (A $$ (k, x))"
proof -
fix x
assume "x∈ {..< dimR}"
have "((diag_mat B)!x ⋅⇩m rank_1_proj (Matrix.col A x)) $$ (j, k) =
(diag_mat B)!x * (rank_1_proj (Matrix.col A x)) $$ (j, k)"
proof (rule index_smult_mat)
show "j < dim_row (rank_1_proj (Matrix.col A x))" using ‹x∈ {..< dimR}› assms fc_mats_carrier by simp
show "k < dim_col (rank_1_proj (Matrix.col A x))" using ‹x∈ {..< dimR}› assms fc_mats_carrier
rank_1_proj_carrier[of "Matrix.col A x"] by simp
qed
thus "((diag_mat B)!x ⋅⇩m rank_1_proj (Matrix.col A x)) $$ (j, k) =
(diag_mat B)!x * A $$ (j, x) * conjugate (A $$ (k, x))" using idx ‹x∈ {..< dimR}› by simp
qed
qed
also have "... = Matrix.scalar_prod (Matrix.col (Complex_Matrix.adjoint A) k) (Matrix.row (A*B) j) "
unfolding Matrix.scalar_prod_def
proof (rule sum.cong)
show "{..<dimR} = {0..<dim_vec (Matrix.row (A*B) j)}"
using assms fc_mats_carrier dim_eq by auto
show "⋀x. x ∈ {0..<dim_vec (Matrix.row (A*B) j)} ⟹
diag_mat B ! x * A $$ (j, x) * conjugate (A $$ (k, x)) =
Matrix.vec_index ((Matrix.col (Complex_Matrix.adjoint A) k)) x *
Matrix.vec_index (Matrix.row (A*B) j) x"
proof -
fix x
assume "x∈ {0..<dim_vec (Matrix.row (A*B) j)}"
hence "x∈ {0..<dimR}" using assms fc_mats_carrier dim_eq by simp
have "diag_mat B ! x *A $$ (j, x) = Matrix.vec_index (Matrix.row (A*B) j) x"
proof (rule times_diag_index[symmetric, of _ dimR], (auto simp add: assms))
show "A ∈ carrier_mat dimR dimR" using assms fc_mats_carrier dim_eq by simp
show "B ∈ carrier_mat dimR dimR" using assms fc_mats_carrier dim_eq by simp
show "x < dimR" using ‹x∈{0..< dimR}› by simp
qed
moreover have "conjugate (A $$ (k, x)) =
Matrix.vec_index ((Matrix.col (Complex_Matrix.adjoint A) k)) x" using ‹x∈ {0..<dimR}› assms
fc_mats_carrier dim_eq by (simp add: adjoint_col)
ultimately show "diag_mat B ! x * A $$ (j, x) * conjugate (A $$ (k, x)) =
Matrix.vec_index ((Matrix.col (Complex_Matrix.adjoint A) k)) x *
Matrix.vec_index (Matrix.row (A*B) j) x" by simp
qed
qed
also have "... = (A*B * (Complex_Matrix.adjoint A)) $$ (j,k)"
proof -
have "Matrix.mat (dim_row (A*B)) (dim_col (Complex_Matrix.adjoint A))
(λ(i, j). Matrix.scalar_prod (Matrix.row (A*B) i) (Matrix.col (Complex_Matrix.adjoint A) j)) $$
(j, k) = Matrix.scalar_prod (Matrix.row (A*B) j) (Matrix.col (Complex_Matrix.adjoint A) k)"
using assms fc_mats_carrier by simp
also have "... = Matrix.scalar_prod (Matrix.col (Complex_Matrix.adjoint A) k) (Matrix.row (A*B) j)"
using assms comm_scalar_prod[of "Matrix.row (A*B) j" dimR] fc_mats_carrier dim_eq
by (metis adjoint_dim Matrix.col_carrier_vec row_carrier_vec cpx_sq_mat_mult)
thus ?thesis using assms fc_mats_carrier unfolding times_mat_def by simp
qed
finally show ?thesis .
qed
lemma (in cpx_sq_mat) weighted_sum_rank_1_proj_unitary:
assumes "A ∈ fc_mats"
and "B ∈ fc_mats"
and "diagonal_mat B"
and "Complex_Matrix.unitary A"
shows "(sum_mat (λi. (diag_mat B)!i ⋅⇩m rank_1_proj (Matrix.col A i)) {..< dimR}) =
(A * B * (Complex_Matrix.adjoint A))"
proof
show "dim_row (sum_mat (λi. diag_mat B ! i ⋅⇩m rank_1_proj (Matrix.col A i)) {..<dimR}) =
dim_row (A * B * Complex_Matrix.adjoint A)" using assms fc_mats_carrier dim_eq
by (metis (no_types, lifting) carrier_matD(1) cpx_sq_mat_smult dim_col index_mult_mat(2)
rank_1_proj_carrier sum_mat_carrier)
show "dim_col (local.sum_mat (λi. diag_mat B ! i ⋅⇩m rank_1_proj (Matrix.col A i)) {..<dimR}) =
dim_col (A * B * Complex_Matrix.adjoint A)" using assms fc_mats_carrier dim_eq
by (metis (mono_tags, lifting) adjoint_dim_col carrier_matD(1) carrier_matI dim_col
index_mult_mat(3) index_smult_mat(2) index_smult_mat(3) rank_1_proj_dim
rank_1_proj_square_mat square_mat.elims(2) square_mats sum_mat_carrier)
show "⋀i j. i < dim_row (A * B * Complex_Matrix.adjoint A) ⟹
j < dim_col (A * B * Complex_Matrix.adjoint A) ⟹
local.sum_mat (λi. diag_mat B ! i ⋅⇩m rank_1_proj (Matrix.col A i)) {..<dimR} $$ (i, j) =
(A * B * Complex_Matrix.adjoint A) $$ (i, j)"
using weighted_sum_rank_1_proj_unitary_index[of A B] dim_eq fc_mats_carrier using assms by auto
qed
lemma rank_1_proj_projector:
assumes "∥v∥ = 1"
shows "projector (rank_1_proj v)"
proof -
have "Complex_Matrix.adjoint (rank_1_proj v) = rank_1_proj v" using rank_1_proj_adjoint by simp
hence a: "hermitian (rank_1_proj v)" unfolding hermitian_def by simp
have "rank_1_proj v * rank_1_proj v = inner_prod v v ⋅⇩m outer_prod v v" unfolding rank_1_proj_def
using outer_prod_mult_outer_prod assms using carrier_vec_dim_vec by blast
also have "... = (vec_norm v)⇧2 ⋅⇩m outer_prod v v" unfolding vec_norm_def using power2_csqrt
by presburger
also have "... = (cpx_vec_length v)⇧2 ⋅⇩m outer_prod v v " using vec_norm_sq_cpx_vec_length_sq
by simp
also have "... = outer_prod v v" using assms state_qbit_norm_sq smult_one[of "outer_prod v v"]
by simp
also have "... = rank_1_proj v" unfolding rank_1_proj_def by simp
finally show ?thesis using a unfolding projector_def by simp
qed
lemma rank_1_proj_positive:
assumes "∥v∥ = 1"
shows "Complex_Matrix.positive (rank_1_proj v)"
proof -
have "projector (rank_1_proj v)" using assms rank_1_proj_projector by simp
thus ?thesis using projector_positive by simp
qed
lemma rank_1_proj_density:
assumes "∥v∥ = 1"
shows "density_operator (rank_1_proj v)" unfolding density_operator_def using assms
by (simp add: rank_1_proj_positive rank_1_proj_trace)
lemma (in cpx_sq_mat) sum_rank_1_proj_unitary_index:
assumes "A ∈ fc_mats"
and "Complex_Matrix.unitary A"
and "j < dimR"
and "k < dimR"
shows "(sum_mat (λi. rank_1_proj (Matrix.col A i)) {..< dimR}) $$ (j,k) = (1⇩m dimR) $$ (j,k)"
proof -
have "(sum_mat (λi. rank_1_proj (Matrix.col A i)) {..< dimR}) $$ (j,k) =
(∑ i∈ {..< dimR}. (rank_1_proj (Matrix.col A i)) $$ (j,k))"
proof (rule sum_mat_index, (auto simp add: fc_mats_carrier assms))
show "⋀i. i < dimR ⟹ rank_1_proj (Matrix.col A i) ∈ carrier_mat dimR dimC"
proof -
fix i
assume "i < dimR"
hence "dim_vec (Matrix.col A i) = dimR" using assms fc_mats_carrier by simp
thus "rank_1_proj (Matrix.col A i) ∈ carrier_mat dimR dimC" using rank_1_proj_carrier assms
fc_mats_carrier dim_eq fc_mats_carrier by (metis dim_col fc_mats_carrier)
qed
show "k < dimC" using assms dim_eq by simp
qed
also have "... = (∑ i∈ {..< dimR}. A $$ (j, i) * conjugate (A $$ (k,i)))"
proof (rule sum.cong, simp)
show "⋀x. x ∈ {..<dimR} ⟹ rank_1_proj (Matrix.col A x) $$ (j, k) =
A $$ (j, x) * conjugate (A $$ (k, x))"
using rank_1_proj_mat_col assms using local.fc_mats_carrier dim_eq by blast
qed
also have "... = Matrix.scalar_prod (Matrix.col (Complex_Matrix.adjoint A) k) (Matrix.row A j) "
unfolding Matrix.scalar_prod_def
proof (rule sum.cong)
show "{..<dimR} = {0..<dim_vec (Matrix.row A j)}"
using assms fc_mats_carrier dim_eq by auto
show "⋀x. x ∈ {0..<dim_vec (Matrix.row A j)} ⟹
A $$ (j, x) * conjugate (A $$ (k, x)) =
Matrix.vec_index ((Matrix.col (Complex_Matrix.adjoint A) k)) x * Matrix.vec_index (Matrix.row A j) x"
proof -
fix x
assume "x∈ {0..<dim_vec (Matrix.row A j)}"
hence "x∈ {0..<dimR}" using assms fc_mats_carrier dim_eq by simp
hence "A $$ (j, x) = Matrix.vec_index (Matrix.row A j) x" using ‹x∈ {0..<dimR}›
assms fc_mats_carrier dim_eq by simp
moreover have "conjugate (A $$ (k, x)) =
Matrix.vec_index ((Matrix.col (Complex_Matrix.adjoint A) k)) x" using ‹x∈ {0..<dimR}›
assms fc_mats_carrier dim_eq by (simp add: adjoint_col)
ultimately show "A $$ (j, x) * conjugate (A $$ (k, x)) =
Matrix.vec_index ((Matrix.col (Complex_Matrix.adjoint A) k)) x *
Matrix.vec_index (Matrix.row A j) x" by simp
qed
qed
also have "... = (A * (Complex_Matrix.adjoint A)) $$ (j,k)"
proof -
have "Matrix.mat (dim_row A) (dim_col (Complex_Matrix.adjoint A))
(λ(i, j). Matrix.scalar_prod (Matrix.row A i) (Matrix.col (Complex_Matrix.adjoint A) j)) $$
(j, k) = Matrix.scalar_prod (Matrix.row A j) (Matrix.col (Complex_Matrix.adjoint A) k)"
using assms fc_mats_carrier by simp
also have "... = Matrix.scalar_prod (Matrix.col (Complex_Matrix.adjoint A) k) (Matrix.row A j)"
using assms comm_scalar_prod[of "Matrix.row A j" dimR] fc_mats_carrier
by (simp add: adjoint_dim dim_eq)
thus ?thesis using assms fc_mats_carrier unfolding times_mat_def by simp
qed
also have "... = (1⇩m dimR) $$ (j,k)" using assms dim_eq by (simp add: fc_mats_carrier)
finally show ?thesis .
qed
lemma (in cpx_sq_mat) rank_1_proj_sum_density:
assumes "finite I"
and "∀i∈ I. ∥u i∥ = 1"
and "∀i∈ I. dim_vec (u i) = dimR"
and "∀i∈ I. 0 ≤ p i"
and "(∑i∈ I. p i) = 1"
shows "density_operator (sum_mat (λi. p i ⋅⇩m (rank_1_proj (u i))) I)" unfolding density_operator_def
proof
have "Complex_Matrix.trace (sum_mat (λi. p i ⋅⇩m rank_1_proj (u i)) I) =
(∑i∈ I. Complex_Matrix.trace (p i ⋅⇩m rank_1_proj (u i)))"
proof (rule trace_sum_mat, (simp add: assms))
show "⋀i. i ∈ I ⟹ p i ⋅⇩m rank_1_proj (u i) ∈ fc_mats" using assms smult_mem fc_mats_carrier
dim_eq by auto
qed
also have "... = (∑i∈ I. p i * Complex_Matrix.trace (rank_1_proj (u i)))"
proof -
{
fix i
assume "i ∈ I"
hence "Complex_Matrix.trace (p i ⋅⇩m rank_1_proj (u i)) =
p i * Complex_Matrix.trace (rank_1_proj (u i))"
using trace_smult[of "rank_1_proj (u i)" dimR] assms fc_mats_carrier dim_eq by auto
}
thus ?thesis by simp
qed
also have "... = 1" using assms rank_1_proj_trace assms by auto
finally show "Complex_Matrix.trace (sum_mat (λi. p i ⋅⇩m rank_1_proj (u i)) I) = 1" .
next
show "Complex_Matrix.positive (sum_mat (λi. p i ⋅⇩m rank_1_proj (u i)) I)"
proof (rule sum_mat_positive, (simp add: assms))
fix i
assume "i∈ I"
thus "p i ⋅⇩m rank_1_proj (u i) ∈ fc_mats" using assms smult_mem fc_mats_carrier dim_eq by auto
show "Complex_Matrix.positive (p i ⋅⇩m rank_1_proj (u i))" using assms ‹i∈ I›
rank_1_proj_positive positive_smult[of "rank_1_proj (u i)" dimR] dim_eq by auto
qed
qed
lemma (in cpx_sq_mat) sum_rank_1_proj_unitary:
assumes "A ∈ fc_mats"
and "Complex_Matrix.unitary A"
shows "(sum_mat (λi. rank_1_proj (Matrix.col A i)) {..< dimR})= (1⇩m dimR)"
proof
show "dim_row (sum_mat (λi. rank_1_proj (Matrix.col A i)) {..<dimR}) = dim_row (1⇩m dimR)"
using assms fc_mats_carrier
by (metis carrier_matD(1) dim_col dim_eq index_one_mat(2) rank_1_proj_carrier sum_mat_carrier)
show "dim_col (sum_mat (λi. rank_1_proj (Matrix.col A i)) {..<dimR}) = dim_col (1⇩m dimR)"
using assms fc_mats_carrier rank_1_proj_carrier sum_mat_carrier
by (metis carrier_matD(2) dim_col dim_eq index_one_mat(3) square_mat.simps square_mats)
show "⋀i j. i < dim_row (1⇩m dimR) ⟹
j < dim_col (1⇩m dimR) ⟹ sum_mat (λi. rank_1_proj (Matrix.col A i)) {..<dimR} $$ (i, j) =
1⇩m dimR $$ (i, j)"
using assms sum_rank_1_proj_unitary_index by simp
qed
lemma (in cpx_sq_mat) rank_1_proj_unitary:
assumes "A ∈ fc_mats"
and "Complex_Matrix.unitary A"
and "j < dimR"
and "k < dimR"
shows "rank_1_proj (Matrix.col A j) * (rank_1_proj (Matrix.col A k)) =
(1⇩m dimR) $$ (j,k) ⋅⇩m (outer_prod (Matrix.col A j) (Matrix.col A k))"
proof -
have "rank_1_proj (Matrix.col A j) * (rank_1_proj (Matrix.col A k)) =
Complex_Matrix.inner_prod (Matrix.col A j) (Matrix.col A k) ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)"
using outer_prod_mult_outer_prod assms Matrix.col_dim local.fc_mats_carrier unfolding rank_1_proj_def
by blast
also have "... = (Complex_Matrix.adjoint A * A) $$ (j, k)⋅⇩m (outer_prod (Matrix.col A j) (Matrix.col A k))"
using inner_prod_adjoint_comp[of A dimR A] assms fc_mats_carrier dim_eq by simp
also have "... = (1⇩m dimR) $$ (j,k) ⋅⇩m (outer_prod (Matrix.col A j) (Matrix.col A k))" using assms
unfolding Complex_Matrix.unitary_def
by (metis add_commute assms(2) index_add_mat(2) index_one_mat(2) one_mem unitary_simps(1))
finally show ?thesis .
qed
lemma (in cpx_sq_mat) rank_1_proj_unitary_ne:
assumes "A ∈ fc_mats"
and "Complex_Matrix.unitary A"
and "j < dimR"
and "k < dimR"
and "j≠ k"
shows "rank_1_proj (Matrix.col A j) * (rank_1_proj (Matrix.col A k)) = (0⇩m dimR dimR)"
proof -
have "dim_row (0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) = dim_row (outer_prod (Matrix.col A j) (Matrix.col A k))"
by simp
also have "... = dimR" using assms fc_mats_carrier dim_eq by auto
finally have rw: "dim_row (0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) = dimR" .
have "dim_col (0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) = dim_col (outer_prod (Matrix.col A j) (Matrix.col A k))"
by simp
also have "... = dimR" using assms fc_mats_carrier dim_eq by auto
finally have cl: "dim_col (0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) = dimR" .
have "rank_1_proj (Matrix.col A j) * (rank_1_proj (Matrix.col A k)) =
(0::complex) ⋅⇩m (outer_prod (Matrix.col A j) (Matrix.col A k))"
using assms rank_1_proj_unitary by simp
also have "... = (0⇩m dimR dimR)"
proof
show "dim_row (0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) = dim_row (0⇩m dimR dimR)" using rw by simp
next
show "dim_col (0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) = dim_col (0⇩m dimR dimR)" using cl by simp
next
show "⋀i p. i < dim_row (0⇩m dimR dimR) ⟹ p < dim_col (0⇩m dimR dimR) ⟹
(0 ⋅⇩m outer_prod (Matrix.col A j) (Matrix.col A k)) $$ (i, p) = 0⇩m dimR dimR $$ (i, p)" using rw cl by auto
qed
finally show ?thesis .
qed
lemma (in cpx_sq_mat) rank_1_proj_unitary_eq:
assumes "A ∈ fc_mats"
and "Complex_Matrix.unitary A"
and "j < dimR"
shows "rank_1_proj (Matrix.col A j) * (rank_1_proj (Matrix.col A j)) = rank_1_proj (Matrix.col A j)"
proof -
have "rank_1_proj (Matrix.col A j) * (rank_1_proj (Matrix.col A j)) = (1::complex) ⋅⇩m (rank_1_proj (Matrix.col A j))"
using assms rank_1_proj_unitary unfolding rank_1_proj_def by simp
also have "... = (rank_1_proj (Matrix.col A j))" by (simp add: smult_one)
finally show ?thesis .
qed
end