Theory Ailamazyan

theory Ailamazyan
  imports Eval_FO Cluster Mapping_Code
begin

fun SP :: "('a, 'b) fo_fmla  nat set" where
  "SP (Eqa (Var n) (Var n')) = (if n  n' then {n, n'} else {})"
| "SP (Neg φ) = SP φ"
| "SP (Conj φ ψ) = SP φ  SP ψ"
| "SP (Disj φ ψ) = SP φ  SP ψ"
| "SP (Exists n φ) = SP φ - {n}"
| "SP (Forall n φ) = SP φ - {n}"
| "SP _ = {}"

lemma SP_fv: "SP φ  fv_fo_fmla φ"
  by (induction φ rule: SP.induct) auto

lemma finite_SP: "finite (SP φ)"
  using SP_fv finite_fv_fo_fmla finite_subset by fastforce

fun SP_list_rec :: "('a, 'b) fo_fmla  nat list" where
  "SP_list_rec (Eqa (Var n) (Var n')) = (if n  n' then [n, n'] else [])"
| "SP_list_rec (Neg φ) = SP_list_rec φ"
| "SP_list_rec (Conj φ ψ) = SP_list_rec φ @ SP_list_rec ψ"
| "SP_list_rec (Disj φ ψ) = SP_list_rec φ @ SP_list_rec ψ"
| "SP_list_rec (Exists n φ) = filter (λm. n  m) (SP_list_rec φ)"
| "SP_list_rec (Forall n φ) = filter (λm. n  m) (SP_list_rec φ)"
| "SP_list_rec _ = []"

definition SP_list :: "('a, 'b) fo_fmla  nat list" where
  "SP_list φ = remdups_adj (sort (SP_list_rec φ))"

lemma SP_list_set: "set (SP_list φ) = SP φ"
  unfolding SP_list_def
  by (induction φ rule: SP.induct) (auto simp: fv_fo_terms_set_list)

lemma sorted_distinct_SP_list: "sorted_distinct (SP_list φ)"
  unfolding SP_list_def
  by (auto intro: distinct_remdups_adj_sort)

fun d :: "('a, 'b) fo_fmla  nat" where
  "d (Eqa (Var n) (Var n')) = (if n  n' then 2 else 1)"
| "d (Neg φ) = d φ"
| "d (Conj φ ψ) = max (d φ) (max (d ψ) (card (SP (Conj φ ψ))))"
| "d (Disj φ ψ) = max (d φ) (max (d ψ) (card (SP (Disj φ ψ))))"
| "d (Exists n φ) = d φ"
| "d (Forall n φ) = d φ"
| "d _ = 1"

lemma d_pos: "1  d φ"
  by (induction φ rule: d.induct) auto

lemma card_SP_d: "card (SP φ)  d φ"
  using dual_order.trans
  by (induction φ rule: SP.induct) (fastforce simp: card_Diff1_le finite_SP)+

fun eval_eterm :: "('a + 'c) val  'a fo_term  'a + 'c" (infix ⋅e 60) where
  "eval_eterm σ (Const c) = Inl c"
| "eval_eterm σ (Var n) = σ n"

definition eval_eterms :: "('a + 'c) val  ('a fo_term) list 
  ('a + 'c) list" (infix ⊙e 60) where
  "eval_eterms σ ts = map (eval_eterm σ) ts"

lemma eval_eterm_cong: "(n. n  fv_fo_term_set t  σ n = σ' n) 
  eval_eterm σ t = eval_eterm σ' t"
  by (cases t) auto

lemma eval_eterms_fv_fo_terms_set: "σ ⊙e ts = σ' ⊙e ts  n  fv_fo_terms_set ts  σ n = σ' n"
proof (induction ts)
  case (Cons t ts)
  then show ?case
    by (cases t) (auto simp: eval_eterms_def fv_fo_terms_set_def)
qed (auto simp: eval_eterms_def fv_fo_terms_set_def)

lemma eval_eterms_cong: "(n. n  fv_fo_terms_set ts  σ n = σ' n) 
  eval_eterms σ ts = eval_eterms σ' ts"
  by (auto simp: eval_eterms_def fv_fo_terms_set_def intro: eval_eterm_cong)

lemma eval_terms_eterms: "map Inl (σ  ts) = (Inl  σ) ⊙e ts"
proof (induction ts)
  case (Cons t ts)
  then show ?case
    by (cases t) (auto simp: eval_terms_def eval_eterms_def)
qed (auto simp: eval_terms_def eval_eterms_def)

fun ad_equiv_pair :: "'a set  ('a + 'c) × ('a + 'c)  bool" where
  "ad_equiv_pair X (a, a')  (a  Inl ` X  a = a')  (a'  Inl ` X  a = a')"

fun sp_equiv_pair :: "'a × 'b  'a × 'b  bool" where
  "sp_equiv_pair (a, b) (a', b')  (a = a'  b = b')"

definition ad_equiv_list :: "'a set  ('a + 'c) list  ('a + 'c) list  bool" where
  "ad_equiv_list X xs ys  length xs = length ys  (x  set (zip xs ys). ad_equiv_pair X x)"

definition sp_equiv_list :: "('a + 'c) list  ('a + 'c) list  bool" where
  "sp_equiv_list xs ys  length xs = length ys  pairwise sp_equiv_pair (set (zip xs ys))"

definition ad_agr_list :: "'a set  ('a + 'c) list  ('a + 'c) list  bool" where
  "ad_agr_list X xs ys  length xs = length ys  ad_equiv_list X xs ys  sp_equiv_list xs ys"

lemma ad_equiv_pair_refl[simp]: "ad_equiv_pair X (a, a)"
  by auto

declare ad_equiv_pair.simps[simp del]

lemma ad_equiv_pair_comm: "ad_equiv_pair X (a, a')  ad_equiv_pair X (a', a)"
  by (auto simp: ad_equiv_pair.simps)

lemma ad_equiv_pair_mono: "X  Y  ad_equiv_pair Y (a, a')  ad_equiv_pair X (a, a')"
  unfolding ad_equiv_pair.simps
  by fastforce

lemma sp_equiv_pair_comm: "sp_equiv_pair x y  sp_equiv_pair y x"
  by (cases x; cases y) auto

definition sp_equiv :: "('a + 'c) val  ('a + 'c) val  nat set  bool" where
  "sp_equiv σ τ I  pairwise sp_equiv_pair ((λn. (σ n, τ n)) ` I)"

lemma sp_equiv_mono: "I  J  sp_equiv σ τ J  sp_equiv σ τ I"
  by (auto simp: sp_equiv_def pairwise_def)

definition ad_agr_sets :: "nat set  nat set  'a set  ('a + 'c) val 
  ('a + 'c) val  bool" where
  "ad_agr_sets FV S X σ τ  (i  FV. ad_equiv_pair X (σ i, τ i))  sp_equiv σ τ S"

lemma ad_agr_sets_comm: "ad_agr_sets FV S X σ τ  ad_agr_sets FV S X τ σ"
  unfolding ad_agr_sets_def sp_equiv_def pairwise_def
  by (subst ad_equiv_pair_comm) auto

lemma ad_agr_sets_mono: "X  Y  ad_agr_sets FV S Y σ τ  ad_agr_sets FV S X σ τ"
  using ad_equiv_pair_mono
  by (fastforce simp: ad_agr_sets_def)

lemma ad_agr_sets_mono': "S  S'  ad_agr_sets FV S' X σ τ  ad_agr_sets FV S X σ τ"
  by (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def)

lemma ad_equiv_list_comm: "ad_equiv_list X xs ys  ad_equiv_list X ys xs"
  by (auto simp: ad_equiv_list_def) (smt (verit, del_insts) ad_equiv_pair_comm in_set_zip prod.sel(1) prod.sel(2))

lemma ad_equiv_list_mono: "X  Y  ad_equiv_list Y xs ys  ad_equiv_list X xs ys"
  using ad_equiv_pair_mono
  by (fastforce simp: ad_equiv_list_def)

lemma ad_equiv_list_trans:
  assumes "ad_equiv_list X xs ys" "ad_equiv_list X ys zs"
  shows "ad_equiv_list X xs zs"
proof -
  have lens: "length xs = length ys" "length xs = length zs" "length ys = length zs"
    using assms
    by (auto simp: ad_equiv_list_def)
  have "x z. (x, z)  set (zip xs zs)  ad_equiv_pair X (x, z)"
  proof -
    fix x z
    assume "(x, z)  set (zip xs zs)"
    then obtain i where i_def: "i < length xs" "xs ! i = x" "zs ! i = z"
      by (auto simp: set_zip)
    define y where "y = ys ! i"
    have "ad_equiv_pair X (x, y)" "ad_equiv_pair X (y, z)"
      using assms lens i_def
      by (fastforce simp: set_zip y_def ad_equiv_list_def)+
    then show "ad_equiv_pair X (x, z)"
      unfolding ad_equiv_pair.simps
      by blast
  qed
  then show ?thesis
    using assms
    by (auto simp: ad_equiv_list_def)
qed

lemma ad_equiv_list_link: "(i  set ns. ad_equiv_pair X (σ i, τ i)) 
  ad_equiv_list X (map σ ns) (map τ ns)"
  by (auto simp: ad_equiv_list_def set_zip) (metis in_set_conv_nth nth_map)

lemma set_zip_comm: "(x, y)  set (zip xs ys)  (y, x)  set (zip ys xs)"
  by (metis in_set_zip prod.sel(1) prod.sel(2))

lemma set_zip_map: "set (zip (map σ ns) (map τ ns)) = (λn. (σ n, τ n)) ` set ns"
  by (induction ns) auto

lemma sp_equiv_list_comm: "sp_equiv_list xs ys  sp_equiv_list ys xs"
  unfolding sp_equiv_list_def
  using set_zip_comm
  by (auto simp: pairwise_def) force+

lemma sp_equiv_list_trans:
  assumes "sp_equiv_list xs ys" "sp_equiv_list ys zs"
  shows "sp_equiv_list xs zs"
proof -
  have lens: "length xs = length ys" "length xs = length zs" "length ys = length zs"
    using assms
    by (auto simp: sp_equiv_list_def)
  have "pairwise sp_equiv_pair (set (zip xs zs))"
  proof (rule pairwiseI)
    fix xz xz'
    assume "xz  set (zip xs zs)" "xz'  set (zip xs zs)"
    then obtain x z i x' z' i' where xz_def: "i < length xs" "xs ! i = x" "zs ! i = z"
      "xz = (x, z)" "i' < length xs" "xs ! i' = x'" "zs ! i' = z'" "xz' = (x', z')"
      by (auto simp: set_zip)
    define y where "y = ys ! i"
    define y' where "y' = ys ! i'"
    have "sp_equiv_pair (x, y) (x', y')" "sp_equiv_pair (y, z) (y', z')"
      using assms lens xz_def
      by (auto simp: sp_equiv_list_def pairwise_def y_def y'_def set_zip) metis+
    then show "sp_equiv_pair xz xz'"
      by (auto simp: xz_def)
  qed
  then show ?thesis
    using assms
    by (auto simp: sp_equiv_list_def)
qed

lemma sp_equiv_list_link: "sp_equiv_list (map σ ns) (map τ ns)  sp_equiv σ τ (set ns)"
  apply (auto simp: sp_equiv_list_def sp_equiv_def pairwise_def set_zip in_set_conv_nth)
     apply (metis nth_map)
    apply (metis nth_map)
   apply fastforce+
  done

lemma ad_agr_list_comm: "ad_agr_list X xs ys  ad_agr_list X ys xs"
  using ad_equiv_list_comm sp_equiv_list_comm
  by (fastforce simp: ad_agr_list_def)

lemma ad_agr_list_mono: "X  Y  ad_agr_list Y ys xs  ad_agr_list X ys xs"
  using ad_equiv_list_mono
  by (force simp: ad_agr_list_def)

lemma ad_agr_list_rev_mono:
  assumes "Y  X" "ad_agr_list Y ys xs" "Inl -` set xs  Y" "Inl -` set ys  Y"
  shows "ad_agr_list X ys xs"
proof -
  have "(a, b)  set (zip ys xs)  ad_equiv_pair Y (a, b)  ad_equiv_pair X (a, b)" for a b
    using assms
    apply (cases a; cases b)
       apply (auto simp: ad_agr_list_def ad_equiv_list_def vimage_def set_zip)
    unfolding ad_equiv_pair.simps
       apply (metis Collect_mem_eq Collect_mono_iff imageI nth_mem)
      apply (metis Collect_mem_eq Collect_mono_iff imageI nth_mem)
     apply (metis Collect_mem_eq Collect_mono_iff imageI nth_mem)
    apply (metis Inl_Inr_False image_iff)
    done
  then show ?thesis
    using assms
    by (fastforce simp: ad_agr_list_def ad_equiv_list_def)
qed

lemma ad_agr_list_trans: "ad_agr_list X xs ys  ad_agr_list X ys zs  ad_agr_list X xs zs"
  using ad_equiv_list_trans sp_equiv_list_trans
  by (force simp: ad_agr_list_def)

lemma ad_agr_list_refl: "ad_agr_list X xs xs"
  by (auto simp: ad_agr_list_def ad_equiv_list_def set_zip ad_equiv_pair.simps
      sp_equiv_list_def pairwise_def)

lemma ad_agr_list_set: "ad_agr_list X xs ys  y  X  Inl y  set ys  Inl y  set xs"
  by (auto simp: ad_agr_list_def ad_equiv_list_def set_zip in_set_conv_nth)
     (metis ad_equiv_pair.simps image_eqI)

lemma ad_agr_list_length: "ad_agr_list X xs ys  length xs = length ys"
  by (auto simp: ad_agr_list_def)

lemma ad_agr_list_eq: "set ys  AD  ad_agr_list AD (map Inl xs) (map Inl ys)  xs = ys"
  by (fastforce simp: ad_agr_list_def ad_equiv_list_def set_zip ad_equiv_pair.simps
      intro!: nth_equalityI)

lemma sp_equiv_list_subset:
  assumes "set ms  set ns" "sp_equiv_list (map σ ns) (map σ' ns)"
  shows "sp_equiv_list (map σ ms) (map σ' ms)"
  unfolding sp_equiv_list_def length_map pairwise_def
proof (rule conjI, rule refl, (rule ballI)+, rule impI)
  fix x y
  assume "x  set (zip (map σ ms) (map σ' ms))" "y  set (zip (map σ ms) (map σ' ms))" "x  y"
  then have "x  set (zip (map σ ns) (map σ' ns))" "y  set (zip (map σ ns) (map σ' ns))" "x  y"
    using assms(1)
    by (auto simp: set_zip) (metis in_set_conv_nth nth_map subset_iff)+
  then show "sp_equiv_pair x y"
    using assms(2)
    by (auto simp: sp_equiv_list_def pairwise_def)
qed

lemma ad_agr_list_subset: "set ms  set ns  ad_agr_list X (map σ ns) (map σ' ns) 
  ad_agr_list X (map σ ms) (map σ' ms)"
  by (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_subset set_zip)
     (metis (no_types, lifting) in_set_conv_nth nth_map subset_iff)

lemma ad_agr_list_link: "ad_agr_sets (set ns) (set ns) AD σ τ 
  ad_agr_list AD (map σ ns) (map τ ns)"
  unfolding ad_agr_sets_def ad_agr_list_def
  using ad_equiv_list_link sp_equiv_list_link
  by fastforce

definition ad_agr :: "('a, 'b) fo_fmla  'a set  ('a + 'c) val  ('a + 'c) val  bool" where
  "ad_agr φ X σ τ  ad_agr_sets (fv_fo_fmla φ) (SP φ) X σ τ"

lemma ad_agr_sets_restrict:
  "ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD σ τ  ad_agr φ AD σ τ"
  using sp_equiv_mono SP_fv
  unfolding fv_fo_fmla_list_set
  by (auto simp: ad_agr_sets_def ad_agr_def) blast

lemma finite_Inl: "finite X  finite (Inl -` X)"
  using finite_vimageI[of X Inl]
  by (auto simp: vimage_def)

lemma ex_out:
  assumes "finite X"
  shows "k. k  X  k < Suc (card X)"
  using card_mono[OF assms, of "{..<Suc (card X)}"]
  by auto

lemma extend_τ:
  assumes "ad_agr_sets (FV - {n}) (S - {n}) X σ τ" "S  FV" "finite S" "τ ` (FV - {n})  Z"
    "Inl ` X  Inr ` {..<max 1 (card (Inr -` τ ` (S - {n})) + (if n  S then 1 else 0))}  Z"
  shows "k  Z. ad_agr_sets FV S X (σ(n := x)) (τ(n := k))"
proof (cases "n  S")
  case True
  note n_in_S = True
  show ?thesis
  proof (cases "x  Inl ` X")
    case True
    show ?thesis
      using assms n_in_S True
      apply (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "x"])
      unfolding ad_equiv_pair.simps
         apply (metis True insert_Diff insert_iff subsetD)+
      done
  next
    case False
    note σ_n_not_Inl = False
    show ?thesis
    proof (cases "m  S - {n}. x = σ m")
      case True
      obtain m where m_def: "m  S - {n}" "x = σ m"
        using True
        by auto
      have τ_m_in: "τ m  Z"
        using assms m_def
        by auto
      show ?thesis
        using assms n_in_S σ_n_not_Inl True m_def
        by (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "τ m"])
    next
      case False
      have out: "x  σ ` (S - {n})"
        using False
        by auto
      have fin: "finite (Inr -` τ ` (S - {n}))"
        using assms(3)
        by (simp add: finite_vimageI)
      obtain k where k_def: "Inr k  τ ` (S - {n})" "k < Suc (card (Inr -` τ ` (S - {n})))"
        using ex_out[OF fin] True
        by auto
      show ?thesis
        using assms n_in_S σ_n_not_Inl out k_def assms(5)
        apply (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "Inr k"])
        unfolding ad_equiv_pair.simps
         apply fastforce
        apply (metis image_eqI insertE insert_Diff)
        done
    qed
  qed
next
  case False
  show ?thesis
  proof (cases "x  Inl ` X")
    case x_in: True
    then show ?thesis
      using assms False
      by (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "x"])
  next
    case x_out: False
    then show ?thesis
      using assms False
      apply (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "Inr 0"])
      unfolding ad_equiv_pair.simps
      apply fastforce
      done
  qed
qed

lemma esat_Pred:
  assumes "ad_agr_sets FV S ((set ` X)) σ τ" "fv_fo_terms_set ts  FV" "σ ⊙e ts  map Inl ` X"
    "t  set ts"
  shows "σ ⋅e t = τ ⋅e t"
proof (cases t)
  case (Var n)
  obtain vs where vs_def: "σ ⊙e ts = map Inl vs" "vs  X"
    using assms(3)
    by auto
  have "σ n  set (σ ⊙e ts)"
    using assms(4)
    by (force simp: eval_eterms_def Var)
  then have "σ n  Inl `  (set ` X)"
    using vs_def(2)
    unfolding vs_def(1)
    by auto
  moreover have "n  FV"
    using assms(2,4)
    by (fastforce simp: Var fv_fo_terms_set_def)
  ultimately show ?thesis
    using assms(1)
    unfolding ad_equiv_pair.simps ad_agr_sets_def Var
    by fastforce
qed auto

lemma sp_equiv_list_fv:
  assumes "(i. i  fv_fo_terms_set ts  ad_equiv_pair X (σ i, τ i))"
    "(set_fo_term ` set ts)  X" "sp_equiv σ τ (fv_fo_terms_set ts)"
  shows "sp_equiv_list (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)"
  using assms
proof (induction ts)
  case (Cons t ts)
  have ind: "sp_equiv_list (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)"
    using Cons
    by (auto simp: fv_fo_terms_set_def sp_equiv_def pairwise_def)
  show ?case
  proof (cases t)
    case (Const c)
    have c_X: "c  X"
      using Cons(3)
      by (auto simp: Const)
    have fv_t: "fv_fo_term_set t = {}"
      by (auto simp: Const)
    have "t'  set ts  sp_equiv_pair (σ ⋅e t, τ ⋅e t) (σ ⋅e t', τ ⋅e t')" for t'
      using c_X Const Cons(2)
      apply (cases t')
       apply (auto simp: fv_fo_terms_set_def)
      unfolding ad_equiv_pair.simps
      by (metis Cons(2) ad_equiv_pair.simps fv_fo_terms_setI image_insert insert_iff list.set(2)
          mk_disjoint_insert)+
    then show "sp_equiv_list (map ((⋅e) σ) (t # ts)) (map ((⋅e) τ) (t # ts))"
      using ind pairwise_insert[of sp_equiv_pair "(σ ⋅e t, τ ⋅e t)"]
      unfolding sp_equiv_list_def set_zip_map
      by (auto simp: sp_equiv_pair_comm fv_fo_terms_set_def fv_t)
  next
    case (Var n)
    have ad_n: "ad_equiv_pair X (σ n, τ n)"
      using Cons(2)
      by (auto simp: fv_fo_terms_set_def Var)
    have sp_equiv_Var: "n'. Var n'  set ts  sp_equiv_pair (σ n, τ n) (σ n', τ n')"
      using Cons(4)
      by (auto simp: sp_equiv_def pairwise_def fv_fo_terms_set_def Var)
    have "t'  set ts  sp_equiv_pair (σ ⋅e t, τ ⋅e t) (σ ⋅e t', τ ⋅e t')" for t'
      using Cons(2,3) sp_equiv_Var  
      apply (cases t')
       apply (auto simp: Var)
       apply (metis SUP_le_iff ad_equiv_pair.simps ad_n fo_term.set_intros imageI subset_eq)
      apply (metis SUP_le_iff ad_equiv_pair.simps ad_n fo_term.set_intros imageI subset_eq)
      done
    then show ?thesis
      using ind pairwise_insert[of sp_equiv_pair "(σ ⋅e t, τ ⋅e t)" "(λn. (σ ⋅e n, τ ⋅e n)) ` set ts"]
      unfolding sp_equiv_list_def set_zip_map
      by (auto simp: sp_equiv_pair_comm)
  qed
qed (auto simp: sp_equiv_def sp_equiv_list_def fv_fo_terms_set_def)

lemma esat_Pred_inf:
  assumes "fv_fo_terms_set ts  FV" "fv_fo_terms_set ts  S"
    "ad_agr_sets FV S AD σ τ" "ad_agr_list AD (σ ⊙e ts) vs"
    "(set_fo_term ` set ts)  AD"
  shows "ad_agr_list AD (τ ⊙e ts) vs"
proof -
  have sp: "sp_equiv σ τ (fv_fo_terms_set ts)"
    using assms(2,3) sp_equiv_mono
    unfolding ad_agr_sets_def
    by auto
  have "(i. i  fv_fo_terms_set ts  ad_equiv_pair AD (σ i, τ i))"
    using assms(1,3)
    by (auto simp: ad_agr_sets_def)
  then have "sp_equiv_list (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)"
    using sp_equiv_list_fv[OF _ assms(5) sp]
    by auto
  moreover have "t  set ts  ifv_fo_terms_set ts. ad_equiv_pair AD (σ i, τ i)  sp_equiv σ τ S  ad_equiv_pair AD (σ ⋅e t, τ ⋅e t)" for t
    by (cases t) (auto simp: ad_equiv_pair.simps intro!: fv_fo_terms_setI)
  ultimately have ad_agr_list:
    "ad_agr_list AD (σ ⊙e ts) (τ ⊙e ts)"
    unfolding eval_eterms_def ad_agr_list_def ad_equiv_list_link[symmetric]
    using assms(1,3)
    by (auto simp: ad_agr_sets_def)
  show ?thesis
    by (rule ad_agr_list_comm[OF ad_agr_list_trans[OF ad_agr_list_comm[OF assms(4)] ad_agr_list]])
qed

type_synonym ('a, 'c) fo_t = "'a set × nat × ('a + 'c) table"

fun esat :: "('a, 'b) fo_fmla  ('a table, 'b) fo_intp  ('a + nat) val  ('a + nat) set  bool" where
  "esat (Pred r ts) I σ X  σ ⊙e ts  map Inl ` I (r, length ts)"
| "esat (Bool b) I σ X  b"
| "esat (Eqa t t') I σ X  σ ⋅e t = σ ⋅e t'"
| "esat (Neg φ) I σ X  ¬esat φ I σ X"
| "esat (Conj φ ψ) I σ X  esat φ I σ X  esat ψ I σ X"
| "esat (Disj φ ψ) I σ X  esat φ I σ X  esat ψ I σ X"
| "esat (Exists n φ) I σ X  (x  X. esat φ I (σ(n := x)) X)"
| "esat (Forall n φ) I σ X  (x  X. esat φ I (σ(n := x)) X)"

fun sz_fmla :: "('a, 'b) fo_fmla  nat" where
  "sz_fmla (Neg φ) = Suc (sz_fmla φ)"
| "sz_fmla (Conj φ ψ) = Suc (sz_fmla φ + sz_fmla ψ)"
| "sz_fmla (Disj φ ψ) = Suc (sz_fmla φ + sz_fmla ψ)"
| "sz_fmla (Exists n φ) = Suc (sz_fmla φ)"
| "sz_fmla (Forall n φ) = Suc (Suc (Suc (Suc (sz_fmla φ))))"
| "sz_fmla _ = 0"

lemma sz_fmla_induct[case_names Pred Bool Eqa Neg Conj Disj Exists Forall]:
  "(r ts. P (Pred r ts))  (b. P (Bool b)) 
  (t t'. P (Eqa t t'))  (φ. P φ  P (Neg φ)) 
  (φ ψ. P φ  P ψ  P (Conj φ ψ))  (φ ψ. P φ  P ψ  P (Disj φ ψ)) 
  (n φ. P φ  P (Exists n φ))  (n φ. P (Exists n (Neg φ))  P (Forall n φ))  P φ"
proof (induction "sz_fmla φ" arbitrary: φ rule: nat_less_induct)
  case 1
  have IH: "ψ. sz_fmla ψ < sz_fmla φ  P ψ"
    using 1
    by auto
  then show ?case
    using 1(2,3,4,5,6,7,8,9)
    by (cases φ) auto
qed

lemma esat_fv_cong: "(n. n  fv_fo_fmla φ  σ n = σ' n)  esat φ I σ X  esat φ I σ' X"
proof (induction φ arbitrary: σ σ' rule: sz_fmla_induct)
  case (Pred r ts)
  then show ?case
    by (auto simp: eval_eterms_def fv_fo_terms_set_def)
       (smt comp_apply eval_eterm_cong fv_fo_term_set_cong image_insert insertCI map_eq_conv
        mk_disjoint_insert)+
next
  case (Eqa t t')
  then show ?case
    by (cases t; cases t') auto
next
  case (Neg φ)
  show ?case
    using Neg(1)[of σ σ'] Neg(2) by auto
next
  case (Conj φ1 φ2)
  show ?case
    using Conj(1,2)[of σ σ'] Conj(3) by auto
next
  case (Disj φ1 φ2)
  show ?case
    using Disj(1,2)[of σ σ'] Disj(3) by auto
next
  case (Exists n φ)
  show ?case
  proof (rule iffI)
    assume "esat (Exists n φ) I σ X"
    then obtain x where x_def: "x  X" "esat φ I (σ(n := x)) X"
      by auto
    from x_def(2) have "esat φ I (σ'(n := x)) X"
      using Exists(1)[of "σ(n := x)" "σ'(n := x)"] Exists(2) by fastforce
    with x_def(1) show "esat (Exists n φ) I σ' X"
      by auto
  next
    assume "esat (Exists n φ) I σ' X"
    then obtain x where x_def: "x  X" "esat φ I (σ'(n := x)) X"
      by auto
    from x_def(2) have "esat φ I (σ(n := x)) X"
      using Exists(1)[of "σ(n := x)" "σ'(n := x)"] Exists(2) by fastforce
    with x_def(1) show "esat (Exists n φ) I σ X"
      by auto
  qed
next
  case (Forall n φ)
  then show ?case
    by auto
qed auto

fun ad_terms :: "('a fo_term) list  'a set" where
  "ad_terms ts = (set (map set_fo_term ts))"

fun act_edom :: "('a, 'b) fo_fmla  ('a table, 'b) fo_intp  'a set" where
  "act_edom (Pred r ts) I = ad_terms ts  (set ` I (r, length ts))"
| "act_edom (Bool b) I = {}"
| "act_edom (Eqa t t') I = set_fo_term t  set_fo_term t'"
| "act_edom (Neg φ) I = act_edom φ I"
| "act_edom (Conj φ ψ) I = act_edom φ I  act_edom ψ I"
| "act_edom (Disj φ ψ) I = act_edom φ I  act_edom ψ I"
| "act_edom (Exists n φ) I = act_edom φ I"
| "act_edom (Forall n φ) I = act_edom φ I"

lemma finite_act_edom: "wf_fo_intp φ I  finite (act_edom φ I)"
  using finite_Inl
  by (induction φ I rule: wf_fo_intp.induct)
     (auto simp: finite_set_fo_term vimage_def)

fun fo_adom :: "('a, 'c) fo_t  'a set" where
  "fo_adom (AD, n, X) = AD"

theorem main: "ad_agr φ AD σ τ  act_edom φ I  AD 
  Inl ` AD  Inr ` {..<d φ}  X  τ ` fv_fo_fmla φ  X 
  esat φ I σ UNIV  esat φ I τ X"
proof (induction φ arbitrary: σ τ rule: sz_fmla_induct)
  case (Pred r ts)
  have fv_sub: "fv_fo_terms_set ts  fv_fo_fmla (Pred r ts)"
    by auto
  have sub_AD: "(set ` I (r, length ts))  AD"
    using Pred(2)
    by auto
  show ?case
    unfolding esat.simps
  proof (rule iffI)
    assume assm: "σ ⊙e ts  map Inl ` I (r, length ts)"
    have "σ ⊙e ts = τ ⊙e ts"
      using esat_Pred[OF ad_agr_sets_mono[OF sub_AD Pred(1)[unfolded ad_agr_def]]
            fv_sub assm]
      by (auto simp: eval_eterms_def)
    with assm show "τ ⊙e ts  map Inl ` I (r, length ts)"
      by auto
  next
    assume assm: "τ ⊙e ts  map Inl ` I (r, length ts)"
    have "τ ⊙e ts = σ ⊙e ts"
      using esat_Pred[OF ad_agr_sets_comm[OF ad_agr_sets_mono[OF
            sub_AD Pred(1)[unfolded ad_agr_def]]] fv_sub assm]
      by (auto simp: eval_eterms_def)
    with assm show "σ ⊙e ts  map Inl ` I (r, length ts)"
      by auto
  qed
next
  case (Eqa x1 x2)
  show ?case
  proof (cases x1; cases x2)
    fix c c'
    assume "x1 = Const c" "x2 = Const c'"
    with Eqa show ?thesis
      by auto
  next
    fix c m'
    assume assms: "x1 = Const c" "x2 = Var m'"
    with Eqa(1,2) have "σ m' = Inl c  τ m' = Inl c"
      apply (auto simp: ad_agr_def ad_agr_sets_def)
      unfolding ad_equiv_pair.simps
      by fastforce+
    with assms show ?thesis
      by fastforce
  next
    fix m c'
    assume assms: "x1 = Var m" "x2 = Const c'"
    with Eqa(1,2) have "σ m = Inl c'  τ m = Inl c'"
      apply (auto simp: ad_agr_def ad_agr_sets_def)
      unfolding ad_equiv_pair.simps
      by fastforce+
    with assms show ?thesis
      by auto
  next
    fix m m'
    assume assms: "x1 = Var m" "x2 = Var m'"
    with Eqa(1,2) have "σ m = σ m'  τ m = τ m'"
      by (auto simp: ad_agr_def ad_agr_sets_def sp_equiv_def pairwise_def split: if_splits)
    with assms show ?thesis
      by auto
  qed
next
  case (Neg φ)
  from Neg(2) have "ad_agr φ AD σ τ"
    by (auto simp: ad_agr_def)
  with Neg show ?case
    by auto
next
  case (Conj φ1 φ2)
  have aux: "ad_agr φ1 AD σ τ" "ad_agr φ2 AD σ τ"
    "Inl ` AD  Inr ` {..<d φ1}  X" "Inl ` AD  Inr ` {..<d φ2}  X"
    "τ ` fv_fo_fmla φ1  X" "τ ` fv_fo_fmla φ2  X"
    using Conj(3,5,6)
    by (auto simp: ad_agr_def ad_agr_sets_def sp_equiv_def pairwise_def)
  show ?case
    using Conj(1)[OF aux(1) _ aux(3) aux(5)] Conj(2)[OF aux(2) _ aux(4) aux(6)] Conj(4)
    by auto
next
  case (Disj φ1 φ2)
  have aux: "ad_agr φ1 AD σ τ" "ad_agr φ2 AD σ τ"
    "Inl ` AD  Inr ` {..<d φ1}  X" "Inl ` AD  Inr ` {..<d φ2}  X"
    "τ ` fv_fo_fmla φ1  X" "τ ` fv_fo_fmla φ2  X"
    using Disj(3,5,6)
    by (auto simp: ad_agr_def ad_agr_sets_def sp_equiv_def pairwise_def)
  show ?case
    using Disj(1)[OF aux(1) _ aux(3) aux(5)] Disj(2)[OF aux(2) _ aux(4) aux(6)] Disj(4)
    by auto
next
  case (Exists m φ)
  show ?case
  proof (rule iffI)
    assume "esat (Exists m φ) I σ UNIV"
    then obtain x where assm: "esat φ I (σ(m := x)) UNIV"
      by auto
    have "m  SP φ  Suc (card (Inr -` τ ` (SP φ - {m})))  card (SP φ)"
      by (metis Diff_insert_absorb card_image card_le_Suc_iff finite_Diff finite_SP
          image_vimage_subset inj_Inr mk_disjoint_insert surj_card_le)
    moreover have "card (Inr -` τ ` SP φ)  card (SP φ)"
      by (metis card_image finite_SP image_vimage_subset inj_Inr surj_card_le)
    ultimately have "max 1 (card (Inr -` τ ` (SP φ - {m})) + (if m  SP φ then 1 else 0))  d φ"
      using d_pos card_SP_d[of φ]
      by auto
    then have "x'  X. ad_agr φ AD (σ(m := x)) (τ(m := x'))"
      using extend_τ[OF Exists(2)[unfolded ad_agr_def fv_fo_fmla.simps SP.simps]
            SP_fv[of φ] finite_SP Exists(5)[unfolded fv_fo_fmla.simps]]
            Exists(4)
      by (force simp: ad_agr_def)
    then obtain x' where x'_def: "x'  X" "ad_agr φ AD (σ(m := x)) (τ(m := x'))"
      by auto
    from Exists(5) have "τ(m := x') ` fv_fo_fmla φ  X"
      using x'_def(1) by fastforce
    then have "esat φ I (τ(m := x')) X"
      using Exists x'_def(1,2) assm
      by fastforce
    with x'_def show "esat (Exists m φ) I τ X"
      by auto
  next
    assume "esat (Exists m φ) I τ X"
    then obtain z where assm: "z  X" "esat φ I (τ(m := z)) X"
      by auto
    have ad_agr: "ad_agr_sets (fv_fo_fmla φ - {m}) (SP φ - {m}) AD τ σ"
      using Exists(2)[unfolded ad_agr_def fv_fo_fmla.simps SP.simps]
      by (rule ad_agr_sets_comm)
    have "x. ad_agr φ AD (σ(m := x)) (τ(m := z))"
      using extend_τ[OF ad_agr SP_fv[of φ] finite_SP subset_UNIV subset_UNIV] ad_agr_sets_comm
      unfolding ad_agr_def
      by fastforce
    then obtain x where x_def: "ad_agr φ AD (σ(m := x)) (τ(m := z))"
      by auto
    have "τ(m := z) ` fv_fo_fmla (Exists m φ)  X"
      using Exists
      by fastforce
    with x_def have "esat φ I (σ(m := x)) UNIV"
      using Exists assm
      by fastforce
    then show "esat (Exists m φ) I σ UNIV"
      by auto
  qed
next
  case (Forall n φ)
  have unfold: "act_edom (Forall n φ) I = act_edom (Exists n (Neg φ)) I"
    "Inl ` AD  Inr ` {..<d (Forall n φ)} = Inl ` AD  Inr ` {..<d (Exists n (Neg φ))}"
    "fv_fo_fmla (Forall n φ) = fv_fo_fmla (Exists n (Neg φ))"
    by auto
  have pred: "ad_agr (Exists n (Neg φ)) AD σ τ"
    using Forall(2)
    by (auto simp: ad_agr_def)
  show ?case
    using Forall(1)[OF pred Forall(3,4,5)[unfolded unfold]]
    by auto
qed auto

lemma main_cor_inf:
  assumes "ad_agr φ AD σ τ" "act_edom φ I  AD" "d φ  n"
    "τ ` fv_fo_fmla φ  Inl ` AD  Inr ` {..<n}"
  shows "esat φ I σ UNIV  esat φ I τ (Inl ` AD  Inr ` {..<n})"
proof -
  show ?thesis
    using main[OF assms(1,2) _ assms(4)] assms(3)
    by fastforce
qed

lemma esat_UNIV_cong:
  fixes σ :: "nat  'a + nat"
  assumes "ad_agr φ AD σ τ" "act_edom φ I  AD"
  shows "esat φ I σ UNIV  esat φ I τ UNIV"
proof -
  show ?thesis
    using main[OF assms(1,2) subset_UNIV subset_UNIV]
    by auto
qed

lemma esat_UNIV_ad_agr_list:
  fixes σ :: "nat  'a + nat"
  assumes "ad_agr_list AD (map σ (fv_fo_fmla_list φ)) (map τ (fv_fo_fmla_list φ))"
    "act_edom φ I  AD"
  shows "esat φ I σ UNIV  esat φ I τ UNIV"
  using esat_UNIV_cong[OF iffD2[OF ad_agr_def, OF ad_agr_sets_mono'[OF SP_fv],
        OF iffD2[OF ad_agr_list_link, OF assms(1), unfolded fv_fo_fmla_list_set]] assms(2)] .

fun fo_rep :: "('a, 'c) fo_t  'a table" where
  "fo_rep (AD, n, X) = {ts. ts'  X. ad_agr_list AD (map Inl ts) ts'}"

lemma sat_esat_conv:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes fin: "wf_fo_intp φ I"
  shows "sat φ I σ  esat φ I (Inl  σ :: nat  'a + nat) UNIV"
  using assms
proof (induction φ arbitrary: I σ rule: sz_fmla_induct)
  case (Pred r ts)
  show ?case
    unfolding sat.simps esat.simps comp_def[symmetric] eval_terms_eterms[symmetric]
    by auto
next
  case (Eqa t t')
  show ?case
    by (cases t; cases t') auto
next
  case (Exists n φ)
  show ?case
  proof (rule iffI)
    assume "sat (Exists n φ) I σ"
    then obtain x where x_def: "esat φ I (Inl  σ(n := x)) UNIV"
      using Exists
      by fastforce
    have Inl_unfold: "Inl  σ(n := x) = (Inl  σ)(n := Inl x)"
      by auto
    show "esat (Exists n φ) I (Inl  σ) UNIV"
      using x_def
      unfolding Inl_unfold
      by auto
  next
    assume "esat (Exists n φ) I (Inl  σ) UNIV"
    then obtain x where x_def: "esat φ I ((Inl  σ)(n := x)) UNIV"
      by auto
    show "sat (Exists n φ) I σ"
    proof (cases x)
      case (Inl a)
      have Inl_unfold: "(Inl  σ)(n := x) = Inl  σ(n := a)"
        by (auto simp: Inl)
      show ?thesis
        using x_def[unfolded Inl_unfold] Exists
        by fastforce
    next
      case (Inr b)
      obtain c where c_def: "c  act_edom φ I  σ ` fv_fo_fmla φ"
        using arb_element finite_act_edom[OF Exists(2), simplified] finite_fv_fo_fmla
        by (metis finite_Un finite_imageI)
      have wf_local: "wf_fo_intp φ I"
        using Exists(2)
        by auto
      have "(a, a')  set (zip (map (λx. if x = n then Inr b else (Inl  σ) x) (fv_fo_fmla_list φ))
        (map (λa. Inl (if a = n then c else σ a)) (fv_fo_fmla_list φ))) 
        ad_equiv_pair (act_edom φ I) (a, a')" for a a'
        using c_def
        by (cases a; cases a') (auto simp: set_zip ad_equiv_pair.simps split: if_splits)
      then have "sat φ I (σ(n := c))"
        using c_def[folded fv_fo_fmla_list_set]
        by (auto simp: ad_agr_list_def ad_equiv_list_def fun_upd_def sp_equiv_list_def pairwise_def set_zip split: if_splits
            intro!: Exists(1)[OF wf_local, THEN iffD2, OF esat_UNIV_ad_agr_list[OF _ subset_refl, THEN iffD1, OF _ x_def[unfolded Inr]]])
      then show ?thesis
        by auto
    qed
  qed
next
  case (Forall n φ)
  show ?case
    using Forall(1)[of I σ] Forall(2)
    by auto
qed auto

lemma sat_ad_agr_list:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
    and J :: "(('a, nat) fo_t, 'b) fo_intp"
  assumes "wf_fo_intp φ I"
    "ad_agr_list AD (map (Inl  σ :: nat  'a + nat) (fv_fo_fmla_list φ))
      (map (Inl  τ) (fv_fo_fmla_list φ))" "act_edom φ I  AD"
  shows "sat φ I σ  sat φ I τ"
  using esat_UNIV_ad_agr_list[OF assms(2,3)] sat_esat_conv[OF assms(1)]
  by auto

definition nfv :: "('a, 'b) fo_fmla  nat" where
  "nfv φ = length (fv_fo_fmla_list φ)"

lemma nfv_card: "nfv φ = card (fv_fo_fmla φ)"
proof -
  have "distinct (fv_fo_fmla_list φ)"
    using sorted_distinct_fv_list
    by auto
  then have "length (fv_fo_fmla_list φ) = card (set (fv_fo_fmla_list φ))"
    using distinct_card by fastforce
  then show ?thesis
    unfolding fv_fo_fmla_list_set by (auto simp: nfv_def)
qed

fun rremdups :: "'a list  'a list" where
  "rremdups [] = []"
| "rremdups (x # xs) = x # rremdups (filter ((≠) x) xs)"

lemma filter_rremdups_filter: "filter P (rremdups (filter Q xs)) =
  rremdups (filter (λx. P x  Q x) xs)"
  apply (induction xs arbitrary: Q)
   apply auto
  by metis

lemma filter_rremdups: "filter P (rremdups xs) = rremdups (filter P xs)"
  using filter_rremdups_filter[where Q="λ_. True"]
  by auto

lemma filter_take: "j. filter P (take i xs) = take j (filter P xs)"
  apply (induction xs arbitrary: i)
   apply (auto)
   apply (metis filter.simps(1) filter.simps(2) take_Cons' take_Suc_Cons)
  apply (metis filter.simps(2) take0 take_Cons')
  done

lemma rremdups_take: "j. rremdups (take i xs) = take j (rremdups xs)"
proof (induction xs arbitrary: i)
  case (Cons x xs)
  show ?case
  proof (cases i)
    case (Suc n)
    obtain j where j_def: "rremdups (take n xs) = take j (rremdups xs)"
      using Cons by auto
    obtain j' where j'_def: "filter ((≠) x) (take j (rremdups xs)) =
      take j' (filter ((≠) x) (rremdups xs))"
      using filter_take
      by blast
    show ?thesis
      by (auto simp: Suc filter_rremdups[symmetric] j_def j'_def intro: exI[of _ "Suc j'"])
  qed (auto simp add: take_Cons')
qed auto

lemma rremdups_app: "rremdups (xs @ [x]) = rremdups xs @ (if x  set xs then [] else [x])"
  apply (induction xs)
   apply auto
   apply (smt filter.simps(1) filter.simps(2) filter_append filter_rremdups)+
  done

lemma rremdups_set: "set (rremdups xs) = set xs"
  by (induction xs) (auto simp: filter_rremdups[symmetric])

lemma distinct_rremdups: "distinct (rremdups xs)"
proof (induction "length xs" arbitrary: xs rule: nat_less_induct)
  case 1
  then have IH: "m ys. length (ys :: 'a list) < length xs  distinct (rremdups ys)"
    by auto
  show ?case
  proof (cases xs)
    case (Cons z zs)
    show ?thesis
      using IH
      by (auto simp: Cons rremdups_set le_imp_less_Suc)
  qed auto
qed

lemma length_rremdups: "length (rremdups xs) = card (set xs)"
  using distinct_card[OF distinct_rremdups]
  by (subst eq_commute) (auto simp: rremdups_set)

lemma set_map_filter_sum: "set (List.map_filter (case_sum Map.empty Some) xs) = Inr -` set xs"
  by (induction xs) (auto simp: List.map_filter_simps split: sum.splits)

definition nats :: "nat list  bool" where
  "nats ns = (ns = [0..<length ns])"

definition fo_nmlzd :: "'a set  ('a + nat) list  bool" where
  "fo_nmlzd AD xs  Inl -` set xs  AD 
    (let ns = List.map_filter (case_sum Map.empty Some) xs in nats (rremdups ns))"

lemma fo_nmlzd_all_AD:
  assumes "set xs  Inl ` AD"
  shows "fo_nmlzd AD xs"
proof -
  have "List.map_filter (case_sum Map.empty Some) xs = []"
    using assms
    by (induction xs) (auto simp: List.map_filter_simps)
  then show ?thesis
    using assms
    by (auto simp: fo_nmlzd_def nats_def Let_def)
qed

lemma card_Inr_vimage_le_length: "card (Inr -` set xs)  length xs"
proof -
  have "card (Inr -` set xs)  card (set xs)"
    by (meson List.finite_set card_inj_on_le image_vimage_subset inj_Inr)
  moreover have "  length xs"
    by (rule card_length)
  finally show ?thesis .
qed

lemma fo_nmlzd_set:
  assumes "fo_nmlzd AD xs"
  shows "set xs = set xs  Inl ` AD  Inr ` {..<min (length xs) (card (Inr -` set xs))}"
proof -
  have "Inl -` set xs  AD"
    using assms
    by (auto simp: fo_nmlzd_def)
  moreover have "Inr -` set xs = {..<card (Inr -` set xs)}"
    using assms
    by (auto simp: Let_def fo_nmlzd_def nats_def length_rremdups set_map_filter_sum rremdups_set
        dest!: arg_cong[of _ _ set])
  ultimately have "set xs = set xs  Inl ` AD  Inr ` {..<card (Inr -` set xs)}"
    by auto (metis (no_types, lifting) UNIV_I UNIV_sum UnE image_iff subset_iff vimageI)
  then show ?thesis
    using card_Inr_vimage_le_length[of xs]
    by (metis min.absorb2)
qed

lemma map_filter_take: "j. List.map_filter f (take i xs) = take j (List.map_filter f xs)"
  apply (induction xs arbitrary: i)
   apply (auto simp: List.map_filter_simps split: option.splits)
   apply (metis map_filter_simps(1) option.case(1) take0 take_Cons')
  apply (metis map_filter_simps(1) map_filter_simps(2) option.case(2) take_Cons' take_Suc_Cons)
  done

lemma fo_nmlzd_take: assumes "fo_nmlzd AD xs"
  shows "fo_nmlzd AD (take i xs)"
proof -
  have aux: "rremdups zs = [0..<length (rremdups zs)]  rremdups (take j zs) =
    [0..<length (rremdups (take j zs))]" for j zs
    using rremdups_take[of j zs]
    by (auto simp add: min_def) (metis add_0 linorder_le_cases take_upt)
  show ?thesis
    using assms map_filter_take[of "case_sum Map.empty Some" i xs] set_take_subset
    using aux[where ?zs="List.map_filter (case_sum Map.empty Some) xs"]
    by (fastforce simp: fo_nmlzd_def vimage_def nats_def Let_def)
qed

lemma map_filter_app: "List.map_filter f (xs @ [x]) = List.map_filter f xs @
  (case f x of Some y  [y] | _  [])"
  by (induction xs) (auto simp: List.map_filter_simps split: option.splits)

lemma fo_nmlzd_app_Inr: "Inr n  set xs  Inr n'  set xs  fo_nmlzd AD (xs @ [Inr n]) 
  fo_nmlzd AD (xs @ [Inr n'])  n = n'"
  by (auto simp: List.map_filter_simps fo_nmlzd_def nats_def Let_def map_filter_app
      rremdups_app set_map_filter_sum)

fun all_tuples :: "'c set  nat  'c table" where
  "all_tuples xs 0 = {[]}"
| "all_tuples xs (Suc n) = ((λas. (λx. x # as) ` xs) ` (all_tuples xs n))"

definition nall_tuples :: "'a set  nat  ('a + nat) table" where
  "nall_tuples AD n = {zs  all_tuples (Inl ` AD  Inr ` {..<n}) n. fo_nmlzd AD zs}"

lemma all_tuples_finite: "finite xs  finite (all_tuples xs n)"
  by (induction xs n rule: all_tuples.induct) auto

lemma nall_tuples_finite: "finite AD  finite (nall_tuples AD n)"
  by (auto simp: nall_tuples_def all_tuples_finite)

lemma all_tuplesI: "length vs = n  set vs  xs  vs  all_tuples xs n"
proof (induction xs n arbitrary: vs rule: all_tuples.induct)
  case (2 xs n)
  then obtain w ws where "vs = w # ws" "length ws = n" "set ws  xs" "w  xs"
    by (metis Suc_length_conv contra_subsetD list.set_intros(1) order_trans set_subset_Cons)
  with 2(1) show ?case
    by auto
qed auto

lemma nall_tuplesI: "length vs = n  fo_nmlzd AD vs  vs  nall_tuples AD n"
  using fo_nmlzd_set[of AD vs]
  by (auto simp: nall_tuples_def intro!: all_tuplesI)

lemma all_tuplesD: "vs  all_tuples xs n  length vs = n  set vs  xs"
  by (induction xs n arbitrary: vs rule: all_tuples.induct) auto+

lemma all_tuples_setD: "vs  all_tuples xs n  set vs  xs"
  by (auto dest: all_tuplesD)

lemma nall_tuplesD: "vs  nall_tuples AD n 
  length vs = n  set vs  Inl ` AD  Inr ` {..<n}  fo_nmlzd AD vs"
  by (auto simp: nall_tuples_def dest: all_tuplesD)

lemma all_tuples_set: "all_tuples xs n = {ys. length ys = n  set ys  xs}"
proof (induction xs n rule: all_tuples.induct)
  case (2 xs n)
  show ?case
  proof (rule subset_antisym; rule subsetI)
    fix ys
    assume "ys  all_tuples xs (Suc n)"
    then show "ys  {ys. length ys = Suc n  set ys  xs}"
      using 2 by auto
  next
    fix ys
    assume "ys  {ys. length ys = Suc n  set ys  xs}"
    then have assm: "length ys = Suc n" "set ys  xs"
      by auto
    then obtain z zs where zs_def: "ys = z # zs" "z  xs" "length zs = n" "set zs  xs"
      by (cases ys) auto
    with 2 have "zs  all_tuples xs n"
      by auto
    with zs_def(1,2) show "ys  all_tuples xs (Suc n)"
      by auto
  qed
qed auto

lemma nall_tuples_set: "nall_tuples AD n = {ys. length ys = n  fo_nmlzd AD ys}"
  using fo_nmlzd_set[of AD] card_Inr_vimage_le_length
  by (auto simp: nall_tuples_def all_tuples_set) (smt UnE nall_tuplesD nall_tuplesI subsetD)

fun pos :: "'a  'a list  nat option" where
  "pos a [] = None"
| "pos a (x # xs) =
    (if a = x then Some 0 else (case pos a xs of Some n  Some (Suc n) | _  None))"

lemma pos_set: "pos a xs = Some i  a  set xs"
  by (induction a xs arbitrary: i rule: pos.induct) (auto split: if_splits option.splits)

lemma pos_length: "pos a xs = Some i  i < length xs"
  by (induction a xs arbitrary: i rule: pos.induct) (auto split: if_splits option.splits)

lemma pos_sound: "pos a xs = Some i  i < length xs  xs ! i = a"
  by (induction a xs arbitrary: i rule: pos.induct) (auto split: if_splits option.splits)

lemma pos_complete: "pos a xs = None  a  set xs"
  by (induction a xs rule: pos.induct) (auto split: if_splits option.splits)

fun rem_nth :: "nat  'a list  'a list" where
  "rem_nth _ [] = []"
| "rem_nth 0 (x # xs) = xs"
| "rem_nth (Suc n) (x # xs) = x # rem_nth n xs"

lemma rem_nth_length: "i < length xs  length (rem_nth i xs) = length xs - 1"
  by (induction i xs rule: rem_nth.induct) auto

lemma rem_nth_take_drop: "i < length xs  rem_nth i xs = take i xs @ drop (Suc i) xs"
  by (induction i xs rule: rem_nth.induct) auto

lemma rem_nth_sound: "distinct xs  pos n xs = Some i 
  rem_nth i (map σ xs) = map σ (filter ((≠) n) xs)"
  apply (induction xs arbitrary: i)
   apply (auto simp: pos_set split: option.splits)
  by (metis (mono_tags, lifting) filter_True)

fun add_nth :: "nat  'a  'a list  'a list" where
  "add_nth 0 a xs = a # xs"
| "add_nth (Suc n) a zs = (case zs of x # xs  x # add_nth n a xs)"

lemma add_nth_length: "i  length zs  length (add_nth i z zs) = Suc (length zs)"
  by (induction i z zs rule: add_nth.induct) (auto split: list.splits)

lemma add_nth_take_drop: "i  length zs  add_nth i v zs = take i zs @ v # drop i zs"
  by (induction i v zs rule: add_nth.induct) (auto split: list.splits)

lemma add_nth_rem_nth_map: "distinct xs  pos n xs = Some i 
  add_nth i a (rem_nth i (map σ xs)) = map (σ(n := a)) xs"
  by (induction xs arbitrary: i) (auto simp: pos_set split: option.splits)

lemma add_nth_rem_nth_self: "i < length xs  add_nth i (xs ! i) (rem_nth i xs) = xs"
  by (induction i xs rule: rem_nth.induct) auto

lemma rem_nth_add_nth: "i  length zs  rem_nth i (add_nth i z zs) = zs"
  by (induction i z zs rule: add_nth.induct) (auto split: list.splits)

fun merge :: "(nat × 'a) list  (nat × 'a) list  (nat × 'a) list" where
  "merge [] mys = mys"
| "merge nxs [] = nxs"
| "merge ((n, x) # nxs) ((m, y) # mys) =
    (if n  m then (n, x) # merge nxs ((m, y) # mys)
    else (m, y) # merge ((n, x) # nxs) mys)"

lemma merge_Nil2[simp]: "merge nxs [] = nxs"
  by (cases nxs) auto

lemma merge_length: "length (merge nxs mys) = length (map fst nxs @ map fst mys)"
  by (induction nxs mys rule: merge.induct) auto

lemma insort_aux_le: "xset nxs. n  fst x  xset mys. m  fst x  n  m 
  insort n (sort (map fst nxs @ m # map fst mys)) = n # sort (map fst nxs @ m # map fst mys)"
  by (induction nxs) (auto simp: insort_is_Cons insort_left_comm)

lemma insort_aux_gt: "xset nxs. n  fst x  xset mys. m  fst x  ¬ n  m 
  insort n (sort (map fst nxs @ m # map fst mys)) =
    m # insort n (sort (map fst nxs @ map fst mys))"
  apply (induction nxs)
   apply (auto simp: insort_is_Cons)
  by (metis dual_order.trans insort_key.simps(2) insort_left_comm)

lemma map_fst_merge: "sorted_distinct (map fst nxs)  sorted_distinct (map fst mys) 
  map fst (merge nxs mys) = sort (map fst nxs @ map fst mys)"
  by (induction nxs mys rule: merge.induct)
     (auto simp add: sorted_sort_id insort_is_Cons insort_aux_le insort_aux_gt)

lemma merge_map': "sorted_distinct (map fst nxs)  sorted_distinct (map fst mys) 
  fst ` set nxs  fst ` set mys = {} 
  map snd nxs = map σ (map fst nxs)  map snd mys = map σ (map fst mys) 
  map snd (merge nxs mys) = map σ (sort (map fst nxs @ map fst mys))"
  by (induction nxs mys rule: merge.induct)
     (auto simp: sorted_sort_id insort_is_Cons insort_aux_le insort_aux_gt)

lemma merge_map: "sorted_distinct ns  sorted_distinct ms  set ns  set ms = {} 
  map snd (merge (zip ns (map σ ns)) (zip ms (map σ ms))) = map σ (sort (ns @ ms))"
  using merge_map'[of "zip ns (map σ ns)" "zip ms (map σ ms)" σ]
  by auto (metis length_map list.set_map map_fst_zip)

fun fo_nmlz_rec :: "nat  ('a + nat  nat)  'a set 
  ('a + nat) list  ('a + nat) list" where
  "fo_nmlz_rec i m AD [] = []"
| "fo_nmlz_rec i m AD (Inl x # xs) = (if x  AD then Inl x # fo_nmlz_rec i m AD xs else
    (case m (Inl x) of None  Inr i # fo_nmlz_rec (Suc i) (m(Inl x  i)) AD xs
    | Some j  Inr j # fo_nmlz_rec i m AD xs))"
| "fo_nmlz_rec i m AD (Inr n # xs) = (case m (Inr n) of None 
    Inr i # fo_nmlz_rec (Suc i) (m(Inr n  i)) AD xs
  | Some j  Inr j # fo_nmlz_rec i m AD xs)"

lemma fo_nmlz_rec_sound: "ran m  {..<i}  filter ((≤) i) (rremdups
  (List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec i m AD xs))) = ns 
  ns = [i..<i + length ns]"
proof (induction i m AD xs arbitrary: ns rule: fo_nmlz_rec.induct)
  case (2 i m AD x xs)
  then show ?case
  proof (cases "x  AD")
    case False
    show ?thesis
    proof (cases "m (Inl x)")
      case None
      have pred: "ran (m(Inl x  i))  {..<Suc i}"
        using 2(4) None
        by (auto simp: inj_on_def dom_def ran_def)
      have "ns = i # filter ((≤) (Suc i)) (rremdups
        (List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec (Suc i) (m(Inl x  i)) AD xs)))"
        using 2(5) False None
        by (auto simp: List.map_filter_simps filter_rremdups)
           (metis Suc_leD antisym not_less_eq_eq)
      then show ?thesis
        by (auto simp: 2(2)[OF False None pred, OF refl])
           (smt Suc_le_eq Suc_pred le_add1 le_zero_eq less_add_same_cancel1 not_less_eq_eq
            upt_Suc_append upt_rec)
    next
      case (Some j)
      then have j_lt_i: "j < i"
        using 2(4)
        by (auto simp: ran_def)
      have ns_def: "ns = filter ((≤) i) (rremdups
        (List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec i m AD xs)))"
        using 2(5) False Some j_lt_i
        by (auto simp: List.map_filter_simps filter_rremdups) (metis leD)
      show ?thesis
        by (rule 2(3)[OF False Some 2(4) ns_def[symmetric]])
    qed
  qed (auto simp: List.map_filter_simps split: option.splits)
next
  case (3 i m AD n xs)
  show ?case
  proof (cases "m (Inr n)")
    case None
    have pred: "ran (m(Inr n  i))  {..<Suc i}"
      using 3(3) None
      by (auto simp: inj_on_def dom_def ran_def)
    have "ns = i # filter ((≤) (Suc i)) (rremdups
      (List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec (Suc i) (m(Inr n  i)) AD xs)))"
      using 3(4) None
      by (auto simp: List.map_filter_simps filter_rremdups) (metis Suc_leD antisym not_less_eq_eq)
    then show ?thesis
      by (auto simp add: 3(1)[OF None pred, OF refl])
         (smt Suc_le_eq Suc_pred le_add1 le_zero_eq less_add_same_cancel1 not_less_eq_eq
          upt_Suc_append upt_rec)
  next
    case (Some j)
    then have j_lt_i: "j < i"
      using 3(3)
      by (auto simp: ran_def)
    have ns_def: "ns = filter ((≤) i) (rremdups
      (List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec i m AD xs)))"
      using 3(4) Some j_lt_i
      by (auto simp: List.map_filter_simps filter_rremdups) (metis leD)
    show ?thesis
      by (rule 3(2)[OF Some 3(3) ns_def[symmetric]])
  qed
qed (auto simp: List.map_filter_simps)

definition id_map :: "nat  ('a + nat  nat)" where
  "id_map n = (λx. case x of Inl x  None | Inr x  if x < n then Some x else None)"

lemma fo_nmlz_rec_idem: "Inl -` set ys  AD 
  rremdups (List.map_filter (case_sum Map.empty Some) ys) = ns 
  set (filter (λn. n < i) ns)  {..<i}  filter ((≤) i) ns = [i..<i + k] 
  fo_nmlz_rec i (id_map i) AD ys = ys"
proof (induction ys arbitrary: i k ns)
  case (Cons y ys)
  show ?case
  proof (cases y)
    case (Inl a)
    show ?thesis
      using Cons(1)[OF _ _ Cons(4,5)] Cons(2,3)
      by (auto simp: Inl List.map_filter_simps)
  next
    case (Inr j)
    show ?thesis
    proof (cases "j < i")
      case False
      have j_i: "j = i"
        using False Cons(3,5)
        by (auto simp: Inr List.map_filter_simps filter_rremdups in_mono split: if_splits)
           (metis (no_types, lifting) upt_eq_Cons_conv)
      obtain kk where k_def: "k = Suc kk"
        using Cons(3,5)
        by (cases k) (auto simp: Inr List.map_filter_simps j_i)
      define ns' where "ns' = rremdups (List.map_filter (case_sum Map.empty Some) ys)"
      have id_map_None: "id_map i (Inr i) = None"
        by (auto simp: id_map_def)
      have id_map_upd: "(id_map i)(Inr i  i) = id_map (Suc i)"
        by (auto simp: id_map_def split: sum.splits)
      have "set (filter (λn. n < Suc i) ns')  {..<Suc i}"
        using Cons(2,3)
        by auto
      moreover have "filter ((≤) (Suc i)) ns' = [Suc i..<i + k]"
        using Cons(3,5)
        by (auto simp: Inr List.map_filter_simps j_i filter_rremdups[symmetric] ns'_def[symmetric])
           (smt One_nat_def Suc_eq_plus1 Suc_le_eq add_diff_cancel_left' diff_is_0_eq'
            dual_order.order_iff_strict filter_cong n_not_Suc_n upt_eq_Cons_conv)
      moreover have "Inl -` set ys  AD"
        using Cons(2)
        by (auto simp: vimage_def)
      ultimately have "fo_nmlz_rec (Suc i) ((id_map i)(Inr i  i)) AD ys = ys"
        using Cons(1)[OF _ ns'_def[symmetric], of "Suc i" kk]
        by (auto simp: ns'_def k_def id_map_upd split: if_splits)
      then show ?thesis
        by (auto simp: Inr j_i id_map_None)
    next
      case True
      define ns' where "ns' = rremdups (List.map_filter (case_sum Map.empty Some) ys)"
      have "set (filter (λy. y < i) ns')  set (filter (λy. y < i) ns)"
        "filter ((≤) i) ns' = filter ((≤) i) ns"
        using Cons(3) True
        by (auto simp: Inr List.map_filter_simps filter_rremdups[symmetric] ns'_def[symmetric])
           (smt filter_cong leD)
      then have "fo_nmlz_rec i (id_map i) AD ys = ys"
        using Cons(1)[OF _ ns'_def[symmetric]] Cons(3,5) Cons(2)
        by (auto simp: vimage_def)
      then show ?thesis
        using True
        by (auto simp: Inr id_map_def)
    qed
  qed
qed (auto simp: List.map_filter_simps intro!: exI[of _ "[]"])

lemma fo_nmlz_rec_length: "length (fo_nmlz_rec i m AD xs) = length xs"
  by (induction i m AD xs rule: fo_nmlz_rec.induct) (auto simp: fun_upd_def split: option.splits)

lemma insert_Inr: "X. insert (Inr i) (X  Inr ` {..<i}) = X  Inr ` {..<Suc i}"
  by auto

lemma fo_nmlz_rec_set: "ran m  {..<i}  set (fo_nmlz_rec i m AD xs)  Inr ` {..<i} =
  set xs  Inl ` AD  Inr ` {..<i + card (set xs - Inl ` AD - dom m)}"
proof (induction i m AD xs rule: fo_nmlz_rec.induct)
  case (2 i m AD x xs)
  have fin: "finite (set (Inl x # xs) - Inl ` AD - dom m)"
    by auto
  show ?case
    using 2(1)[OF _ 2(4)]
  proof (cases "x  AD")
    case True
    have "card (set (Inl x # xs) - Inl ` AD - dom m) = card (set xs - Inl ` AD - dom m)"
      using True
      by auto
    then show ?thesis
      using 2(1)[OF True 2(4)] True
      by auto
  next
    case False
    show ?thesis
    proof (cases "m (Inl x)")
      case None
      have pred: "ran (m(Inl x  i))  {..<Suc i}"
        using 2(4) None
        by (auto simp: inj_on_def dom_def ran_def)
      have "set (Inl x # xs) - Inl ` AD - dom m =
        {Inl x}  (set xs - Inl ` AD - dom (m(Inl x  i)))"
        using None False
        by (auto simp: dom_def)
      then have Suc: "Suc i + card (set xs - Inl ` AD - dom (m(Inl x  i))) =
        i + card (set (Inl x # xs) - Inl ` AD - dom m)"
        using None
        by auto
      show ?thesis
        using 2(2)[OF False None pred] False None
        unfolding Suc
        by (auto simp: fun_upd_def[symmetric] insert_Inr)
    next
      case (Some j)
      then have j_lt_i: "j < i"
        using 2(4)
        by (auto simp: ran_def)
      have "card (set (Inl x # xs) - Inl ` AD - dom m) = card (set xs - Inl ` AD - dom m)"
        by (auto simp: Some intro: arg_cong[of _ _ card])
      then show ?thesis
        using 2(3)[OF False Some 2(4)] False Some j_lt_i
        by auto
    qed
  qed
next
  case (3 i m AD k xs)
  then show ?case
  proof (cases "m (Inr k)")
    case None
    have preds: "ran (m(Inr k  i))  {..<Suc i}"
      using 3(3)
      by (auto simp: ran_def)
    have "set (Inr k # xs) - Inl ` AD - dom m =
      {Inr k}  (set xs - Inl ` AD - dom (m(Inr k  i)))"
      using None
      by (auto simp: dom_def)
    then have Suc: "Suc i + card (set xs - Inl ` AD - dom (m(Inr k  i))) =
      i + card (set (Inr k # xs) - Inl ` AD - dom m)"
      using None
      by auto
    show ?thesis
      using None 3(1)[OF None preds]
      unfolding Suc
      by (auto simp: fun_upd_def[symmetric] insert_Inr)
  next
    case (Some j)
    have fin: "finite (set (Inr k # xs) - Inl ` AD - dom m)"
      by auto
    have card_eq: "card (set xs - Inl ` AD - dom m) = card (set (Inr k # xs) - Inl ` AD - dom m)"
      by (auto simp: Some intro!: arg_cong[of _ _ card])
    have j_lt_i: "j < i"
      using 3(3) Some
      by (auto simp: ran_def)
    show ?thesis
      using 3(2)[OF Some 3(3)] j_lt_i
      unfolding card_eq
      by (auto simp: ran_def insert_Inr Some)
  qed
qed auto

lemma fo_nmlz_rec_set_rev: "set (fo_nmlz_rec i m AD xs)  Inl ` AD  set xs  Inl ` AD"
  by (induction i m AD xs rule: fo_nmlz_rec.induct) (auto split: if_splits option.splits)

lemma fo_nmlz_rec_map: "inj_on m (dom m)  ran m  {..<i}  m'. inj_on m' (dom m') 
  (n. m n  None  m' n = m n)  ((x, y)  set (zip xs (fo_nmlz_rec i m AD xs)).
    (case x of Inl x'  if x'  AD then x = y else j. m' (Inl x') = Some j  y = Inr j
    | Inr n  j. m' (Inr n) = Some j  y = Inr j))"
proof (induction i m AD xs rule: fo_nmlz_rec.induct)
  case (2 i m AD x xs)
  show ?case
    using 2(1)[OF _ 2(4,5)]
  proof (cases "x  AD")
    case False
    show ?thesis
    proof (cases "m (Inl x)")
      case None
      have preds: "inj_on (m(Inl x  i)) (dom (m(Inl x  i)))" "ran (m(Inl x  i))  {..<Suc i}"
        using 2(4,5)
        by (auto simp: inj_on_def ran_def)
      show ?thesis
        using 2(2)[OF False None preds] False None
        apply safe
        subgoal for m'
          by (auto simp: fun_upd_def split: sum.splits intro!: exI[of _ m'])
        done
    next
      case (Some j)
      show ?thesis
        using 2(3)[OF False Some 2(4,5)] False Some
        apply safe
        subgoal for m'
          by (auto split: sum.splits intro!: exI[of _ m'])
        done
    qed
  qed auto
next
  case (3 i m AD n xs)
  show ?case
  proof (cases "m (Inr n)")
    case None
    have preds: "inj_on (m(Inr n  i)) (dom (m(Inr n  i)))" "ran (m(Inr n  i))  {..<Suc i}"
      using 3(3,4)
      by (auto simp: inj_on_def ran_def)
    show ?thesis
      using 3(1)[OF None preds] None
      apply safe
      subgoal for m'
        by (auto simp: fun_upd_def intro!: exI[of _ m'] split: sum.splits)
      done
  next
    case (Some j)
    show ?thesis
      using 3(2)[OF Some 3(3,4)] Some
      apply safe
      subgoal for m'
        by (auto simp: fun_upd_def intro!: exI[of _ m'] split: sum.splits)
      done
  qed
qed auto

lemma ad_agr_map:
  assumes "length xs = length ys" "inj_on m (dom m)"
    "x y. (x, y)  set (zip xs ys)  (case x of Inl x' 
    if x'  AD then x = y else m x = Some y  (case y of Inl z  z  AD | Inr _  True)
  | Inr n  m x = Some y  (case y of Inl z  z  AD | Inr _  True))"
  shows "ad_agr_list AD xs ys"
proof -
  have "ad_equiv_pair AD (a, b)" if "(a, b)  set (zip xs ys)" for a b
    unfolding ad_equiv_pair.simps
    using assms(3)[OF that]
    by (auto split: sum.splits if_splits)
  moreover have "False" if "(a, c)  set (zip xs ys)" "(b, c)  set (zip xs ys)" "a  b" for a b c
    using assms(3)[OF that(1)] assms(3)[OF that(2)] assms(2) that(3)
    by (auto split: sum.splits if_splits) (metis domI inj_onD that(3))+
  moreover have "False" if "(a, b)  set (zip xs ys)" "(a, c)  set (zip xs ys)" "b  c" for a b c
    using assms(3)[OF that(1)] assms(3)[OF that(2)] assms(2) that(3)
    by (auto split: sum.splits if_splits)
  ultimately show ?thesis
    using assms
    by (fastforce simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
qed

lemma fo_nmlz_rec_take: "take n (fo_nmlz_rec i m AD xs) = fo_nmlz_rec i m AD (take n xs)"
  by (induction i m AD xs arbitrary: n rule: fo_nmlz_rec.induct)
     (auto simp: take_Cons' split: option.splits)

definition fo_nmlz :: "'a set  ('a + nat) list  ('a + nat) list" where
  "fo_nmlz = fo_nmlz_rec 0 Map.empty"

lemma fo_nmlz_Nil[simp]: "fo_nmlz AD [] = []"
  by (auto simp: fo_nmlz_def)

lemma fo_nmlz_Cons: "fo_nmlz AD [x] =
  (case x of Inl x  if x  AD then [Inl x] else [Inr 0] | _  [Inr 0])"
  by (auto simp: fo_nmlz_def split: sum.splits)

lemma fo_nmlz_Cons_Cons: "fo_nmlz AD [x, x] =
  (case x of Inl x  if x  AD then [Inl x, Inl x] else [Inr 0, Inr 0] | _  [Inr 0, Inr 0])"
  by (auto simp: fo_nmlz_def split: sum.splits)

lemma fo_nmlz_sound: "fo_nmlzd AD (fo_nmlz AD xs)"
  using fo_nmlz_rec_sound[of Map.empty 0] fo_nmlz_rec_set[of Map.empty 0 AD xs]
  by (auto simp: fo_nmlzd_def fo_nmlz_def nats_def Let_def)

lemma fo_nmlz_length: "length (fo_nmlz AD xs) = length xs"
  using fo_nmlz_rec_length
  by (auto simp: fo_nmlz_def)

lemma fo_nmlz_map: "τ. fo_nmlz AD (map σ ns) = map τ ns"
proof -
  obtain m' where m'_def: "(x, y)set (zip (map σ ns) (fo_nmlz AD (map σ ns))).
    case x of Inl x'  if x'  AD then x = y else j. m' (Inl x') = Some j  y = Inr j
    | Inr n  j. m' (Inr n) = Some j  y = Inr j"
    using fo_nmlz_rec_map[of Map.empty 0, of "map σ ns"]
    by (auto simp: fo_nmlz_def)
  define τ where "τ  (λn. case σ n of Inl x  if x  AD then Inl x else Inr (the (m' (Inl x)))
    | Inr j  Inr (the (m' (Inr j))))"
  have "fo_nmlz AD (map σ ns) = map τ ns"
  proof (rule nth_equalityI)
    show "length (fo_nmlz AD (map σ ns)) = length (map τ ns)"
      using fo_nmlz_length[of AD "map σ ns"]
      by auto
    fix i
    assume "i < length (fo_nmlz AD (map σ ns))"
    then show "fo_nmlz AD (map σ ns) ! i = map τ ns ! i"
      using m'_def fo_nmlz_length[of AD "map σ ns"]
      apply (auto simp: set_zip τ_def split: sum.splits)
        apply (metis nth_map)
       apply (metis nth_map option.sel)+
      done
  qed
  then show ?thesis
    by auto
qed

lemma card_set_minus: "card (set xs - X)  length xs"
  by (meson Diff_subset List.finite_set card_length card_mono order_trans)

lemma fo_nmlz_set: "set (fo_nmlz AD xs) =
  set xs  Inl ` AD  Inr ` {..<min (length xs) (card (set xs - Inl ` AD))}"
  using fo_nmlz_rec_set[of Map.empty 0 AD xs]
  by (auto simp add: fo_nmlz_def card_set_minus)

lemma fo_nmlz_set_rev: "set (fo_nmlz AD xs)  Inl ` AD  set xs  Inl ` AD"
  using fo_nmlz_rec_set_rev[of 0 Map.empty AD xs]
  by (auto simp: fo_nmlz_def)

lemma inj_on_empty: "inj_on Map.empty (dom Map.empty)" and ran_empty_upto: "ran Map.empty  {..<0}"
  by auto

lemma fo_nmlz_ad_agr: "ad_agr_list AD xs (fo_nmlz AD xs)"
  using fo_nmlz_rec_map[OF inj_on_empty ran_empty_upto, of xs AD]
  unfolding fo_nmlz_def
  apply safe
  subgoal for m'
    by (fastforce simp: inj_on_def dom_def split: sum.splits if_splits
        intro!: ad_agr_map[OF fo_nmlz_rec_length[symmetric], of "map_option Inr  m'"])
  done

lemma fo_nmlzd_mono: "Inl -` set xs  AD  fo_nmlzd AD' xs  fo_nmlzd AD xs"
  by (auto simp: fo_nmlzd_def)

lemma fo_nmlz_idem: "fo_nmlzd AD ys  fo_nmlz AD ys = ys"
  using fo_nmlz_rec_idem[where ?i=0]
  by (auto simp: fo_nmlzd_def fo_nmlz_def id_map_def nats_def Let_def)

lemma fo_nmlz_take: "take n (fo_nmlz AD xs) = fo_nmlz AD (take n xs)"
  using fo_nmlz_rec_take
  by (auto simp: fo_nmlz_def)

fun nall_tuples_rec :: "'a set  nat  nat  ('a + nat) table" where
  "nall_tuples_rec AD i 0 = {[]}"
| "nall_tuples_rec AD i (Suc n) = ((λas. (λx. x # as) ` (Inl ` AD  Inr ` {..<i})) `
    nall_tuples_rec AD i n)  (λas. Inr i # as) ` nall_tuples_rec AD (Suc i) n"

lemma nall_tuples_rec_Inl: "vs  nall_tuples_rec AD i n  Inl -` set vs  AD"
  by (induction AD i n arbitrary: vs rule: nall_tuples_rec.induct) (fastforce simp: vimage_def)+

lemma nall_tuples_rec_length: "xs  nall_tuples_rec AD i n  length xs = n"
  by (induction AD i n arbitrary: xs rule: nall_tuples_rec.induct) auto

lemma fun_upd_id_map: "(id_map i)(Inr i  i) = id_map (Suc i)"
  by (rule ext) (auto simp: id_map_def split: sum.splits)

lemma id_mapD: "id_map j (Inr i) = None  j  i" "id_map j (Inr i) = Some x  i < j  i = x"
  by (auto simp: id_map_def split: if_splits)

lemma nall_tuples_rec_fo_nmlz_rec_sound: "i  j  xs  nall_tuples_rec AD i n 
  fo_nmlz_rec j (id_map j) AD xs = xs"
  apply (induction n arbitrary: i j xs)
   apply (auto simp: fun_upd_id_map dest!: id_mapD split: option.splits)
    apply (meson dual_order.strict_trans2 id_mapD(1) not_Some_eq sup.strict_order_iff)
  using Suc_leI apply blast+
  done

lemma nall_tuples_rec_fo_nmlz_rec_complete:
  assumes "fo_nmlz_rec j (id_map j) AD xs = xs"
  shows "xs  nall_tuples_rec AD j (length xs)"
  using assms
proof (induction xs arbitrary: j)
  case (Cons x xs)
  show ?case
  proof (cases x)
    case (Inl a)
    have a_AD: "a  AD"
      using Cons(2)
      by (auto simp: Inl split: if_splits option.splits)
    show ?thesis
      using Cons a_AD
      by (auto simp: Inl)
  next
    case (Inr b)
    have b_j: "b  j"
      using Cons(2)
      by (auto simp: Inr split: option.splits dest: id_mapD)
    show ?thesis
    proof (cases "b = j")
      case True
      have preds: "fo_nmlz_rec (Suc j) (id_map (Suc j)) AD xs = xs"
        using Cons(2)
        by (auto simp: Inr True fun_upd_id_map dest: id_mapD split: option.splits)
      show ?thesis
        using Cons(1)[OF preds]
        by (auto simp: Inr True)
    next
      case False
      have b_lt_j: "b < j"
        using b_j False
        by auto
      have id_map: "id_map j (Inr b) = Some b"
        using b_lt_j
        by (auto simp: id_map_def)
      have preds: "fo_nmlz_rec j (id_map j) AD xs = xs"
        using Cons(2)
        by (auto simp: Inr id_map)
      show ?thesis
        using Cons(1)[OF preds] b_lt_j
        by (auto simp: Inr)
    qed
  qed
qed auto

lemma nall_tuples_rec_fo_nmlz: "xs  nall_tuples_rec AD 0 (length xs)  fo_nmlz AD xs = xs"
  using nall_tuples_rec_fo_nmlz_rec_sound[of 0 0 xs AD "length xs"]
    nall_tuples_rec_fo_nmlz_rec_complete[of 0 AD xs]
  by (auto simp: fo_nmlz_def id_map_def)

lemma fo_nmlzd_code[code]: "fo_nmlzd AD xs  fo_nmlz AD xs = xs"
  using fo_nmlz_idem fo_nmlz_sound
  by metis

lemma nall_tuples_code[code]: "nall_tuples AD n = nall_tuples_rec AD 0 n"
  unfolding nall_tuples_set
  using nall_tuples_rec_length trans[OF nall_tuples_rec_fo_nmlz fo_nmlzd_code[symmetric]]
  by fastforce

lemma exists_map: "length xs = length ys  distinct xs  f. ys = map f xs"
proof (induction xs ys rule: list_induct2)
  case (Cons x xs y ys)
  then obtain f where f_def: "ys = map f xs"
    by auto
  with Cons(3) have "y # ys = map (f(x := y)) (x # xs)"
    by auto
  then show ?case
    by metis
qed auto

lemma exists_fo_nmlzd:
  assumes "length xs = length ys" "distinct xs" "fo_nmlzd AD ys"
  shows "f. ys = fo_nmlz AD (map f xs)"
  using fo_nmlz_idem[OF assms(3)] exists_map[OF _ assms(2)] assms(1)
  by metis

lemma list_induct2_rev[consumes 1]: "length xs = length ys  (P [] []) 
  (x y xs ys. P xs ys  P (xs @ [x]) (ys @ [y]))  P xs ys"
proof (induction "length xs" arbitrary: xs ys)
  case (Suc n)
  then show ?case
    by (cases xs rule: rev_cases; cases ys rule: rev_cases) auto
qed auto

lemma ad_agr_list_fo_nmlzd:
  assumes "ad_agr_list AD vs vs'" "fo_nmlzd AD vs" "fo_nmlzd AD vs'"
  shows "vs = vs'"
  using ad_agr_list_length[OF assms(1)] assms
proof (induction vs vs' rule: list_induct2_rev)
  case (2 x y xs ys)
  have norms: "fo_nmlzd AD xs" "fo_nmlzd AD ys"
    using 2(3,4)
    by (auto simp: fo_nmlzd_def nats_def Let_def map_filter_app rremdups_app
        split: sum.splits if_splits)
  have ad_agr: "ad_agr_list AD xs ys"
    using 2(2)
    by (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
  note xs_ys = 2(1)[OF ad_agr norms]
  have "x = y"
  proof (cases "isl x  isl y")
    case True
    then have "isl x  projl x  AD" "isl y  projl y  AD"
      using 2(3,4)
      by (auto simp: fo_nmlzd_def)
    then show ?thesis
      using 2(2) True
      apply (auto simp: ad_agr_list_def ad_equiv_list_def isl_def)
      unfolding ad_equiv_pair.simps
      by blast+
  next
    case False
    then obtain x' y' where inr: "x = Inr x'" "y = Inr y'"
      by (cases x; cases y) auto
    show ?thesis
      using 2(2) xs_ys
    proof (cases "x  set xs  y  set ys")
      case False
      then show ?thesis
        using fo_nmlzd_app_Inr 2(3,4)
        unfolding inr xs_ys
        by auto
    qed (auto simp: ad_agr_list_def sp_equiv_list_def pairwise_def set_zip in_set_conv_nth)
  qed
  then show ?case
    using xs_ys
    by auto
qed auto

lemma fo_nmlz_eqI:
  assumes "ad_agr_list AD vs vs'"
  shows "fo_nmlz AD vs = fo_nmlz AD vs'"
  using ad_agr_list_fo_nmlzd[OF
        ad_agr_list_trans[OF ad_agr_list_trans[OF
        ad_agr_list_comm[OF fo_nmlz_ad_agr[of AD vs]] assms]
        fo_nmlz_ad_agr[of AD vs']] fo_nmlz_sound fo_nmlz_sound] .

lemma fo_nmlz_eqD:
  assumes "fo_nmlz AD vs = fo_nmlz AD vs'"
  shows "ad_agr_list AD vs vs'"
  using ad_agr_list_trans[OF fo_nmlz_ad_agr[of AD vs, unfolded assms]
        ad_agr_list_comm[OF fo_nmlz_ad_agr[of AD vs']]] .

lemma fo_nmlz_eq: "fo_nmlz AD vs = fo_nmlz AD vs'  ad_agr_list AD vs vs'"
  using fo_nmlz_eqI[where ?AD=AD] fo_nmlz_eqD[where ?AD=AD]
  by blast

lemma fo_nmlz_mono:
  assumes "AD  AD'" "Inl -` set xs  AD"
  shows "fo_nmlz AD' xs = fo_nmlz AD xs"
proof -
  have "fo_nmlz AD (fo_nmlz AD' xs) = fo_nmlz AD' xs"
    apply (rule fo_nmlz_idem[OF fo_nmlzd_mono[OF _ fo_nmlz_sound]])
    using assms
    by (auto simp: fo_nmlz_set)
  moreover have "fo_nmlz AD xs = fo_nmlz AD (fo_nmlz AD' xs)"
    apply (rule fo_nmlz_eqI)
    apply (rule ad_agr_list_mono[OF assms(1)])
    apply (rule fo_nmlz_ad_agr)
    done
  ultimately show ?thesis
    by auto
qed

definition proj_vals :: "'c val set  nat list  'c table" where
  "proj_vals R ns = (λτ. map τ ns) ` R"

definition proj_fmla :: "('a, 'b) fo_fmla  'c val set  'c table" where
  "proj_fmla φ R = proj_vals R (fv_fo_fmla_list φ)"

lemmas proj_fmla_map = proj_fmla_def[unfolded proj_vals_def]

definition "extends_subst σ τ = (x. σ x  None  σ x = τ x)"

definition ext_tuple :: "'a set  nat list  nat list 
  ('a + nat) list  ('a + nat) list set" where
  "ext_tuple AD fv_sub fv_sub_comp as = (if fv_sub_comp = [] then {as}
    else (λfs. map snd (merge (zip fv_sub as) (zip fv_sub_comp fs))) `
    (nall_tuples_rec AD (card (Inr -` set as)) (length fv_sub_comp)))"

lemma ext_tuple_eq: "length fv_sub = length as 
  ext_tuple AD fv_sub fv_sub_comp as =
  (λfs. map snd (merge (zip fv_sub as) (zip fv_sub_comp fs))) `
  (nall_tuples_rec AD (card (Inr -` set as)) (length fv_sub_comp))"
  using fo_nmlz_idem[of AD as]
  by (auto simp: ext_tuple_def)

lemma map_map_of: "length xs = length ys  distinct xs 
  ys = map (the  (map_of (zip xs ys))) xs"
  by (induction xs ys rule: list_induct2) (auto simp: fun_upd_comp)

lemma id_map_empty: "id_map 0 = Map.empty"
  by (rule ext) (auto simp: id_map_def split: sum.splits)

lemma fo_nmlz_rec_shift:
  fixes xs :: "('a + nat) list"
  shows "fo_nmlz_rec i (id_map i) AD xs = xs 
  i' = card (Inr -` (Inr ` {..<i}  set (take n xs)))  n  length xs 
  fo_nmlz_rec i' (id_map i') AD (drop n xs) = drop n xs"
proof (induction i "id_map i :: 'a + nat  nat" AD xs arbitrary: n rule: fo_nmlz_rec.induct)
  case (2 i AD x xs)
  have preds: "x  AD" "fo_nmlz_rec i (id_map i) AD xs = xs"
    using 2(4)
    by (auto split: if_splits option.splits)
  show ?case
    using 2(4,5)
  proof (cases n)
    case (Suc k)
    have k_le: "k  length xs"
      using 2(6)
      by (auto simp: Suc)
    have i'_def: "i' = card (Inr -` (Inr ` {..<i}  set (take k xs)))"
      using 2(5)
      by (auto simp: Suc vimage_def)
    show ?thesis
      using 2(1)[OF preds i'_def k_le]
      by (auto simp: Suc)
  qed (auto simp: inj_vimage_image_eq)
next
  case (3 i AD j xs)
  show ?case
    using 3(3,4)
  proof (cases n)
    case (Suc k)
    have k_le: "k  length xs"
      using 3(5)
      by (auto simp: Suc)
    have j_le_i: "j  i"
      using 3(3)
      by (auto split: option.splits dest: id_mapD)
    show ?thesis
    proof (cases "j = i")
      case True
      have id_map: "id_map i (Inr j) = None" "(id_map i)(Inr j  i) = id_map (Suc i)"
        unfolding True fun_upd_id_map
        by (auto simp: id_map_def)
      have norm_xs: "fo_nmlz_rec (Suc i) (id_map (Suc i)) AD xs = xs"
        using 3(3)
        by (auto simp: id_map split: option.splits dest: id_mapD)
      have i'_def: "i' = card (Inr -` (Inr ` {..<Suc i}  set (take k xs)))"
        using 3(4)
        by (auto simp: Suc True inj_vimage_image_eq)
           (metis Un_insert_left image_insert inj_Inr inj_vimage_image_eq lessThan_Suc vimage_Un)
      show ?thesis
        using 3(1)[OF id_map norm_xs i'_def k_le]
        by (auto simp: Suc)
    next
      case False
      have id_map: "id_map i (Inr j) = Some j"
        using j_le_i False
        by (auto simp: id_map_def)
      have norm_xs: "fo_nmlz_rec i (id_map i) AD xs = xs"
        using 3(3)
        by (auto simp: id_map)
      have i'_def: "i' = card (Inr -` (Inr ` {..<i}  set (take k xs)))"
        using 3(4) j_le_i False
        by (auto simp: Suc inj_vimage_image_eq insert_absorb)
      show ?thesis
        using 3(2)[OF id_map norm_xs i'_def k_le]
        by (auto simp: Suc)
    qed
  qed (auto simp: inj_vimage_image_eq)
qed auto

fun proj_tuple :: "nat list  (nat × ('a + nat)) list  ('a + nat) list" where
  "proj_tuple [] mys = []"
| "proj_tuple ns [] = []"
| "proj_tuple (n # ns) ((m, y) # mys) =
    (if m < n then proj_tuple (n # ns) mys else
    if m = n then y # proj_tuple ns mys
    else proj_tuple ns ((m, y) # mys))"

lemma proj_tuple_idle: "proj_tuple (map fst nxs) nxs = map snd nxs"
  by (induction nxs) auto

lemma proj_tuple_merge: "sorted_distinct (map fst nxs)  sorted_distinct (map fst mys) 
  set (map fst nxs)  set (map fst mys) = {} 
  proj_tuple (map fst nxs) (merge nxs mys) = map snd nxs"
  using proj_tuple_idle
  by (induction nxs mys rule: merge.induct) auto+

lemma proj_tuple_map:
  assumes "sorted_distinct ns" "sorted_distinct ms" "set ns  set ms"
  shows "proj_tuple ns (zip ms (map σ ms)) = map σ ns"
proof -
  define ns' where "ns' = filter (λn. n  set ns) ms"
  have sd_ns': "sorted_distinct ns'"
    using assms(2) sorted_filter[of id]
    by (auto simp: ns'_def)
  have disj: "set ns  set ns' = {}"
    by (auto simp: ns'_def)
  have ms_def: "ms = sort (ns @ ns')"
    apply (rule sorted_distinct_set_unique)
    using assms
    by (auto simp: ns'_def)
  have zip: "zip ms (map σ ms) = merge (zip ns (map σ ns)) (zip ns' (map σ ns'))"
    unfolding merge_map[OF assms(1) sd_ns' disj, folded ms_def, symmetric]
    using map_fst_merge assms(1)
    by (auto simp: ms_def) (smt length_map map_fst_merge map_fst_zip sd_ns' zip_map_fst_snd)
  show ?thesis
    unfolding zip
    using proj_tuple_merge
    by (smt assms(1) disj length_map map_fst_zip map_snd_zip sd_ns')
qed

lemma proj_tuple_length:
  assumes "sorted_distinct ns" "sorted_distinct ms" "set ns  set ms" "length ms = length xs"
  shows "length (proj_tuple ns (zip ms xs)) = length ns"
proof -
  obtain σ where σ: "xs = map σ ms"
    using exists_map[OF assms(4)] assms(2)
    by auto
  show ?thesis
    unfolding σ
    by (auto simp: proj_tuple_map[OF assms(1-3)])
qed

lemma ext_tuple_sound:
  assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
    "set fv_sub  set fv_sub_comp = {}" "set fv_sub  set fv_sub_comp = set fv_all"
    "ass = fo_nmlz AD ` proj_vals R fv_sub"
    "σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ  σ  R  τ  R"
    "xs  fo_nmlz AD ` (ext_tuple AD fv_sub fv_sub_comp ` ass)"
  shows "fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs))  ass"
    "xs  fo_nmlz AD ` proj_vals R fv_all"
proof -
  have fv_all_sort: "fv_all = sort (fv_sub @ fv_sub_comp)"
    using assms(1,2,3,4,5)
    by (simp add: sorted_distinct_set_unique)
  have len_in_ass: "xs. xs  ass  xs = fo_nmlz AD xs  length xs = length fv_sub"
    by (auto simp: assms(6) proj_vals_def fo_nmlz_length fo_nmlz_idem fo_nmlz_sound)
  obtain as fs where as_fs_def: "as  ass"
    "fs  nall_tuples_rec AD (card (Inr -` set as)) (length fv_sub_comp)"
    "xs = fo_nmlz AD (map snd (merge (zip fv_sub as) (zip fv_sub_comp fs)))"
    using fo_nmlz_sound len_in_ass assms(8)
    by (auto simp: ext_tuple_def split: if_splits)
  then have vs_norm: "fo_nmlzd AD xs"
    using fo_nmlz_sound
    by auto
  obtain σ where σ_def: "σ  R" "as = fo_nmlz AD (map σ fv_sub)"
    using as_fs_def(1) assms(6)
    by (auto simp: proj_vals_def)
  then obtain τ where τ_def: "as = map τ fv_sub" "ad_agr_list AD (map σ fv_sub) (map τ fv_sub)"
    using fo_nmlz_map fo_nmlz_ad_agr
    by metis
  have τ_R: "τ  R"
    using assms(7) ad_agr_list_link σ_def(1) τ_def(2)
    by fastforce
  define σ' where "σ'  λn. if n  set fv_sub_comp then the (map_of (zip fv_sub_comp fs) n)
      else τ n"
  then have "n  set fv_sub. τ n = σ' n"
    using assms(4) by auto
  then have σ'_S: "σ'  R"
    using assms(7) τ_R
    by (fastforce simp: ad_agr_sets_def sp_equiv_def pairwise_def ad_equiv_pair.simps)
  have length_as: "length as = length fv_sub"
    using as_fs_def(1) assms(6)
    by (auto simp: proj_vals_def fo_nmlz_length)
  have length_fs: "length fs = length fv_sub_comp"
    using as_fs_def(2)
    by (auto simp: nall_tuples_rec_length)
  have map_fv_sub: "map σ' fv_sub = map τ fv_sub"
    using assms(4) τ_def(2)
    by (auto simp: σ'_def)
  have fs_map_map_of: "fs = map (the  (map_of (zip fv_sub_comp fs))) fv_sub_comp"
    using map_map_of length_fs assms(2)
    by metis
  have fs_map: "fs = map σ' fv_sub_comp"
    using σ'_def length_fs by (subst fs_map_map_of) simp
  have vs_map_fv_all: "xs = fo_nmlz AD (map σ' fv_all)"
    unfolding as_fs_def(3) τ_def(1) map_fv_sub[symmetric] fs_map fv_all_sort
    using merge_map[OF assms(1,2,4)]
    by metis
  show "xs  fo_nmlz AD ` proj_vals R fv_all"
    using σ'_S vs_map_fv_all
    by (auto simp: proj_vals_def)
  obtain σ'' where σ''_def: "xs = map σ'' fv_all"
    using exists_map[of fv_all xs] fo_nmlz_map vs_map_fv_all
    by blast
  have proj: "proj_tuple fv_sub (zip fv_all xs) = map σ'' fv_sub"
    using proj_tuple_map assms(1,3,5)
    unfolding σ''_def
    by blast
  have σ''_σ': "fo_nmlz AD (map σ'' fv_sub) = as"
    using σ''_def vs_map_fv_all σ_def(2)
    by (metis τ_def(2) ad_agr_list_subset assms(5) fo_nmlz_ad_agr fo_nmlz_eqI map_fv_sub sup_ge1)
  show "fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs))  ass"
    unfolding proj σ''_σ' map_fv_sub
    by (rule as_fs_def(1))
qed

lemma ext_tuple_complete:
  assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
    "set fv_sub  set fv_sub_comp = {}" "set fv_sub  set fv_sub_comp = set fv_all"
    "ass = fo_nmlz AD ` proj_vals R fv_sub"
    "σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ  σ  R  τ  R"
    "xs = fo_nmlz AD (map σ fv_all)" "σ  R"
  shows "xs  fo_nmlz AD ` (ext_tuple AD fv_sub fv_sub_comp ` ass)"
proof -
  have fv_all_sort: "fv_all = sort (fv_sub @ fv_sub_comp)"
    using assms(1,2,3,4,5)
    by (simp add: sorted_distinct_set_unique)
  note σ_def = assms(9,8)
  have vs_norm: "fo_nmlzd AD xs"
    using σ_def(2) fo_nmlz_sound
    by auto
  define fs where "fs = map σ fv_sub_comp"
  define as where "as = map σ fv_sub"
  define nos where "nos = fo_nmlz AD (as @ fs)"
  define as' where "as' = take (length fv_sub) nos"
  define fs' where "fs' = drop (length fv_sub) nos"
  have length_as': "length as' = length fv_sub"
    by (auto simp: as'_def nos_def as_def fo_nmlz_length)
  have length_fs': "length fs' = length fv_sub_comp"
    by (auto simp: fs'_def nos_def as_def fs_def fo_nmlz_length)
  have len_fv_sub_nos: "length fv_sub  length nos"
    by (auto simp: nos_def fo_nmlz_length as_def)
  have norm_as': "fo_nmlzd AD as'"
    using fo_nmlzd_take[OF fo_nmlz_sound]
    by (auto simp: as'_def nos_def)
  have as'_norm_as: "as' = fo_nmlz AD as"
    by (auto simp: as'_def nos_def as_def fo_nmlz_take)
  have ad_agr_as': "ad_agr_list AD as as'"
    using fo_nmlz_ad_agr
    unfolding as'_norm_as .
  have nos_as'_fs': "nos = as' @ fs'"
    using length_as' length_fs'
    by (auto simp: as'_def fs'_def)
  obtain τ where τ_def: "as' = map τ fv_sub" "fs' = map τ fv_sub_comp"
    using exists_map[of "fv_sub @ fv_sub_comp" "as' @ fs'"] assms(1,2,4) length_as' length_fs'
    by auto
  have "length fv_sub + length fv_sub_comp  length fv_all"
    using assms(1,2,3,4,5)
    by (metis distinct_append distinct_card eq_iff length_append set_append)
  then have nos_sub: "set nos  Inl ` AD  Inr ` {..<length fv_all}"
    using fo_nmlz_set[of AD "as @ fs"]
    by (auto simp: nos_def as_def fs_def)
  have len_fs': "length fs' = length fv_sub_comp"
    by (auto simp: fs'_def nos_def fo_nmlz_length as_def fs_def)
  have norm_nos_idem: "fo_nmlz_rec 0 (id_map 0) AD nos = nos"
    using fo_nmlz_idem[of AD nos] fo_nmlz_sound
    by (auto simp: nos_def fo_nmlz_def id_map_empty)
  have fs'_all: "fs'  nall_tuples_rec AD (card (Inr -` set as')) (length fv_sub_comp)"
    unfolding len_fs'[symmetric]
    by (rule nall_tuples_rec_fo_nmlz_rec_complete)
      (rule fo_nmlz_rec_shift[OF norm_nos_idem, simplified, OF refl len_fv_sub_nos,
          folded as'_def fs'_def])
  have "as'  nall_tuples AD (length fv_sub)"
    using length_as'
    apply (rule nall_tuplesI)
    using norm_as' .
  then have as'_ass: "as'  ass"
    using as'_norm_as σ_def(1) as_def
    unfolding assms(6)
    by (auto simp: proj_vals_def)
  have vs_norm: "xs = fo_nmlz AD (map snd (merge (zip fv_sub as) (zip fv_sub_comp fs)))"
    using assms(1,2,4) σ_def(2)
    by (auto simp: merge_map as_def fs_def fv_all_sort)
  have set_sort': "set (sort (fv_sub @ fv_sub_comp)) = set (fv_sub @ fv_sub_comp)"
    by auto
  have "xs = fo_nmlz AD (map snd (merge (zip fv_sub as') (zip fv_sub_comp fs')))"
    unfolding vs_norm as_def fs_def τ_def
      merge_map[OF assms(1,2,4)]
    apply (rule fo_nmlz_eqI)
    apply (rule ad_agr_list_subset[OF equalityD1, OF set_sort'])
    using fo_nmlz_ad_agr[of AD "as @ fs", folded nos_def, unfolded nos_as'_fs']
    unfolding as_def fs_def τ_def map_append[symmetric] .
  then show ?thesis
    using as'_ass fs'_all
    by (auto simp: ext_tuple_def length_as')
qed

definition "ext_tuple_set AD ns ns' X = (if ns' = [] then X else fo_nmlz AD ` (ext_tuple AD ns ns' ` X))"

lemma ext_tuple_set_eq: "Ball X (fo_nmlzd AD)  ext_tuple_set AD ns ns' X = fo_nmlz AD ` (ext_tuple AD ns ns' ` X)"
  by (auto simp: ext_tuple_set_def ext_tuple_def fo_nmlzd_code)

lemma ext_tuple_set_mono: "A  B  ext_tuple_set AD ns ns' A  ext_tuple_set AD ns ns' B"
  by (auto simp: ext_tuple_set_def)

lemma ext_tuple_correct:
  assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
    "set fv_sub  set fv_sub_comp = {}" "set fv_sub  set fv_sub_comp = set fv_all"
    "ass = fo_nmlz AD ` proj_vals R fv_sub"
    "σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ  σ  R  τ  R"
  shows "ext_tuple_set AD fv_sub fv_sub_comp ass = fo_nmlz AD ` proj_vals R fv_all"
proof (rule set_eqI, rule iffI)
  fix xs
  assume xs_in: "xs  ext_tuple_set AD fv_sub fv_sub_comp ass"
  show "xs  fo_nmlz AD ` proj_vals R fv_all"
    using ext_tuple_sound(2)[OF assms] xs_in
    by (auto simp: ext_tuple_set_def ext_tuple_def assms(6) fo_nmlz_idem[OF fo_nmlz_sound] image_iff
        split: if_splits)
next
  fix xs
  assume "xs  fo_nmlz AD ` proj_vals R fv_all"
  then obtain σ where σ_def: "xs = fo_nmlz AD (map σ fv_all)" "σ  R"
    by (auto simp: proj_vals_def)
  show "xs  ext_tuple_set AD fv_sub fv_sub_comp ass"
    using ext_tuple_complete[OF assms σ_def]
    by (auto simp: ext_tuple_set_def ext_tuple_def assms(6) fo_nmlz_idem[OF fo_nmlz_sound] image_iff
        split: if_splits)
qed

lemma proj_tuple_sound:
  assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
    "set fv_sub  set fv_sub_comp = {}" "set fv_sub  set fv_sub_comp = set fv_all"
    "ass = fo_nmlz AD ` proj_vals R fv_sub"
    "σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ  σ  R  τ  R"
    "fo_nmlz AD xs = xs" "length xs = length fv_all"
    "fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs))  ass"
  shows "xs  fo_nmlz AD ` (ext_tuple AD fv_sub fv_sub_comp ` ass)"
proof -
  have fv_all_sort: "fv_all = sort (fv_sub @ fv_sub_comp)"
    using assms(1,2,3,4,5)
    by (simp add: sorted_distinct_set_unique)
  obtain σ where σ_def: "xs = map σ fv_all"
    using exists_map[of fv_all xs] assms(3,9)
    by auto
  have xs_norm: "xs = fo_nmlz AD (map σ fv_all)"
    using assms(8)
    by (auto simp: σ_def)
  have proj: "proj_tuple fv_sub (zip fv_all xs) = map σ fv_sub"
    unfolding σ_def
    apply (rule proj_tuple_map[OF assms(1,3)])
    using assms(5)
    by blast
  obtain τ where τ_def: "fo_nmlz AD (map σ fv_sub) = fo_nmlz AD (map τ fv_sub)" "τ  R"
    using assms(10)
    by (auto simp: assms(6) proj proj_vals_def)
  have σ_R: "σ  R"
    using assms(7) fo_nmlz_eqD[OF τ_def(1)] τ_def(2)
    unfolding ad_agr_list_link[symmetric]
    by auto
  show ?thesis
    by (rule ext_tuple_complete[OF assms(1,2,3,4,5,6,7) xs_norm σ_R]) assumption
qed

lemma proj_tuple_correct:
  assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
    "set fv_sub  set fv_sub_comp = {}" "set fv_sub  set fv_sub_comp = set fv_all"
    "ass = fo_nmlz AD ` proj_vals R fv_sub"
    "σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ  σ  R  τ  R"
    "fo_nmlz AD xs = xs" "length xs = length fv_all"
  shows "xs  fo_nmlz AD ` (ext_tuple AD fv_sub fv_sub_comp ` ass) 
    fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs))  ass"
  using ext_tuple_sound(1)[OF assms(1,2,3,4,5,6,7)] proj_tuple_sound[OF assms]
  by blast

fun unify_vals_terms :: "('a + 'c) list  ('a fo_term) list  (nat  ('a + 'c)) 
  (nat  ('a + 'c)) option" where
  "unify_vals_terms [] [] σ = Some σ"
| "unify_vals_terms (v # vs) ((Const c') # ts) σ =
    (if v = Inl c' then unify_vals_terms vs ts σ else None)"
| "unify_vals_terms (v # vs) ((Var n) # ts) σ =
    (case σ n of Some x  (if v = x then unify_vals_terms vs ts σ else None)
    | None  unify_vals_terms vs ts (σ(n := Some v)))"
| "unify_vals_terms _ _ _ = None"

lemma unify_vals_terms_extends: "unify_vals_terms vs ts σ = Some σ'  extends_subst σ σ'"
  unfolding extends_subst_def
  by (induction vs ts σ arbitrary: σ' rule: unify_vals_terms.induct)
     (force split: if_splits option.splits)+

lemma unify_vals_terms_sound: "unify_vals_terms vs ts σ = Some σ'  (the  σ') ⊙e ts = vs"
  using unify_vals_terms_extends
  by (induction vs ts σ arbitrary: σ' rule: unify_vals_terms.induct)
     (force simp: eval_eterms_def extends_subst_def fv_fo_terms_set_def
      split: if_splits option.splits)+

lemma unify_vals_terms_complete: "σ'' ⊙e ts = vs  (n. σ n  None  σ n = Some (σ'' n)) 
  σ'. unify_vals_terms vs ts σ = Some σ'"
  by (induction vs ts σ rule: unify_vals_terms.induct)
     (force simp: eval_eterms_def extends_subst_def split: if_splits option.splits)+

definition eval_table :: "'a fo_term list  ('a + 'c) table  ('a + 'c) table" where
  "eval_table ts X = (let fvs = fv_fo_terms_list ts in
    ((λvs. case unify_vals_terms vs ts Map.empty of Some σ 
      {map (the  σ) fvs} | _  {}) ` X))"

lemma eval_table:
  fixes X :: "('a + 'c) table"
  shows "eval_table ts X = proj_vals {σ. σ ⊙e ts  X} (fv_fo_terms_list ts)"
proof (rule set_eqI, rule iffI)
  fix vs
  assume "vs  eval_table ts X"
  then obtain as σ where as_def: "as  X" "unify_vals_terms as ts Map.empty = Some σ"
    "vs = map (the  σ) (fv_fo_terms_list ts)"
    by (auto simp: eval_table_def split: option.splits)
  have "(the  σ) ⊙e ts  X"
    using unify_vals_terms_sound[OF as_def(2)] as_def(1)
    by auto
  with as_def(3) show "vs  proj_vals {σ. σ ⊙e ts  X} (fv_fo_terms_list ts)"
    by (fastforce simp: proj_vals_def)
next
  fix vs :: "('a + 'c) list"
  assume "vs  proj_vals {σ. σ ⊙e ts  X} (fv_fo_terms_list ts)"
  then obtain σ where σ_def: "vs = map σ (fv_fo_terms_list ts)" "σ ⊙e ts  X"
    by (auto simp: proj_vals_def)
  obtain σ' where σ'_def: "unify_vals_terms (σ ⊙e ts) ts Map.empty = Some σ'"
    using unify_vals_terms_complete[OF refl, of Map.empty σ ts]
    by auto
  have "(the  σ') ⊙e ts = (σ ⊙e ts)"
    using unify_vals_terms_sound[OF σ'_def(1)]
    by auto
  then have "vs = map (the  σ') (fv_fo_terms_list ts)"
    using fv_fo_terms_set_list eval_eterms_fv_fo_terms_set
    unfolding σ_def(1)
    by fastforce
  then show "vs  eval_table ts X"
    using σ_def(2) σ'_def
    by (force simp: eval_table_def)
qed

fun ad_agr_close_rec :: "nat  (nat  'a + nat)  'a set 
  ('a + nat) list  ('a + nat) list set" where
  "ad_agr_close_rec i m AD [] = {[]}"
| "ad_agr_close_rec i m AD (Inl x # xs) = (λxs. Inl x # xs) ` ad_agr_close_rec i m AD xs"
| "ad_agr_close_rec i m AD (Inr n # xs) = (case m n of None  ((λx. (λxs. Inl x # xs) `
    ad_agr_close_rec i (m(n := Some (Inl x))) (AD - {x}) xs) ` AD) 
    (λxs. Inr i # xs) ` ad_agr_close_rec (Suc i) (m(n := Some (Inr i))) AD xs
  | Some v  (λxs. v # xs) ` ad_agr_close_rec i m AD xs)"

lemma ad_agr_close_rec_length: "ys  ad_agr_close_rec i m AD xs  length xs = length ys"
  by (induction i m AD xs arbitrary: ys rule: ad_agr_close_rec.induct) (auto split: option.splits)

lemma ad_agr_close_rec_sound: "ys  ad_agr_close_rec i m AD xs 
  fo_nmlz_rec j (id_map j) X xs = xs  X  AD = {}  X  Y = {}  Y  AD = {} 
  inj_on m (dom m)  dom m = {..<j}  ran m  Inl ` Y  Inr ` {..<i}  i  j 
  fo_nmlz_rec i (id_map i) (X  Y  AD) ys = ys 
  (m'. inj_on m' (dom m')  (n v. m n = Some v  m' (Inr n) = Some v) 
  ((x, y)  set (zip xs ys). case x of Inl x' 
      if x'  X then x = y else m' x = Some y  (case y of Inl z  z  X | Inr x  True)
  | Inr n  m' x = Some y  (case y of Inl z  z  X | Inr x  True)))"
proof (induction i m AD xs arbitrary: Y j ys rule: ad_agr_close_rec.induct)
  case (1 i m AD)
  then show ?case
    by (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def inj_on_def dom_def
        split: sum.splits intro!: exI[of _ "case_sum Map.empty m"])
next
  case (2 i m AD x xs)
  obtain zs where ys_def: "ys = Inl x # zs" "zs  ad_agr_close_rec i m AD xs"
    using 2(2)
    by auto
  have preds: "fo_nmlz_rec j (id_map j) X xs = xs" "x  X"
    using 2(3)
    by (auto split: if_splits option.splits)
  show ?case
    using 2(1)[OF ys_def(2) preds(1) 2(4,5,6,7,8,9,10)] preds(2)
    by (auto simp: ys_def(1))
next
  case (3 i m AD n xs)
  show ?case
  proof (cases "m n")
    case None
    obtain v zs where ys_def: "ys = v # zs"
      using 3(4)
      by (auto simp: None)
    have n_ge_j: "j  n"
      using 3(9,10) None
      by (metis domIff leI lessThan_iff)
    show ?thesis
    proof (cases v)
      case (Inl x)
      have zs_def: "zs  ad_agr_close_rec i (m(n  Inl x)) (AD - {x}) xs" "x  AD"
        using 3(4)
        by (auto simp: None ys_def Inl)
      have preds: "fo_nmlz_rec (Suc j) (id_map (Suc j)) X xs = xs" "X  (AD - {x}) = {}"
        "X  (Y  {x}) = {}" "(Y  {x})  (AD - {x}) = {}" "dom (m(n  Inl x)) = {..<Suc j}"
        "ran (m(n  Inl x))  Inl ` (Y  {x})  Inr ` {..<i}"
        "i  Suc j" "n = j"
        using 3(5,6,7,8,10,11,12) n_ge_j zs_def(2)
        by (auto simp: fun_upd_id_map ran_def dest: id_mapD split: option.splits)
      have inj: "inj_on (m(n  Inl x)) (dom (m(n  Inl x)))"
        using 3(8,9,10,11,12) preds(8) zs_def(2)
        by (fastforce simp: inj_on_def dom_def ran_def)
      have sets_unfold: "X  (Y  {x})  (AD - {x}) = X  Y  AD"
        using zs_def(2)
        by auto
      note IH = 3(1)[OF None zs_def(2,1) preds(1,2,3,4) inj preds(5,6,7), unfolded sets_unfold]
      have norm_ys: "fo_nmlz_rec i (id_map i) (X  Y  AD) ys = ys"
        using conjunct1[OF IH] zs_def(2)
        by (auto simp: ys_def(1) Inl split: option.splits)
      show ?thesis
        using norm_ys conjunct2[OF IH] None zs_def(2) 3(6)
        unfolding ys_def(1)
        apply safe
        subgoal for m'
          apply (auto simp: Inl dom_def intro!: exI[of _ m'] split: if_splits)
           apply (metis option.distinct(1))
          apply (fastforce split: prod.splits sum.splits)
          done
        done
    next
      case (Inr k)
      have zs_def: "zs  ad_agr_close_rec (Suc i) (m(n  Inr i)) AD xs" "i = k"
        using 3(4)
        by (auto simp: None ys_def Inr)
      have preds: "fo_nmlz_rec (Suc n) (id_map (Suc n)) X xs = xs"
        "dom (m(n  Inr i)) = {..<Suc n}"
        "ran (m(n  Inr i))  Inl ` Y  Inr ` {..<Suc i}" "Suc i  Suc n"
        using 3(5,10,11,12) n_ge_j
        by (auto simp: fun_upd_id_map ran_def dest: id_mapD split: option.splits)
      have inj: "inj_on (m(n  Inr i)) (dom (m(n  Inr i)))"
        using 3(9,11)
        by (auto simp: inj_on_def dom_def ran_def)
      note IH = 3(2)[OF None zs_def(1) preds(1) 3(6,7,8) inj preds(2,3,4)]
      have norm_ys: "fo_nmlz_rec i (id_map i) (X  Y  AD) ys = ys"
        using conjunct1[OF IH] zs_def(2)
        by (auto simp: ys_def Inr fun_upd_id_map dest: id_mapD split: option.splits)
      show ?thesis
        using norm_ys conjunct2[OF IH] None
        unfolding ys_def(1) zs_def(2)
        apply safe
        subgoal for m'
          apply (auto simp: Inr dom_def intro!: exI[of _ m'] split: if_splits)
           apply (metis option.distinct(1))
          apply (fastforce split: prod.splits sum.splits)
          done
        done
    qed
  next
    case (Some v)
    obtain zs where ys_def: "ys = v # zs" "zs  ad_agr_close_rec i m AD xs"
      using 3(4)
      by (auto simp: Some)
    have preds: "fo_nmlz_rec j (id_map j) X xs = xs" "n < j"
      using 3(5,8,10) Some
      by (auto simp: dom_def split: option.splits)
    note IH = 3(3)[OF Some ys_def(2) preds(1) 3(6,7,8,9,10,11,12)]
    have norm_ys: "fo_nmlz_rec i (id_map i) (X  Y  AD) ys = ys"
      using conjunct1[OF IH] 3(11) Some
      by (auto simp: ys_def(1) ran_def id_map_def)
    have "case v of Inl z  z  X | Inr x  True"
      using 3(7,11) Some
      by (auto simp: ran_def split: sum.splits)
    then show ?thesis
      using norm_ys conjunct2[OF IH] Some
      unfolding ys_def(1)
      apply safe
      subgoal for m'
        by (auto intro!: exI[of _ m'] split: sum.splits)
      done
  qed
qed

lemma ad_agr_close_rec_complete:
  fixes xs :: "('a + nat) list"
  shows "fo_nmlz_rec j (id_map j) X xs = xs 
  X  AD = {}  X  Y = {}  Y  AD = {} 
  inj_on m (dom m)  dom m = {..<j}  ran m = Inl ` Y  Inr ` {..<i}  i  j 
  (n b. (Inr n, b)  set (zip xs ys)  case m n of Some v  v = b | None  b  ran m) 
  fo_nmlz_rec i (id_map i) (X  Y  AD) ys = ys  ad_agr_list X xs ys 
  ys  ad_agr_close_rec i m AD xs"
proof (induction j "id_map j :: 'a + nat  nat option" X xs arbitrary: m i ys AD Y
    rule: fo_nmlz_rec.induct)
  case (2 j X x xs)
  have x_X: "x  X" "fo_nmlz_rec j (id_map j) X xs = xs"
    using 2(4)
    by (auto split: if_splits option.splits)
  obtain z zs where ys_def: "ys = Inl z # zs" "z = x"
    using 2(14) x_X(1)
    by (cases ys) (auto simp: ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps)
  have norm_zs: "fo_nmlz_rec i (id_map i) (X  Y  AD) zs = zs"
    using 2(13) ys_def(2) x_X(1)
    by (auto simp: ys_def(1))
  have ad_agr: "ad_agr_list X xs zs"
    using 2(14)
    by (auto simp: ys_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
  show ?case
    using 2(1)[OF x_X 2(5,6,7,8,9,10,11) _ norm_zs ad_agr] 2(12)
    by (auto simp: ys_def)
next
  case (3 j X n xs)
  obtain z zs where ys_def: "ys = z # zs"
    using 3(13)
    apply (cases ys)
     apply (auto simp: ad_agr_list_def)
    done
  show ?case
  proof (cases "j  n")
    case True
    then have n_j: "n = j"
      using 3(3)
      by (auto split: option.splits dest: id_mapD)
    have id_map: "id_map j (Inr n) = None" "(id_map j)(Inr n  j) = id_map (Suc j)"
      unfolding n_j fun_upd_id_map
      by (auto simp: id_map_def)
    have norm_xs: "fo_nmlz_rec (Suc j) (id_map (Suc j)) X xs = xs"
      using 3(3)
      by (auto simp: ys_def fun_upd_id_map id_map(1) split: option.splits)
    have None: "m n = None"
      using 3(8)
      by (auto simp: dom_def n_j)
    have z_out: "z  Inl ` Y  Inr ` {..<i}"
      using 3(11) None
      by (force simp: ys_def 3(9))
    show ?thesis
    proof (cases z)
      case (Inl a)
      have a_in: "a  AD"
        using 3(12,13) z_out
        by (auto simp: ys_def Inl ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps
            split: if_splits option.splits)
      have norm_zs: "fo_nmlz_rec i (id_map i) (X  Y  AD) zs = zs"
        using 3(12) a_in
        by (auto simp: ys_def Inl)
      have preds: "X  (AD - {a}) = {}" "X  (Y  {a}) = {}" "(Y  {a})  (AD - {a}) = {}"
        using 3(4,5,6) a_in
        by auto
      have inj: "inj_on (m(n := Some (Inl a))) (dom (m(n := Some (Inl a))))"
        using 3(6,7,9) None a_in
        by (auto simp: inj_on_def dom_def ran_def) blast+
      have preds': "dom (m(n  Inl a)) = {..<Suc j}"
        "ran (m(n  Inl a)) = Inl ` (Y  {a})  Inr ` {..<i}" "i  Suc j"
        using 3(6,8,9,10) None less_Suc_eq a_in
          apply (auto simp: n_j dom_def ran_def)
         apply (smt Un_iff image_eqI mem_Collect_eq option.simps(3))
        apply (smt 3(8) domIff image_subset_iff lessThan_iff mem_Collect_eq sup_ge2)
        done
      have a_unfold: "X  (Y  {a})  (AD - {a}) = X  Y  AD" "Y  {a}  (AD - {a}) = Y  AD"
        using a_in
        by auto
      have ad_agr: "ad_agr_list X xs zs"
        using 3(13)
        by (auto simp: ys_def Inl ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
      have "zs  ad_agr_close_rec i (m(n  Inl a)) (AD - {a}) xs"
        apply (rule 3(1)[OF id_map norm_xs preds inj preds' _ _ ad_agr])
        using 3(11,13) norm_zs
        unfolding 3(9) preds'(2) a_unfold
         apply (auto simp: None Inl ys_def ad_agr_list_def sp_equiv_list_def pairwise_def
            split: option.splits)
          apply (metis Un_iff image_eqI option.simps(4))
         apply (metis image_subset_iff lessThan_iff option.simps(4) sup_ge2)
        apply fastforce
        done
      then show ?thesis
        using a_in
        by (auto simp: ys_def Inl None)
    next
      case (Inr b)
      have i_b: "i = b"
        using 3(12) z_out
        by (auto simp: ys_def Inr split: option.splits dest: id_mapD)
      have norm_zs: "fo_nmlz_rec (Suc i) (id_map (Suc i)) (X  Y  AD) zs = zs"
        using 3(12)
        by (auto simp: ys_def Inr i_b fun_upd_id_map split: option.splits dest: id_mapD)
      have ad_agr: "ad_agr_list X xs zs"
        using 3(13)
        by (auto simp: ys_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
      define m' where "m'  m(n := Some (Inr i))"
      have preds: "inj_on m' (dom m')" "dom m' = {..<Suc j}" "Suc i  Suc j"
        using 3(7,8,9,10)
        by (auto simp: m'_def n_j inj_on_def dom_def ran_def image_iff)
           (metis 3(8) domI lessThan_iff less_SucI)
      have ran: "ran m' = Inl ` Y  Inr ` {..<Suc i}"
        using 3(9) None
        by (auto simp: m'_def)
      have "zs  ad_agr_close_rec (Suc i) m' AD xs"
        apply (rule 3(1)[OF id_map norm_xs 3(4,5,6) preds(1,2) ran preds(3) _ norm_zs ad_agr])
        using 3(11,13)
        unfolding 3(9) ys_def Inr i_b m'_def
        unfolding ran[unfolded m'_def i_b]
        apply (auto simp: ad_agr_list_def sp_equiv_list_def pairwise_def split: option.splits)
          apply (metis Un_upper1 image_subset_iff option.simps(4))
         apply (metis UnI1 image_eqI insert_iff lessThan_Suc lessThan_iff option.simps(4)
            sp_equiv_pair.simps sum.inject(2) sup_commute)
        apply fastforce
        done
      then show ?thesis
        by (auto simp: ys_def Inr None m'_def i_b)
    qed
  next
    case False
    have id_map: "id_map j (Inr n) = Some n"
      using False
      by (auto simp: id_map_def)
    have norm_xs: "fo_nmlz_rec j (id_map j) X xs = xs"
      using 3(3)
      by (auto simp: id_map)
    have Some: "m n = Some z"
      using False 3(11)[unfolded ys_def]
      by (metis (mono_tags) 3(8) domD insert_iff leI lessThan_iff list.simps(15)
          option.simps(5) zip_Cons_Cons)
    have z_in: "z  Inl ` Y  Inr ` {..<i}"
      using 3(9) Some
      by (auto simp: ran_def)
    have ad_agr: "ad_agr_list X xs zs"
      using 3(13)
      by (auto simp: ad_agr_list_def ys_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
    show ?thesis
    proof (cases z)
      case (Inl a)
      have a_in: "a  Y  AD"
        using 3(12,13)
        by (auto simp: ys_def Inl ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps
            split: if_splits option.splits)
      have norm_zs: "fo_nmlz_rec i (id_map i) (X  Y  AD) zs = zs"
        using 3(12) a_in
        by (auto simp: ys_def Inl)
      show ?thesis
        using 3(2)[OF id_map norm_xs 3(4,5,6,7,8,9,10) _ norm_zs ad_agr] 3(11) a_in
        by (auto simp: ys_def Inl Some split: option.splits)
    next
      case (Inr b)
      have b_lt: "b < i"
        using z_in
        by (auto simp: Inr)
      have norm_zs: "fo_nmlz_rec i (id_map i) (X  Y  AD) zs = zs"
        using 3(12) b_lt
        by (auto simp: ys_def Inr split: option.splits)
      show ?thesis
        using 3(2)[OF id_map norm_xs 3(4,5,6,7,8,9,10) _ norm_zs ad_agr] 3(11)
        by (auto simp: ys_def Inr Some)
    qed
  qed
qed (auto simp: ad_agr_list_def)

definition ad_agr_close :: "'a set  ('a + nat) list  ('a + nat) list set" where
  "ad_agr_close AD xs = ad_agr_close_rec 0 Map.empty AD xs"

lemma ad_agr_close_sound:
  assumes "ys  ad_agr_close Y xs" "fo_nmlzd X xs" "X  Y = {}"
  shows "fo_nmlzd (X  Y) ys  ad_agr_list X xs ys"
  using ad_agr_close_rec_sound[OF assms(1)[unfolded ad_agr_close_def]
    fo_nmlz_idem[OF assms(2), unfolded fo_nmlz_def, folded id_map_empty] assms(3)
    Int_empty_right Int_empty_left]
    ad_agr_map[OF ad_agr_close_rec_length[OF assms(1)[unfolded ad_agr_close_def]], of _ X]
    fo_nmlzd_code[unfolded fo_nmlz_def, folded id_map_empty, of "X  Y" ys]
  by (auto simp: fo_nmlz_def)

lemma ad_agr_close_complete:
  assumes "X  Y = {}" "fo_nmlzd X xs" "fo_nmlzd (X  Y) ys" "ad_agr_list X xs ys"
  shows "ys  ad_agr_close Y xs"
  using ad_agr_close_rec_complete[OF fo_nmlz_idem[OF assms(2),
        unfolded fo_nmlz_def, folded id_map_empty] assms(1) Int_empty_right Int_empty_left _ _ _
        order.refl _ _ assms(4), of Map.empty]
        fo_nmlzd_code[unfolded fo_nmlz_def, folded id_map_empty, of "X  Y" ys]
        assms(3)
  unfolding ad_agr_close_def
  by (auto simp: fo_nmlz_def)

lemma ad_agr_close_empty: "fo_nmlzd X xs  ad_agr_close {} xs = {xs}"
  using ad_agr_close_complete[where ?X=X and ?Y="{}" and ?xs=xs and ?ys=xs]
    ad_agr_close_sound[where ?X=X and ?Y="{}" and ?xs=xs] ad_agr_list_refl ad_agr_list_fo_nmlzd
  by fastforce

lemma ad_agr_close_set_correct:
  assumes "AD'  AD" "sorted_distinct ns"
  "σ τ. ad_agr_sets (set ns) (set ns) AD' σ τ  σ  R  τ  R"
  shows "(ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_vals R ns) = fo_nmlz AD ` proj_vals R ns"
proof (rule set_eqI, rule iffI)
  fix vs
  assume "vs  (ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_vals R ns)"
  then obtain σ where σ_def: "vs  ad_agr_close (AD - AD') (fo_nmlz AD' (map σ ns))" "σ  R"
    by (auto simp: proj_vals_def)
  have vs: "fo_nmlzd AD vs" "ad_agr_list AD' (fo_nmlz AD' (map σ ns)) vs"
    using ad_agr_close_sound[OF σ_def(1) fo_nmlz_sound] assms(1) Diff_partition
    by fastforce+
  obtain τ where τ_def: "vs = map τ ns"
    using exists_map[of ns vs] assms(2) vs(2)
    by (auto simp: ad_agr_list_def fo_nmlz_length)
  show "vs  fo_nmlz AD ` proj_vals R ns"
    apply (subst fo_nmlz_idem[OF vs(1), symmetric])
    using iffD1[OF assms(3) σ_def(2), OF iffD2[OF ad_agr_list_link ad_agr_list_trans[OF
          fo_nmlz_ad_agr[of AD' "map σ ns"] vs(2), unfolded τ_def]]]
    unfolding τ_def
    by (auto simp: proj_vals_def)
next
  fix vs
  assume "vs  fo_nmlz AD ` proj_vals R ns"
  then obtain σ where σ_def: "vs = fo_nmlz AD (map σ ns)" "σ  R"
    by (auto simp: proj_vals_def)
  define xs where "xs = fo_nmlz AD' vs"
  have preds: "AD'  (AD - AD') = {}" "fo_nmlzd AD' xs" "fo_nmlzd (AD'  (AD - AD')) vs"
    using assms(1) fo_nmlz_sound Diff_partition
    by (fastforce simp: σ_def(1) xs_def)+
  obtain τ where τ_def: "vs = map τ ns"
    using exists_map[of "ns" vs] assms(2) σ_def(1)
    by (auto simp: fo_nmlz_length)
  have "vs  ad_agr_close (AD - AD') xs"
    using ad_agr_close_complete[OF preds] ad_agr_list_comm[OF fo_nmlz_ad_agr]
    by (auto simp: xs_def)
  then show "vs  (ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_vals R ns)"
    unfolding xs_def τ_def
    using iffD1[OF assms(3) σ_def(2), OF ad_agr_sets_mono[OF assms(1) iffD2[OF ad_agr_list_link
          fo_nmlz_ad_agr[of AD "map σ ns", folded σ_def(1), unfolded τ_def]]]]
    by (auto simp: proj_vals_def)
qed

lemma ad_agr_close_correct:
  assumes "AD'  AD"
    "σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD' σ τ 
    σ  R  τ  R"
  shows "(ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_fmla φ R) = fo_nmlz AD ` proj_fmla φ R"
  using ad_agr_close_set_correct[OF _ sorted_distinct_fv_list, OF assms]
  by (auto simp: proj_fmla_def)

definition "ad_agr_close_set AD X = (if Set.is_empty AD then X else (ad_agr_close AD ` X))"

lemma ad_agr_close_set_eq: "Ball X (fo_nmlzd AD')  ad_agr_close_set AD X = (ad_agr_close AD ` X)"
  by (force simp: ad_agr_close_set_def Set.is_empty_def ad_agr_close_empty)

lemma Ball_fo_nmlzd: "Ball (fo_nmlz AD ` X) (fo_nmlzd AD)"
  by (auto simp: fo_nmlz_sound)

lemmas ad_agr_close_set_nmlz_eq = ad_agr_close_set_eq[OF Ball_fo_nmlzd]

definition eval_pred :: "('a fo_term) list  'a table  ('a, 'c) fo_t" where
  "eval_pred ts X = (let AD = (set (map set_fo_term ts))  (set ` X) in
    (AD, length (fv_fo_terms_list ts), eval_table ts (map Inl ` X)))"

definition eval_bool :: "bool  ('a, 'c) fo_t" where
  "eval_bool b = (if b then ({}, 0, {[]}) else ({}, 0, {}))"

definition eval_eq :: "'a fo_term  'a fo_term  ('a, nat) fo_t" where
  "eval_eq t t' = (case t of Var n 
  (case t' of Var n' 
    if n = n' then ({}, 1, {[Inr 0]})
    else ({}, 2, {[Inr 0, Inr 0]})
    | Const c'  ({c'}, 1, {[Inl c']}))
  | Const c 
    (case t' of Var n'  ({c}, 1, {[Inl c]})
    | Const c'  if c = c' then ({c}, 0, {[]}) else ({c, c'}, 0, {})))"

fun eval_neg :: "nat list  ('a, nat) fo_t  ('a, nat) fo_t" where
  "eval_neg ns (AD, _, X) = (AD, length ns, nall_tuples AD (length ns) - X)"

definition "eval_conj_tuple AD nsφ nsψ xs ys =
  (let cxs = filter (λ(n, x). n  set nsψ  isl x) (zip nsφ xs);
    nxs = map fst (filter (λ(n, x). n  set nsψ  ¬isl x) (zip nsφ xs));
    cys = filter (λ(n, y). n  set nsφ  isl y) (zip nsψ ys);
    nys = map fst (filter (λ(n, y). n  set nsφ  ¬isl y) (zip nsψ ys)) in
  fo_nmlz AD ` ext_tuple {} (sort (nsφ @ map fst cys)) nys (map snd (merge (zip nsφ xs) cys)) 
  fo_nmlz AD ` ext_tuple {} (sort (nsψ @ map fst cxs)) nxs (map snd (merge (zip nsψ ys) cxs)))"

definition "eval_conj_set AD nsφ  nsψ  = ((λxs. (eval_conj_tuple AD nsφ nsψ xs ` )) ` )"

definition "idx_join AD ns nsφ  nsψ  =
  (let idxφ' = cluster (Some  (λxs. fo_nmlz AD (proj_tuple ns (zip nsφ xs)))) ;
  idxψ' = cluster (Some  (λys. fo_nmlz AD (proj_tuple ns (zip nsψ ys))))  in
  set_of_idx (mapping_join (λXφ'' Xψ''. eval_conj_set AD nsφ Xφ'' nsψ Xψ'') idxφ' idxψ'))"

fun eval_conj :: "nat list  ('a, nat) fo_t  nat list  ('a, nat) fo_t 
  ('a, nat) fo_t" where
  "eval_conj nsφ (ADφ, _, ) nsψ (ADψ, _, ) = (let AD = ADφ  ADψ; ADΔφ = AD - ADφ; ADΔψ = AD - ADψ; ns = filter (λn. n  set nsψ) nsφ in
    (AD, card (set nsφ  set nsψ), idx_join AD ns nsφ (ad_agr_close_set ADΔφ ) nsψ (ad_agr_close_set ADΔψ )))"

fun eval_ajoin :: "nat list  ('a, nat) fo_t  nat list  ('a, nat) fo_t 
  ('a, nat) fo_t" where
  "eval_ajoin nsφ (ADφ, _, ) nsψ (ADψ, _, ) = (let AD = ADφ  ADψ; ADΔφ = AD - ADφ; ADΔψ = AD - ADψ;
    ns = filter (λn. n  set nsψ) nsφ; nsφ' = filter (λn. n  set nsφ) nsψ;
    idxφ = cluster (Some  (λxs. fo_nmlz ADψ (proj_tuple ns (zip nsφ xs)))) (ad_agr_close_set ADΔφ );
    idxψ = cluster (Some  (λys. fo_nmlz ADψ (proj_tuple ns (zip nsψ ys))))  in
    (AD, card (set nsφ  set nsψ), set_of_idx (Mapping.map_values (λxs X. case Mapping.lookup idxψ xs of Some Y 
      idx_join AD ns nsφ X nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {xs} - Y)) | _  ext_tuple_set AD nsφ nsφ' X) idxφ)))"

fun eval_disj :: "nat list  ('a, nat) fo_t  nat list  ('a, nat) fo_t 
  ('a, nat) fo_t" where
  "eval_disj nsφ (ADφ, _, ) nsψ (ADψ, _, ) = (let AD = ADφ  ADψ;
    nsφ' = filter (λn. n  set nsφ) nsψ;
    nsψ' = filter (λn. n  set nsψ) nsφ;
    ADΔφ = AD - ADφ; ADΔψ = AD - ADψ in
    (AD, card (set nsφ  set nsψ),
      ext_tuple_set AD nsφ nsφ' (ad_agr_close_set ADΔφ ) 
      ext_tuple_set AD nsψ nsψ' (ad_agr_close_set ADΔψ )))"

fun eval_exists :: "nat  nat list  ('a, nat) fo_t  ('a, nat) fo_t" where
  "eval_exists i ns (AD, _, X) = (case pos i ns of Some j 
    (AD, length ns - 1, fo_nmlz AD ` rem_nth j ` X)
  | None  (AD, length ns, X))"

fun eval_forall :: "nat  nat list  ('a, nat) fo_t  ('a, nat) fo_t" where
  "eval_forall i ns (AD, _, X) = (case pos i ns of Some j 
    let n = card AD in
    (AD, length ns - 1, Mapping.keys (Mapping.filter (λt Z. n + card (Inr -` set t) + 1  card Z)
      (cluster (Some  (λts. fo_nmlz AD (rem_nth j ts))) X)))
    | None  (AD, length ns, X))"

lemma combine_map2: assumes "length ys = length xs" "length ys' = length xs'"
  "distinct xs" "distinct xs'" "set xs  set xs' = {}"
  shows "f. ys = map f xs  ys' = map f xs'"
proof -
  obtain f g where fg_def: "ys = map f xs" "ys' = map g xs'"
    using assms exists_map
    by metis
  show ?thesis
    using assms
    by (auto simp: fg_def intro!: exI[of _ "λx. if x  set xs then f x else g x"])
qed

lemma combine_map3: assumes "length ys = length xs" "length ys' = length xs'" "length ys'' = length xs''"
  "distinct xs" "distinct xs'" "distinct xs''" "set xs  set xs' = {}" "set xs  set xs'' = {}" "set xs'  set xs'' = {}"
  shows "f. ys = map f xs  ys' = map f xs'  ys'' = map f xs''"
proof -
  obtain f g h where fgh_def: "ys = map f xs" "ys' = map g xs'" "ys'' = map h xs''"
    using assms exists_map
    by metis
  show ?thesis
    using assms
    by (auto simp: fgh_def intro!: exI[of _ "λx. if x  set xs then f x else if x  set xs' then g x else h x"])
qed

lemma distinct_set_zip: "length nsx = length xs  distinct nsx 
  (a, b)  set (zip nsx xs)  (a, ba)  set (zip nsx xs)  b = ba"
  by (induction nsx xs rule: list_induct2) (auto dest: set_zip_leftD)

lemma fo_nmlz_idem_isl:
  assumes "x. x  set xs  (case x of Inl z  z  X | _  False)"
  shows "fo_nmlz X xs = xs"
proof -
  have F1: "Inl x  set xs  x  X" for x
    using assms[of "Inl x"]
    by auto
  have F2: "List.map_filter (case_sum Map.empty Some) xs = []"
    using assms
    by (induction xs) (fastforce simp: List.map_filter_def split: sum.splits)+
  show ?thesis
    by (rule fo_nmlz_idem) (auto simp: fo_nmlzd_def nats_def F2 intro: F1)
qed

lemma set_zip_mapI: "x  set xs  (f x, g x)  set (zip (map f xs) (map g xs))"
  by (induction xs) auto

lemma ad_agr_list_fo_nmlzd_isl:
  assumes "ad_agr_list X (map f xs) (map g xs)" "fo_nmlzd X (map f xs)" "x  set xs" "isl (f x)"
  shows "f x = g x"
proof -
  have AD: "ad_equiv_pair X (f x, g x)"
    using assms(1) set_zip_mapI[OF assms(3)]
    by (auto simp: ad_agr_list_def ad_equiv_list_def split: sum.splits)
  then show ?thesis
    using assms(2-)
    by (auto simp: fo_nmlzd_def) (metis AD ad_equiv_pair.simps ad_equiv_pair_mono image_eqI sum.collapse(1) vimageI)
qed

lemma eval_conj_tuple_close_empty2:
  assumes "fo_nmlzd X xs" "fo_nmlzd Y ys"
    "length nsx = length xs" "length nsy = length ys"
    "sorted_distinct nsx" "sorted_distinct nsy"
    "sorted_distinct ns" "set ns  set nsx  set nsy"
    "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs))  fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys)) 
      (proj_tuple ns (zip nsx xs)  proj_tuple ns (zip nsy ys) 
      (x  set (proj_tuple ns (zip nsx xs)). isl x)  (y  set (proj_tuple ns (zip nsy ys)). isl y))"
    "xs'  ad_agr_close ((X  Y) - X) xs" "ys'  ad_agr_close ((X  Y) - Y) ys"
  shows "eval_conj_tuple (X  Y) nsx nsy xs' ys' = {}"
proof -
  define cxs where "cxs = filter (λ(n, x). n  set nsy  isl x) (zip nsx xs')"
  define nxs where "nxs = map fst (filter (λ(n, x). n  set nsy  ¬isl x) (zip nsx xs'))"
  define cys where "cys = filter (λ(n, y). n  set nsx  isl y) (zip nsy ys')"
  define nys where "nys = map fst (filter (λ(n, y). n  set nsx  ¬isl y) (zip nsy ys'))"
  define both where "both = sorted_list_of_set (set nsx  set nsy)"
  have close: "fo_nmlzd (X  Y) xs'" "ad_agr_list X xs xs'" "fo_nmlzd (X  Y) ys'" "ad_agr_list Y ys ys'"
    using ad_agr_close_sound[OF assms(10) assms(1)] ad_agr_close_sound[OF assms(11) assms(2)]
    by (auto simp add: sup_left_commute)
  have close': "length xs' = length xs" "length ys' = length ys"
    using close
    by (auto simp: ad_agr_list_length)
  have len_sort: "length (sort (nsx @ map fst cys)) = length (map snd (merge (zip nsx xs') cys))"
    "length (sort (nsy @ map fst cxs)) = length (map snd (merge (zip nsy ys') cxs))"
    by (auto simp: merge_length assms(3,4) close')
  {
    fix zs
    assume "zs  fo_nmlz (X  Y) ` (λfs. map snd (merge (zip (sort (nsx @ map fst cys)) (map snd (merge (zip nsx xs') cys))) (zip nys fs))) `
      nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsx xs') cys)))) (length nys)"
    "zs  fo_nmlz (X  Y) ` (λfs. map snd (merge (zip (sort (nsy @ map fst cxs)) (map snd (merge (zip nsy ys') cxs))) (zip nxs fs))) `
      nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsy ys') cxs)))) (length nxs)"
    then obtain zxs zys where nall: "zxs  nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsx xs') cys)))) (length nys)"
      "zs = fo_nmlz (X  Y) (map snd (merge (zip (sort (nsx @ map fst cys)) (map snd (merge (zip nsx xs') cys))) (zip nys zxs)))"
      "zys  nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsy ys') cxs)))) (length nxs)"
      "zs = fo_nmlz (X  Y) (map snd (merge (zip (sort (nsy @ map fst cxs)) (map snd (merge (zip nsy ys') cxs))) (zip nxs zys)))"
      by auto
    have len_zs: "length zxs = length nys" "length zys = length nxs"
      using nall(1,3)
      by (auto dest: nall_tuples_rec_length)
    have aux: "sorted_distinct (map fst cxs)" "sorted_distinct nxs" "sorted_distinct nsy"
      "sorted_distinct (map fst cys)" "sorted_distinct nys" "sorted_distinct nsx"
      "set (map fst cxs)  set nsy = {}" "set (map fst cxs)  set nxs = {}" "set nsy  set nxs = {}"
      "set (map fst cys)  set nsx = {}" "set (map fst cys)  set nys = {}" "set nsx  set nys = {}"
      using assms(3,4,5,6) close' distinct_set_zip
      by (auto simp: cxs_def nxs_def cys_def nys_def sorted_filter distinct_map_fst_filter)
         (smt (z3) distinct_set_zip)+
    obtain xf where xf_def: "map snd cxs = map xf (map fst cxs)" "ys' = map xf nsy" "zys = map xf nxs"
      using combine_map3[where ?ys="map snd cxs" and ?xs="map fst cxs" and ?ys'=ys' and ?xs'=nsy and ?ys''=zys and ?xs''=nxs] assms(4) aux close'
      by (auto simp: len_zs)
    obtain ysf where ysf_def: "ys = map ysf nsy"
      using assms(4,6) exists_map
      by auto
    obtain xg where xg_def: "map snd cys = map xg (map fst cys)" "xs' = map xg nsx" "zxs = map xg nys"
      using combine_map3[where ?ys="map snd cys" and ?xs="map fst cys" and ?ys'=xs' and ?xs'=nsx and ?ys''=zxs and ?xs''=nys] assms(3) aux close'
      by (auto simp: len_zs)
    obtain xsf where xsf_def: "xs = map xsf nsx"
      using assms(3,5) exists_map
      by auto
    have set_cxs_nxs: "set (map fst cxs @ nxs) = set nsx - set nsy"
      using assms(3)
      unfolding cxs_def nxs_def close'[symmetric]
      by (induction nsx xs' rule: list_induct2) auto
    have set_cys_nys: "set (map fst cys @ nys) = set nsy - set nsx"
      using assms(4)
      unfolding cys_def nys_def close'[symmetric]
      by (induction nsy ys' rule: list_induct2) auto
    have sort_sort_both_xs: "sort (sort (nsy @ map fst cxs) @ nxs) = both"
      apply (rule sorted_distinct_set_unique)
      using assms(3,5,6) close' set_cxs_nxs
      by (auto simp: both_def nxs_def cxs_def intro: distinct_map_fst_filter)
         (metis (no_types, lifting) distinct_set_zip)
    have sort_sort_both_ys: "sort (sort (nsx @ map fst cys) @ nys) = both"
      apply (rule sorted_distinct_set_unique)
      using assms(4,5,6) close' set_cys_nys
      by (auto simp: both_def nys_def cys_def intro: distinct_map_fst_filter)
         (metis (no_types, lifting) distinct_set_zip)
    have "map snd (merge (zip nsy ys') cxs) = map xf (sort (nsy @ map fst cxs))"
      using merge_map[where =xf and ?ns=nsy and ?ms="map fst cxs"] assms(6) aux
      unfolding xf_def(1)[symmetric] xf_def(2)
      by (auto simp: zip_map_fst_snd)
    then have zs_xf: "zs = fo_nmlz (X  Y) (map xf both)"
      using merge_map[where σ=xf and ?ns="sort (nsy @ map fst cxs)" and ?ms=nxs] aux
      by (fastforce simp: nall(4) xf_def(3) sort_sort_both_xs)
    have "map snd (merge (zip nsx xs') cys) = map xg (sort (nsx @ map fst cys))"
      using merge_map[where =xg and ?ns=nsx and ?ms="map fst cys"] assms(5) aux
      unfolding xg_def(1)[symmetric] xg_def(2)
      by (fastforce simp: zip_map_fst_snd)
    then have zs_xg: "zs = fo_nmlz (X  Y) (map xg both)"
      using merge_map[where σ=xg and ?ns="sort (nsx @ map fst cys)" and ?ms=nys] aux
      by (fastforce simp: nall(2) xg_def(3) sort_sort_both_ys)
    have proj_map: "proj_tuple ns (zip nsx xs') = map xg ns" "proj_tuple ns (zip nsy ys') = map xf ns"
      "proj_tuple ns (zip nsx xs) = map xsf ns" "proj_tuple ns (zip nsy ys) = map ysf ns"
      unfolding xf_def(2) xg_def(2) xsf_def ysf_def
      using assms(5,6,7,8) proj_tuple_map
      by auto
    have "ad_agr_list (X  Y) (map xg both) (map xf both)"
      using zs_xg zs_xf
      by (fastforce dest: fo_nmlz_eqD)
    then have "ad_agr_list (X  Y) (proj_tuple ns (zip nsx xs')) (proj_tuple ns (zip nsy ys'))"
      using assms(8)
      unfolding proj_map
      by (fastforce simp: both_def intro: ad_agr_list_subset[rotated])
    then have fo_nmlz_Un: "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs')) = fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys'))"
      by (auto intro: fo_nmlz_eqI)
    have "False"
      using assms(9)
    proof (rule disjE)
      assume c: "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs))  fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys))"
      have fo_nmlz_Int: "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs')) = fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys'))"
        using fo_nmlz_Un
        by (rule fo_nmlz_eqI[OF ad_agr_list_mono, rotated, OF fo_nmlz_eqD]) auto
      have proj_xs: "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs)) = fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs'))"
        unfolding proj_map
        apply (rule fo_nmlz_eqI)
        apply (rule ad_agr_list_mono[OF Int_lower1])
        apply (rule ad_agr_list_subset[OF _ close(2)[unfolded xsf_def xg_def(2)]])
        using assms(8)
        apply (auto)
        done
      have proj_ys: "fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys)) = fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys'))"
        unfolding proj_map
        apply (rule fo_nmlz_eqI)
        apply (rule ad_agr_list_mono[OF Int_lower2])
        apply (rule ad_agr_list_subset[OF _ close(4)[unfolded ysf_def xf_def(2)]])
        using assms(8)
        apply (auto)
        done
      show "False"
        using c fo_nmlz_Int proj_xs proj_ys
        by auto
    next
      assume c: "proj_tuple ns (zip nsx xs)  proj_tuple ns (zip nsy ys) 
      (xset (proj_tuple ns (zip nsx xs)). isl x)  (yset (proj_tuple ns (zip nsy ys)). isl y)"
      have "case x of Inl z  z  X  Y | Inr b  False" if "x  set (proj_tuple ns (zip nsx xs'))" for x
        using close(2) assms(1,8) c that ad_agr_list_fo_nmlzd_isl[where ?X=X and ?f=xsf and ?g=xg and ?xs=nsx]
        unfolding proj_map
        unfolding xsf_def xg_def(2)
        apply (auto simp: fo_nmlzd_def split: sum.splits)
         apply (metis image_eqI subsetD vimageI)
        apply (metis subsetD sum.disc(2))
        done
      then have E1: "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs')) = proj_tuple ns (zip nsx xs')"
        by (rule fo_nmlz_idem_isl)
      have "case y of Inl z  z  X  Y | Inr b  False" if "y  set (proj_tuple ns (zip nsy ys'))" for y
        using close(4) assms(2,8) c that ad_agr_list_fo_nmlzd_isl[where ?X=Y and ?f=ysf and ?g=xf and ?xs=nsy]
        unfolding proj_map
        unfolding ysf_def xf_def(2)
        apply (auto simp: fo_nmlzd_def split: sum.splits)
         apply (metis image_eqI subsetD vimageI)
        apply (metis subsetD sum.disc(2))
        done
      then have E2: "fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys')) = proj_tuple ns (zip nsy ys')"
        by (rule fo_nmlz_idem_isl)
      have ad: "ad_agr_list X (map xsf ns) (map xg ns)"
        using assms(8) close(2)[unfolded xsf_def xg_def(2)] ad_agr_list_subset
        by blast
      have "xset (proj_tuple ns (zip nsx xs)). isl x"
        using c
        by auto
      then have E3: "proj_tuple ns (zip nsx xs) = proj_tuple ns (zip nsx xs')"
        using assms(8)
        unfolding proj_map
        apply (induction ns)
        using ad_agr_list_fo_nmlzd_isl[OF close(2)[unfolded xsf_def xg_def(2)] assms(1)[unfolded xsf_def]]
        by auto
      have "xset (proj_tuple ns (zip nsy ys)). isl x"
        using c
        by auto
      then have E4: "proj_tuple ns (zip nsy ys) = proj_tuple ns (zip nsy ys')"
        using assms(8)
        unfolding proj_map
        apply (induction ns)
        using ad_agr_list_fo_nmlzd_isl[OF close(4)[unfolded ysf_def xf_def(2)] assms(2)[unfolded ysf_def]]
        by auto
      show "False"
        using c fo_nmlz_Un
        unfolding E1 E2 E3 E4
        by auto
    qed
  }
  then show ?thesis
    by (auto simp: eval_conj_tuple_def Let_def cxs_def[symmetric] nxs_def[symmetric] cys_def[symmetric] nys_def[symmetric]
        ext_tuple_eq[OF len_sort(1)] ext_tuple_eq[OF len_sort(2)])
qed

lemma eval_conj_tuple_close_empty:
  assumes "fo_nmlzd X xs" "fo_nmlzd Y ys"
    "length nsx = length xs" "length nsy = length ys"
    "sorted_distinct nsx" "sorted_distinct nsy"
    "ns = filter (λn. n  set nsy) nsx"
    "fo_nmlz (X  Y) (proj_tuple ns (zip nsx xs))  fo_nmlz (X  Y) (proj_tuple ns (zip nsy ys))"
    "xs'  ad_agr_close ((X  Y) - X) xs" "ys'  ad_agr_close ((X  Y) - Y) ys"
  shows "eval_conj_tuple (X  Y) nsx nsy xs' ys' = {}"
proof -
  have aux: "sorted_distinct ns" "set ns  set nsx  set nsy"
    using assms(5) sorted_filter[of id]
    by (auto simp: assms(7))
  show ?thesis
    using eval_conj_tuple_close_empty2[OF assms(1-6) aux] assms(8-)
    by auto
qed

lemma eval_conj_tuple_empty2:
  assumes "fo_nmlzd Z xs" "fo_nmlzd Z ys"
    "length nsx = length xs" "length nsy = length ys"
    "sorted_distinct nsx" "sorted_distinct nsy"
    "sorted_distinct ns" "set ns  set nsx  set nsy"
    "fo_nmlz Z (proj_tuple ns (zip nsx xs))  fo_nmlz Z (proj_tuple ns (zip nsy ys)) 
      (proj_tuple ns (zip nsx xs)  proj_tuple ns (zip nsy ys) 
      (x  set (proj_tuple ns (zip nsx xs)). isl x)  (y  set (proj_tuple ns (zip nsy ys)). isl y))"
  shows "eval_conj_tuple Z nsx nsy xs ys = {}"
  using eval_conj_tuple_close_empty2[OF assms(1-8)] assms(9) ad_agr_close_empty assms(1-2)
  by fastforce

lemma eval_conj_tuple_empty:
  assumes "fo_nmlzd Z xs" "fo_nmlzd Z ys"
    "length nsx = length xs" "length nsy = length ys"
    "sorted_distinct nsx" "sorted_distinct nsy"
    "ns = filter (λn. n  set nsy) nsx"
    "fo_nmlz Z (proj_tuple ns (zip nsx xs))  fo_nmlz Z (proj_tuple ns (zip nsy ys))"
  shows "eval_conj_tuple Z nsx nsy xs ys = {}"
proof -
  have aux: "sorted_distinct ns" "set ns  set nsx  set nsy"
    using assms(5) sorted_filter[of id]
    by (auto simp: assms(7))
  show ?thesis
    using eval_conj_tuple_empty2[OF assms(1-6) aux] assms(8-)
    by auto
qed

lemma nall_tuples_rec_filter:
  assumes "xs  nall_tuples_rec AD n (length xs)" "ys = filter (λx. ¬isl x) xs"
  shows "ys  nall_tuples_rec {} n (length ys)"
  using assms
proof (induction xs arbitrary: n ys)
  case (Cons x xs)
  then show ?case
  proof (cases x)
    case (Inr b)
    have b_le_i: "b  n"
      using Cons(2)
      by (auto simp: Inr)
    obtain zs where ys_def: "ys = Inr b # zs" "zs = filter (λx. ¬ isl x) xs"
      using Cons(3)
      by (auto simp: Inr)
    show ?thesis
    proof (cases "b < n")
      case True
      then show ?thesis
        using Cons(1)[OF _ ys_def(2), of n] Cons(2)
        by (auto simp: Inr ys_def(1))
    next
      case False
      then show ?thesis
        using Cons(1)[OF _ ys_def(2), of "Suc n"] Cons(2)
        by (auto simp: Inr ys_def(1))
    qed
  qed auto
qed auto

lemma nall_tuples_rec_filter_rev:
  assumes "ys  nall_tuples_rec {} n (length ys)" "ys = filter (λx. ¬isl x) xs"
    "Inl -` set xs  AD"
  shows "xs  nall_tuples_rec AD n (length xs)"
  using assms
proof (induction xs arbitrary: n ys)
  case (Cons x xs)
  show ?case
  proof (cases x)
    case (Inl a)
    have a_AD: "a  AD"
      using Cons(4)
      by (auto simp: Inl)
    show ?thesis
      using Cons(1)[OF Cons(2)] Cons(3,4) a_AD
      by (auto simp: Inl)
  next
    case (Inr b)
    obtain zs where ys_def: "ys = Inr b # zs" "zs = filter (λx. ¬ isl x) xs"
      using Cons(3)
      by (auto simp: Inr)
    show ?thesis
      using Cons(1)[OF _ ys_def(2)] Cons(2,4)
      by (fastforce simp: ys_def(1) Inr)
  qed
qed auto

lemma eval_conj_set_aux:
  fixes AD :: "'a set"
  assumes nsφ'_def: "nsφ' = filter (λn. n  set nsφ) nsψ"
    and nsψ'_def: "nsψ' = filter (λn. n  set nsψ) nsφ"
    and Xφ_def: " = fo_nmlz AD ` proj_vals  nsφ"
    and Xψ_def: " = fo_nmlz AD ` proj_vals  nsψ"
    and distinct: "sorted_distinct nsφ" "sorted_distinct nsψ"
    and cxs_def: "cxs = filter (λ(n, x). n  set nsψ  isl x) (zip nsφ xs)"
    and nxs_def: "nxs = map fst (filter (λ(n, x). n  set nsψ  ¬isl x) (zip nsφ xs))"
    and cys_def: "cys = filter (λ(n, y). n  set nsφ  isl y) (zip nsψ ys)"
    and nys_def: "nys = map fst (filter (λ(n, y). n  set nsφ  ¬isl y) (zip nsψ ys))"
    and xs_ys_def: "xs  " "ys  "
    and σxs_def: "xs = map σxs nsφ" "fsφ = map σxs nsφ'"
    and σys_def: "ys = map σys nsψ" "fsψ = map σys nsψ'"
    and fsφ_def: "fsφ  nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
    and fsψ_def: "fsψ  nall_tuples_rec AD (card (Inr -` set ys)) (length nsψ')"
    and ad_agr: "ad_agr_list AD (map σys (sort (nsψ @ nsψ'))) (map σxs (sort (nsφ @ nsφ')))"
  shows
    "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
      map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
    (zip nys (map σxs nys)))" and
    "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))" and
    "map σxs nys 
      nall_tuples_rec {} (card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
proof -
  have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
    using xs_ys_def
    by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
  have len_fsφ: "length fsφ = length nsφ'"
    using σxs_def(2)
    by auto
  have set_nsφ': "set nsφ' = set (map fst cys)  set nys"
    using len_xs_ys(2)
    by (auto simp: nsφ'_def cys_def nys_def dest: set_zip_leftD)
       (metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
        prod.sel(1) split_conv)
  have "x. Inl x  set xs  set fsφ  x  AD" "y. Inl y  set ys  set fsψ  y  AD"
    using xs_ys_def fo_nmlz_set[of AD] nall_tuples_rec_Inl[OF fsφ_def]
      nall_tuples_rec_Inl[OF fsψ_def]
    by (auto simp: Xφ_def Xψ_def)
  then have Inl_xs_ys:
    "n. n  set nsφ  set nsψ  isl (σxs n)  (x. σxs n = Inl x  x  AD)"
    "n. n  set nsφ  set nsψ  isl (σys n)  (y. σys n = Inl y  y  AD)"
    unfolding σxs_def σys_def nsφ'_def nsψ'_def
    by (auto simp: isl_def) (smt imageI mem_Collect_eq)+
  have sort_sort: "sort (nsφ @ nsφ') = sort (nsψ @ nsψ')"
    apply (rule sorted_distinct_set_unique)
    using distinct
    by (auto simp: nsφ'_def nsψ'_def)
  have isl_iff: "n. n  set nsφ'  set nsψ'  isl (σxs n)  isl (σys n)  σxs n = σys n"
    using ad_agr Inl_xs_ys
    unfolding sort_sort[symmetric] ad_agr_list_link[symmetric]
    unfolding nsφ'_def nsψ'_def
    apply (auto simp: ad_agr_sets_def)
    unfolding ad_equiv_pair.simps
       apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
      apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
     apply (metis (no_types, lifting) UnI1 image_eqI)+
    done
  have "n. n  set (map fst cys)  isl (σxs n)"
    "n. n  set (map fst cxs)  isl (σys n)"
    using isl_iff
    by (auto simp: cys_def nsφ'_def σys_def(1) cxs_def nsψ'_def σxs_def(1) set_zip)
       (metis nth_mem)+
  then have Inr_sort: "Inr -` set (map σxs (sort (nsφ @ map fst cys))) = Inr -` set xs"
    unfolding σxs_def(1) σys_def(1)
    by (auto simp: zip_map_fst_snd dest: set_zip_leftD)
       (metis fst_conv image_iff sum.disc(2))+
  have map_nys: "map σxs nys = filter (λx. ¬isl x) fsφ"
    using isl_iff[unfolded nsφ'_def]
    unfolding nys_def σys_def(1) σxs_def(2) nsφ'_def filter_map
    by (induction nsψ) force+
  have map_nys_in_nall: "map σxs nys  nall_tuples_rec {} (card (Inr -` set xs)) (length nys)"
    using nall_tuples_rec_filter[OF fsφ_def[folded len_fsφ] map_nys]
    by auto
  have map_cys: "map snd cys = map σxs (map fst cys)"
    using isl_iff
    by (auto simp: cys_def set_zip nsφ'_def σys_def(1)) (metis nth_mem)
  show merge_xs_cys: "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
    apply (subst zip_map_fst_snd[of cys, symmetric])
    unfolding σxs_def(1) map_cys
    apply (rule merge_map)
    using distinct
    by (auto simp: cys_def σys_def sorted_filter distinct_map_filter map_fst_zip_take)
  have merge_nys_prems: "sorted_distinct (sort (nsφ @ map fst cys))" "sorted_distinct nys"
    "set (sort (nsφ @ map fst cys))  set nys = {}"
    using distinct len_xs_ys(2)
    by (auto simp: cys_def nys_def distinct_map_filter sorted_filter)
       (metis eq_key_imp_eq_value map_fst_zip)
  have map_snd_merge_nys: "map σxs (sort (sort (nsφ @ map fst cys) @ nys)) =
    map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
      (zip nys (map σxs nys)))"
    by (rule merge_map[OF merge_nys_prems, symmetric])
  have sort_sort_nys: "sort (sort (nsφ @ map fst cys) @ nys) = sort (nsφ @ nsφ')"
    apply (rule sorted_distinct_set_unique)
    using distinct merge_nys_prems set_nsφ'
    by (auto simp: cys_def nys_def nsφ'_def dest: set_zip_leftD)
  have map_merge_fsφ: "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) = map σxs (sort (nsφ @ nsφ'))"
    unfolding σxs_def
    apply (rule merge_map)
    using distinct sorted_filter[of id]
    by (auto simp: nsφ'_def)
  show "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
    map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
    (zip nys (map σxs nys)))"
    unfolding map_merge_fsφ map_snd_merge_nys[unfolded sort_sort_nys]
    by auto
  show "map σxs nys  nall_tuples_rec {}
    (card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
    using map_nys_in_nall
    unfolding Inr_sort[symmetric]
    by auto
qed

lemma eval_conj_set_aux':
  fixes AD :: "'a set"
  assumes nsφ'_def: "nsφ' = filter (λn. n  set nsφ) nsψ"
    and nsψ'_def: "nsψ' = filter (λn. n  set nsψ) nsφ"
    and Xφ_def: " = fo_nmlz AD ` proj_vals  nsφ"
    and Xψ_def: " = fo_nmlz AD ` proj_vals  nsψ"
    and distinct: "sorted_distinct nsφ" "sorted_distinct nsψ"
    and cxs_def: "cxs = filter (λ(n, x). n  set nsψ  isl x) (zip nsφ xs)"
    and nxs_def: "nxs = map fst (filter (λ(n, x). n  set nsψ  ¬isl x) (zip nsφ xs))"
    and cys_def: "cys = filter (λ(n, y). n  set nsφ  isl y) (zip nsψ ys)"
    and nys_def: "nys = map fst (filter (λ(n, y). n  set nsφ  ¬isl y) (zip nsψ ys))"
    and xs_ys_def: "xs  " "ys  "
    and σxs_def: "xs = map σxs nsφ" "map snd cys = map σxs (map fst cys)"
      "ysψ = map σxs nys"
    and σys_def: "ys = map σys nsψ" "map snd cxs = map σys (map fst cxs)"
      "xsφ = map σys nxs"
    and fsφ_def: "fsφ = map σxs nsφ'"
    and fsψ_def: "fsψ = map σys nsψ'"
    and ysψ_def: "map σxs nys  nall_tuples_rec {}
      (card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
    and Inl_set_AD: "Inl -` (set (map snd cxs)  set xsφ)  AD"
      "Inl -` (set (map snd cys)  set ysψ)  AD"
    and ad_agr: "ad_agr_list AD (map σys (sort (nsψ @ nsψ'))) (map σxs (sort (nsφ @ nsφ')))"
  shows
    "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
      map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
      (zip nys (map σxs nys)))" and
    "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
    "fsφ  nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
proof -
  have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
    using xs_ys_def
    by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
  have len_fsφ: "length fsφ = length nsφ'"
    by (auto simp: fsφ_def)
  have set_ns: "set nsφ' = set (map fst cys)  set nys"
    "set nsψ' = set (map fst cxs)  set nxs"
    using len_xs_ys
    by (auto simp: nsφ'_def cys_def nys_def nsψ'_def cxs_def nxs_def dest: set_zip_leftD)
       (metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
        prod.sel(1) split_conv)+
  then have set_σ_ns: "σxs ` set nsψ'  σxs ` set nsφ'  set xs  set (map snd cys)  set ysψ"
    "σys ` set nsφ'  σys ` set nsψ'  set ys  set (map snd cxs)  set xsφ"
    by (auto simp: σxs_def σys_def nsφ'_def nsψ'_def)
  have Inl_sub_AD: "x. Inl x  set xs  set (map snd cys)  set ysψ  x  AD"
    "y. Inl y  set ys  set (map snd cxs)  set xsφ  y  AD"
    using xs_ys_def fo_nmlz_set[of AD] Inl_set_AD
    by (auto simp: Xφ_def Xψ_def) (metis in_set_zipE set_map subset_eq vimageI zip_map_fst_snd)+
  then have Inl_xs_ys:
    "n. n  set nsφ'  set nsψ'  isl (σxs n)  (x. σxs n = Inl x  x  AD)"
    "n. n  set nsφ'  set nsψ'  isl (σys n)  (y. σys n = Inl y  y  AD)"
    using set_σ_ns
    by (auto simp: isl_def rev_image_eqI)
  have sort_sort: "sort (nsφ @ nsφ') = sort (nsψ @ nsψ')"
    apply (rule sorted_distinct_set_unique)
    using distinct
    by (auto simp: nsφ'_def nsψ'_def)
  have isl_iff: "n. n  set nsφ'  set nsψ'  isl (σxs n)  isl (σys n)  σxs n = σys n"
    using ad_agr Inl_xs_ys
    unfolding sort_sort[symmetric] ad_agr_list_link[symmetric]
    unfolding nsφ'_def nsψ'_def
    apply (auto simp: ad_agr_sets_def)
    unfolding ad_equiv_pair.simps
       apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
      apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
     apply (metis (no_types, lifting) UnI1 image_eqI)+
    done
  have "n. n  set (map fst cys)  isl (σxs n)"
    "n. n  set (map fst cxs)  isl (σys n)"
    using isl_iff
    by (auto simp: cys_def nsφ'_def σys_def(1) cxs_def nsψ'_def σxs_def(1) set_zip)
       (metis nth_mem)+
  then have Inr_sort: "Inr -` set (map σxs (sort (nsφ @ map fst cys))) = Inr -` set xs"
    unfolding σxs_def(1) σys_def(1)
    by (auto simp: zip_map_fst_snd dest: set_zip_leftD)
       (metis fst_conv image_iff sum.disc(2))+
  have map_nys: "map σxs nys = filter (λx. ¬isl x) fsφ"
    using isl_iff[unfolded nsφ'_def]
    unfolding nys_def σys_def(1) fsφ_def nsφ'_def
    by (induction nsψ) force+
  have map_cys: "map snd cys = map σxs (map fst cys)"
    using isl_iff
    by (auto simp: cys_def set_zip nsφ'_def σys_def(1)) (metis nth_mem)
  show merge_xs_cys: "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
    apply (subst zip_map_fst_snd[of cys, symmetric])
    unfolding σxs_def(1) map_cys
    apply (rule merge_map)
    using distinct
    by (auto simp: cys_def σys_def sorted_filter distinct_map_filter map_fst_zip_take)
  have merge_nys_prems: "sorted_distinct (sort (nsφ @ map fst cys))" "sorted_distinct nys"
    "set (sort (nsφ @ map fst cys))  set nys = {}"
    using distinct len_xs_ys(2)
    by (auto simp: cys_def nys_def distinct_map_filter sorted_filter)
       (metis eq_key_imp_eq_value map_fst_zip)
  have map_snd_merge_nys: "map σxs (sort (sort (nsφ @ map fst cys) @ nys)) =
    map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
      (zip nys (map σxs nys)))"
    by (rule merge_map[OF merge_nys_prems, symmetric])
  have sort_sort_nys: "sort (sort (nsφ @ map fst cys) @ nys) = sort (nsφ @ nsφ')"
    apply (rule sorted_distinct_set_unique)
    using distinct merge_nys_prems set_ns
    by (auto simp: cys_def nys_def nsφ'_def dest: set_zip_leftD)
  have map_merge_fsφ: "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) = map σxs (sort (nsφ @ nsφ'))"
    unfolding σxs_def fsφ_def
    apply (rule merge_map)
    using distinct sorted_filter[of id]
    by (auto simp: nsφ'_def)
  show "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
    map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
    (zip nys (map σxs nys)))"
    unfolding map_merge_fsφ map_snd_merge_nys[unfolded sort_sort_nys]
    by auto
  have "Inl -` set fsφ  AD"
    using Inl_sub_AD(1) set_σ_ns
    by (force simp: fsφ_def)
  then show "fsφ  nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
    unfolding len_fsφ[symmetric]
    using nall_tuples_rec_filter_rev[OF _ map_nys] ysψ_def[unfolded Inr_sort]
    by auto
qed

lemma eval_conj_set_correct:
  assumes nsφ'_def: "nsφ' = filter (λn. n  set nsφ) nsψ"
    and nsψ'_def: "nsψ' = filter (λn. n  set nsψ) nsφ"
    and Xφ_def: " = fo_nmlz AD ` proj_vals  nsφ"
    and Xψ_def: " = fo_nmlz AD ` proj_vals  nsψ"
    and distinct: "sorted_distinct nsφ" "sorted_distinct nsψ"
  shows "eval_conj_set AD nsφ  nsψ  = ext_tuple_set AD nsφ nsφ'   ext_tuple_set AD nsψ nsψ' "
proof -
  have aux: "ext_tuple_set AD nsφ nsφ'  = fo_nmlz AD ` (ext_tuple AD nsφ nsφ' ` )"
    "ext_tuple_set AD nsψ nsψ'  = fo_nmlz AD ` (ext_tuple AD nsψ nsψ' ` )"
    by (auto simp: ext_tuple_set_def ext_tuple_def Xφ_def Xψ_def image_iff fo_nmlz_idem[OF fo_nmlz_sound])
  show ?thesis
    unfolding aux
  proof (rule set_eqI, rule iffI)
    fix vs
    assume "vs  fo_nmlz AD ` (ext_tuple AD nsφ nsφ' ` ) 
    fo_nmlz AD ` (ext_tuple AD nsψ nsψ' ` )"
    then obtain xs ys where xs_ys_def: "xs  " "vs  fo_nmlz AD ` ext_tuple AD nsφ nsφ' xs"
      "ys  " "vs  fo_nmlz AD ` ext_tuple AD nsψ nsψ' ys"
      by auto
    have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
      using xs_ys_def(1,3)
      by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
    obtain fsφ where fsφ_def: "vs = fo_nmlz AD (map snd (merge (zip nsφ xs) (zip nsφ' fsφ)))"
      "fsφ  nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
      using xs_ys_def(1,2)
      by (auto simp: Xφ_def proj_vals_def ext_tuple_def split: if_splits)
        (metis fo_nmlz_map length_map map_snd_zip)
    obtain fsψ where fsψ_def: "vs = fo_nmlz AD (map snd (merge (zip nsψ ys) (zip nsψ' fsψ)))"
      "fsψ  nall_tuples_rec AD (card (Inr -` set ys)) (length nsψ')"
      using xs_ys_def(3,4)
      by (auto simp: Xψ_def proj_vals_def ext_tuple_def split: if_splits)
        (metis fo_nmlz_map length_map map_snd_zip)
    note len_fsφ = nall_tuples_rec_length[OF fsφ_def(2)]
    note len_fsψ = nall_tuples_rec_length[OF fsψ_def(2)]
    obtain σxs where σxs_def: "xs = map σxs nsφ" "fsφ = map σxs nsφ'"
      using exists_map[of "nsφ @ nsφ'" "xs @ fsφ"] len_xs_ys(1) len_fsφ distinct
      by (auto simp: nsφ'_def)
    obtain σys where σys_def: "ys = map σys nsψ" "fsψ = map σys nsψ'"
      using exists_map[of "nsψ @ nsψ'" "ys @ fsψ"] len_xs_ys(2) len_fsψ distinct
      by (auto simp: nsψ'_def)
    have map_merge_fsφ: "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) = map σxs (sort (nsφ @ nsφ'))"
      unfolding σxs_def
      apply (rule merge_map)
      using distinct sorted_filter[of id]
      by (auto simp: nsφ'_def)
    have map_merge_fsψ: "map snd (merge (zip nsψ ys) (zip nsψ' fsψ)) = map σys (sort (nsψ @ nsψ'))"
      unfolding σys_def
      apply (rule merge_map)
      using distinct sorted_filter[of id]
      by (auto simp: nsψ'_def)
    define cxs where "cxs = filter (λ(n, x). n  set nsψ  isl x) (zip nsφ xs)"
    define nxs where "nxs = map fst (filter (λ(n, x). n  set nsψ  ¬isl x) (zip nsφ xs))"
    define cys where "cys = filter (λ(n, y). n  set nsφ  isl y) (zip nsψ ys)"
    define nys where "nys = map fst (filter (λ(n, y). n  set nsφ  ¬isl y) (zip nsψ ys))"
    note ad_agr1 = fo_nmlz_eqD[OF trans[OF fsφ_def(1)[symmetric] fsψ_def(1)],
        unfolded map_merge_fsφ map_merge_fsψ]
    note ad_agr2 = ad_agr_list_comm[OF ad_agr1]
    obtain σxs where aux1:
      "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
      map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
      (zip nys (map σxs nys)))"
      "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
      "map σxs nys  nall_tuples_rec {}
      (card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
      using eval_conj_set_aux[OF nsφ'_def nsψ'_def Xφ_def Xψ_def distinct cxs_def nxs_def
          cys_def nys_def xs_ys_def(1,3) σxs_def σys_def fsφ_def(2) fsψ_def(2) ad_agr2]
      by blast
    obtain σys where aux2:
      "map snd (merge (zip nsψ ys) (zip nsψ' fsψ)) =
      map snd (merge (zip (sort (nsψ @ map fst cxs)) (map σys (sort (nsψ @ map fst cxs))))
      (zip nxs (map σys nxs)))"
      "map snd (merge (zip nsψ ys) cxs) = map σys (sort (nsψ @ map fst cxs))"
      "map σys nxs  nall_tuples_rec {}
      (card (Inr -` set (map σys (sort (nsψ @ map fst cxs))))) (length nxs)"
      using eval_conj_set_aux[OF nsψ'_def nsφ'_def Xψ_def Xφ_def distinct(2,1) cys_def nys_def
          cxs_def nxs_def xs_ys_def(3,1) σys_def σxs_def fsψ_def(2) fsφ_def(2) ad_agr1]
      by blast
    have vs_ext_nys: "vs  fo_nmlz AD ` ext_tuple {} (sort (nsφ @ map fst cys)) nys
    (map snd (merge (zip nsφ xs) cys))"
      using aux1(3)
      unfolding fsφ_def(1) aux1(1)
      by (simp add: ext_tuple_eq[OF length_map[symmetric]] aux1(2))
    have vs_ext_nxs: "vs  fo_nmlz AD ` ext_tuple {} (sort (nsψ @ map fst cxs)) nxs
    (map snd (merge (zip nsψ ys) cxs))"
      using aux2(3)
      unfolding fsψ_def(1) aux2(1)
      by (simp add: ext_tuple_eq[OF length_map[symmetric]] aux2(2))
    show "vs  eval_conj_set AD nsφ  nsψ "
      using vs_ext_nys vs_ext_nxs xs_ys_def(1,3)
      by (auto simp: eval_conj_set_def eval_conj_tuple_def nys_def cys_def nxs_def cxs_def Let_def)
  next
    fix vs
    assume "vs  eval_conj_set AD nsφ  nsψ "
    then obtain xs ys cxs nxs cys nys where
      cxs_def: "cxs = filter (λ(n, x). n  set nsψ  isl x) (zip nsφ xs)" and
      nxs_def: "nxs = map fst (filter (λ(n, x). n  set nsψ  ¬isl x) (zip nsφ xs))" and
      cys_def: "cys = filter (λ(n, y). n  set nsφ  isl y) (zip nsψ ys)" and
      nys_def: "nys = map fst (filter (λ(n, y). n  set nsφ  ¬isl y) (zip nsψ ys))" and
      xs_def: "xs  " "vs  fo_nmlz AD ` ext_tuple {} (sort (nsφ @ map fst cys)) nys
      (map snd (merge (zip nsφ xs) cys))" and
      ys_def: "ys  " "vs  fo_nmlz AD ` ext_tuple {} (sort (nsψ @ map fst cxs)) nxs
      (map snd (merge (zip nsψ ys) cxs))"
      by (auto simp: eval_conj_set_def eval_conj_tuple_def Let_def) (metis (no_types, lifting) image_eqI)
    have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
      using xs_def(1) ys_def(1)
      by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
    have len_merge_cys: "length (map snd (merge (zip nsφ xs) cys)) =
    length (sort (nsφ @ map fst cys))"
      using merge_length[of "zip nsφ xs" cys] len_xs_ys
      by auto
    obtain ysψ where ysψ_def: "vs = fo_nmlz AD (map snd (merge (zip (sort (nsφ @ map fst cys))
    (map snd (merge (zip nsφ xs) cys))) (zip nys ysψ)))"
      "ysψ  nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsφ xs) cys))))
      (length nys)"
      using xs_def(2)
      unfolding ext_tuple_eq[OF len_merge_cys[symmetric]]
      by auto
    have distinct_nys: "distinct (nsφ @ map fst cys @ nys)"
      using distinct len_xs_ys
      by (auto simp: cys_def nys_def sorted_filter distinct_map_filter)
        (metis eq_key_imp_eq_value map_fst_zip)
    obtain σxs where σxs_def: "xs = map σxs nsφ" "map snd cys = map σxs (map fst cys)"
      "ysψ = map σxs nys"
      using exists_map[OF _ distinct_nys, of "xs @ map snd cys @ ysψ"] len_xs_ys(1)
        nall_tuples_rec_length[OF ysψ_def(2)]
      by (auto simp: nsφ'_def)
    have len_merge_cxs: "length (map snd (merge (zip nsψ ys) cxs)) =
    length (sort (nsψ @ map fst cxs))"
      using merge_length[of "zip nsψ ys"] len_xs_ys
      by auto
    obtain xsφ where xsφ_def: "vs = fo_nmlz AD (map snd (merge (zip (sort (nsψ @ map fst cxs))
    (map snd (merge (zip nsψ ys) cxs))) (zip nxs xsφ)))"
      "xsφ  nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsψ ys) cxs))))
      (length nxs)"
      using ys_def(2)
      unfolding ext_tuple_eq[OF len_merge_cxs[symmetric]]
      by auto
    have distinct_nxs: "distinct (nsψ @ map fst cxs @ nxs)"
      using distinct len_xs_ys(1)
      by (auto simp: cxs_def nxs_def sorted_filter distinct_map_filter)
        (metis eq_key_imp_eq_value map_fst_zip)
    obtain σys where σys_def: "ys = map σys nsψ" "map snd cxs = map σys (map fst cxs)"
      "xsφ = map σys nxs"
      using exists_map[OF _ distinct_nxs, of "ys @ map snd cxs @ xsφ"] len_xs_ys(2)
        nall_tuples_rec_length[OF xsφ_def(2)]
      by (auto simp: nsψ'_def)
    have sd_cs_ns: "sorted_distinct (map fst cxs)" "sorted_distinct nxs"
      "sorted_distinct (map fst cys)" "sorted_distinct nys"
      "sorted_distinct (sort (nsψ @ map fst cxs))"
      "sorted_distinct (sort (nsφ @ map fst cys))"
      using distinct len_xs_ys
      by (auto simp: cxs_def nxs_def cys_def nys_def sorted_filter distinct_map_filter)
    have set_cs_ns_disj: "set (map fst cxs)  set nxs = {}" "set (map fst cys)  set nys = {}"
      "set (sort (nsφ @ map fst cys))  set nys = {}"
      "set (sort (nsψ @ map fst cxs))  set nxs = {}"
      using distinct nth_eq_iff_index_eq
      by (auto simp: cxs_def nxs_def cys_def nys_def set_zip) blast+
    have merge_sort_cxs: "map snd (merge (zip nsψ ys) cxs) = map σys (sort (nsψ @ map fst cxs))"
      unfolding σys_def(1)
      apply (subst zip_map_fst_snd[of cxs, symmetric])
      unfolding σys_def(2)
      apply (rule merge_map)
      using distinct(2) sd_cs_ns
      by (auto simp: cxs_def)
    have merge_sort_cys: "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
      unfolding σxs_def(1)
      apply (subst zip_map_fst_snd[of cys, symmetric])
      unfolding σxs_def(2)
      apply (rule merge_map)
      using distinct(1) sd_cs_ns
      by (auto simp: cys_def)
    have set_nsφ': "set nsφ' = set (map fst cys)  set nys"
      using len_xs_ys(2)
      by (auto simp: nsφ'_def cys_def nys_def dest: set_zip_leftD)
        (metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
          prod.sel(1) split_conv)
    have sort_sort_nys: "sort (sort (nsφ @ map fst cys) @ nys) = sort (nsφ @ nsφ')"
      apply (rule sorted_distinct_set_unique)
      using distinct sd_cs_ns set_cs_ns_disj set_nsφ'
      by (auto simp: cys_def nys_def nsφ'_def dest: set_zip_leftD)
    have set_nsψ': "set nsψ' = set (map fst cxs)  set nxs"
      using len_xs_ys(1)
      by (auto simp: nsψ'_def cxs_def nxs_def dest: set_zip_leftD)
        (metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
          prod.sel(1) split_conv)
    have sort_sort_nxs: "sort (sort (nsψ @ map fst cxs) @ nxs) = sort (nsψ @ nsψ')"
      apply (rule sorted_distinct_set_unique)
      using distinct sd_cs_ns set_cs_ns_disj set_nsψ'
      by (auto simp: cxs_def nxs_def nsψ'_def dest: set_zip_leftD)
    have ad_agr1: "ad_agr_list AD (map σys (sort (nsψ @ nsψ'))) (map σxs (sort (nsφ @ nsφ')))"
      using fo_nmlz_eqD[OF trans[OF xsφ_def(1)[symmetric] ysψ_def(1)]]
      unfolding σxs_def(3) σys_def(3) merge_sort_cxs merge_sort_cys
      unfolding merge_map[OF sd_cs_ns(5) sd_cs_ns(2) set_cs_ns_disj(4)]
      unfolding merge_map[OF sd_cs_ns(6) sd_cs_ns(4) set_cs_ns_disj(3)]
      unfolding sort_sort_nxs sort_sort_nys .
    note ad_agr2 = ad_agr_list_comm[OF ad_agr1]
    have Inl_set_AD: "Inl -` (set (map snd cxs)  set xsφ)  AD"
      "Inl -` (set (map snd cys)  set ysψ)  AD"
      using xs_def(1) nall_tuples_rec_Inl[OF xsφ_def(2)] ys_def(1)
        nall_tuples_rec_Inl[OF ysψ_def(2)] fo_nmlz_set[of AD]
      by (fastforce simp: cxs_def Xφ_def cys_def Xψ_def dest!: set_zip_rightD)+
    note aux1 = eval_conj_set_aux'[OF nsφ'_def nsψ'_def Xφ_def Xψ_def distinct cxs_def nxs_def
        cys_def nys_def xs_def(1) ys_def(1) σxs_def σys_def refl refl
        ysψ_def(2)[unfolded σxs_def(3) merge_sort_cys] Inl_set_AD ad_agr1]
    note aux2 = eval_conj_set_aux'[OF nsψ'_def nsφ'_def Xψ_def Xφ_def distinct(2,1) cys_def nys_def
        cxs_def nxs_def ys_def(1) xs_def(1) σys_def σxs_def refl refl
        xsφ_def(2)[unfolded σys_def(3) merge_sort_cxs] Inl_set_AD(2,1) ad_agr2]
    show "vs  fo_nmlz AD ` (ext_tuple AD nsφ nsφ' ` ) 
    fo_nmlz AD ` (ext_tuple AD nsψ nsψ' ` )"
      using xs_def(1) ys_def(1) ysψ_def(1) xsφ_def(1) aux1(3) aux2(3)
        ext_tuple_eq[OF len_xs_ys(1)[symmetric], of AD nsφ']
        ext_tuple_eq[OF len_xs_ys(2)[symmetric], of AD nsψ']
      unfolding aux1(2) aux2(2) σys_def(3) σxs_def(3) aux1(1)[symmetric] aux2(1)[symmetric]
      by blast
  qed
qed

lemma esat_exists_not_fv: "n  fv_fo_fmla φ  X  {} 
  esat (Exists n φ) I σ X  esat φ I σ X"
proof (rule iffI)
  assume assms: "n  fv_fo_fmla φ" "esat (Exists n φ) I σ X"
  then obtain x where "esat φ I (σ(n := x)) X"
    by auto
  with assms(1) show "esat φ I σ X"
    using esat_fv_cong[of φ σ "σ(n := x)"] by fastforce
next
  assume assms: "n  fv_fo_fmla φ" "X  {}" "esat φ I σ X"
  from assms(2) obtain x where x_def: "x  X"
    by auto
  with assms(1,3) have "esat φ I (σ(n := x)) X"
    using esat_fv_cong[of φ σ "σ(n := x)"] by fastforce
  with x_def show "esat (Exists n φ) I σ X"
    by auto
qed

lemma esat_forall_not_fv: "n  fv_fo_fmla φ  X  {} 
  esat (Forall n φ) I σ X  esat φ I σ X"
  using esat_exists_not_fv[of n "Neg φ" X I σ]
  by auto

lemma proj_sat_vals: "proj_sat φ I =
  proj_vals {σ. sat φ I σ} (fv_fo_fmla_list φ)"
  by (auto simp: proj_sat_def proj_vals_def)

lemma fv_fo_fmla_list_Pred: "remdups_adj (sort (fv_fo_terms_list ts)) = fv_fo_terms_list ts"
  unfolding fv_fo_terms_list_def
  by (simp add: distinct_remdups_adj_sort remdups_adj_distinct sorted_sort_id)

lemma ad_agr_list_fv_list': "(set (map set_fo_term ts))  X 
  ad_agr_list X (map σ (fv_fo_terms_list ts)) (map τ (fv_fo_terms_list ts)) 
  ad_agr_list X (σ ⊙e ts) (τ ⊙e ts)"
proof (induction ts)
  case (Cons t ts)
  have IH: "ad_agr_list X (σ ⊙e ts) (τ ⊙e ts)"
    using Cons
    by (auto simp: ad_agr_list_def ad_equiv_list_link[symmetric] fv_fo_terms_set_list
        fv_fo_terms_set_def sp_equiv_list_link sp_equiv_def pairwise_def) blast+
  have ad_equiv: "i. i  fv_fo_term_set t  (fv_fo_term_set ` set ts) 
    ad_equiv_pair X (σ i, τ i)"
    using Cons(3)
    by (auto simp: ad_agr_list_def ad_equiv_list_link[symmetric] fv_fo_terms_set_list
        fv_fo_terms_set_def)
  have sp_equiv: "i j. i  fv_fo_term_set t  (fv_fo_term_set ` set ts) 
    j  fv_fo_term_set t  (fv_fo_term_set ` set ts)  sp_equiv_pair (σ i, τ i) (σ j, τ j)"
    using Cons(3)
    by (auto simp: ad_agr_list_def sp_equiv_list_link fv_fo_terms_set_list
        fv_fo_terms_set_def sp_equiv_def pairwise_def)
  show ?case
  proof (cases t)
    case (Const c)
    show ?thesis
      using IH Cons(2)
      apply (auto simp: ad_agr_list_def eval_eterms_def ad_equiv_list_def Const
          sp_equiv_list_def pairwise_def set_zip)
      unfolding ad_equiv_pair.simps
          apply (metis nth_map rev_image_eqI)+
      done
  next
    case (Var n)
    note t_def = Var
    have ad: "ad_equiv_pair X (σ n, τ n)"
      using ad_equiv
      by (auto simp: Var)
    have "y. y  set (zip (map ((⋅e) σ) ts) (map ((⋅e) τ) ts))  y  (σ n, τ n) 
      sp_equiv_pair (σ n, τ n) y  sp_equiv_pair y (σ n, τ n)"
    proof -
      fix y
      assume "y  set (zip (map ((⋅e) σ) ts) (map ((⋅e) τ) ts))"
      then obtain t' where y_def: "t'  set ts" "y = (σ ⋅e t', τ ⋅e t')"
        using nth_mem
        by (auto simp: set_zip) blast
      show "sp_equiv_pair (σ n, τ n) y  sp_equiv_pair y (σ n, τ n)"
      proof (cases t')
        case (Const c')
        have c'_X: "c'  X"
          using Cons(2) y_def(1)
          by (auto simp: Const) (meson SUP_le_iff fo_term.set_intros subsetD)
        then show ?thesis
          using ad_equiv[of n] y_def(1)
          unfolding y_def
          apply (auto simp: Const t_def)
          unfolding ad_equiv_pair.simps
             apply fastforce+
           apply force
          apply (metis rev_image_eqI)
          done
      next
        case (Var n')
        show ?thesis
          using sp_equiv[of n n'] y_def(1)
          unfolding y_def
          by (fastforce simp: t_def Var)
      qed
    qed
    then show ?thesis
      using IH Cons(3)
      by (auto simp: ad_agr_list_def eval_eterms_def ad_equiv_list_def Var ad sp_equiv_list_def
          pairwise_insert)
  qed
qed (auto simp: eval_eterms_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def)

lemma ext_tuple_ad_agr_close:
  assumes Sφ_def: "  {σ. esat φ I σ UNIV}"
    and AD_sub: "act_edom φ I  ADφ" "ADφ  AD"
    and Xφ_def: " = fo_nmlz ADφ ` proj_vals  (fv_fo_fmla_list φ)"
    and nsφ'_def: "nsφ' = filter (λn. n  fv_fo_fmla φ) nsψ"
    and sd_nsψ: "sorted_distinct nsψ"
    and fv_Un: "fv_fo_fmla ψ = fv_fo_fmla φ  set nsψ"
  shows "ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' (ad_agr_close_set (AD - ADφ) ) =
    fo_nmlz AD ` proj_vals  (fv_fo_fmla_list ψ)"
    "ad_agr_close_set (AD - ADφ)  = fo_nmlz AD ` proj_vals  (fv_fo_fmla_list φ)"
proof -
  have ad_agr_φ:
    "σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) ADφ σ τ 
      σ    τ  "
    using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono AD_sub
    unfolding Sφ_def
    by blast
  show ad_close_alt: "ad_agr_close_set (AD - ADφ)  = fo_nmlz AD ` proj_vals  (fv_fo_fmla_list φ)"
    using ad_agr_close_correct[OF AD_sub(2) ad_agr_φ] AD_sub(2)
    unfolding Xφ_def Sφ_def[symmetric] proj_fmla_def
    by (auto simp: ad_agr_close_set_def Set.is_empty_def)
  have fv_φ: "set (fv_fo_fmla_list φ)  set (fv_fo_fmla_list ψ)"
    using fv_Un
    by (auto simp: fv_fo_fmla_list_set)
  have sd_nsφ': "sorted_distinct nsφ'"
    using sd_nsψ sorted_filter[of id]
    by (auto simp: nsφ'_def)
  show "ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' (ad_agr_close_set (AD - ADφ) ) =
    fo_nmlz AD ` proj_vals  (fv_fo_fmla_list ψ)"
    apply (rule ext_tuple_correct)
    using sorted_distinct_fv_list ad_close_alt ad_agr_φ ad_agr_sets_mono[OF AD_sub(2)]
      fv_Un sd_nsφ'
    by (fastforce simp: nsφ'_def fv_fo_fmla_list_set)+
qed

lemma proj_ext_tuple:
  assumes Sφ_def: "  {σ. esat φ I σ UNIV}"
    and AD_sub: "act_edom φ I  AD"
    and Xφ_def: " = fo_nmlz AD ` proj_vals  (fv_fo_fmla_list φ)"
    and nsφ'_def: "nsφ' = filter (λn. n  fv_fo_fmla φ) nsψ"
    and sd_nsψ: "sorted_distinct nsψ"
    and fv_Un: "fv_fo_fmla ψ = fv_fo_fmla φ  set nsψ"
    and Z_props: "xs. xs  Z  fo_nmlz AD xs = xs  length xs = length (fv_fo_fmla_list ψ)"
  shows "Z  ext_tuple_set AD (fv_fo_fmla_list φ) nsφ'  =
    {xs  Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs))  }"
    "Z - ext_tuple_set AD (fv_fo_fmla_list φ) nsφ'  =
    {xs  Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs))  }"
proof -
  have ad_agr_φ:
    "σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD σ τ 
      σ    τ  "
    using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono AD_sub
    unfolding Sφ_def
    by blast
  have sd_nsφ': "sorted_distinct nsφ'"
    using sd_nsψ sorted_filter[of id]
    by (auto simp: nsφ'_def)
  have disj: "set (fv_fo_fmla_list φ)  set nsφ' = {}"
    by (auto simp: nsφ'_def fv_fo_fmla_list_set)
  have Un: "set (fv_fo_fmla_list φ)  set nsφ' = set (fv_fo_fmla_list ψ)"
    using fv_Un
    by (auto simp: nsφ'_def fv_fo_fmla_list_set)
  note proj = proj_tuple_correct[OF sorted_distinct_fv_list sd_nsφ' sorted_distinct_fv_list
      disj Un Xφ_def ad_agr_φ, simplified]
  have "fo_nmlz AD `  = "
    using fo_nmlz_idem[OF fo_nmlz_sound]
    by (auto simp: Xφ_def image_iff)
  then have aux: "ext_tuple_set AD (fv_fo_fmla_list φ) nsφ'  = fo_nmlz AD ` (ext_tuple AD (fv_fo_fmla_list φ) nsφ' ` )"
    by (auto simp: ext_tuple_set_def ext_tuple_def)
  show "Z  ext_tuple_set AD (fv_fo_fmla_list φ) nsφ'  =
    {xs  Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs))  }"
    using Z_props proj
    by (auto simp: aux)
  show "Z - ext_tuple_set AD (fv_fo_fmla_list φ) nsφ'  =
    {xs  Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs))  }"
    using Z_props proj
    by (auto simp: aux)
qed

lemma fo_nmlz_proj_sub: "fo_nmlz AD ` proj_fmla φ R  nall_tuples AD (nfv φ)"
  by (auto simp: proj_fmla_map fo_nmlz_length fo_nmlz_sound nfv_def
      intro: nall_tuplesI)

lemma fin_ad_agr_list_iff:
  fixes AD :: "('a :: infinite) set"
  assumes "finite AD" "vs. vs  Z  length vs = n"
    "Z = {ts. ts'  X. ad_agr_list AD (map Inl ts) ts'}"
  shows "finite Z  (set ` Z)  AD"
proof (rule iffI, rule ccontr)
  assume fin: "finite Z"
  assume "¬(set ` Z)  AD"
  then obtain σ i vs where σ_def: "map σ [0..<n]  Z" "i < n" "σ i  AD" "vs  X"
    "ad_agr_list AD (map (Inl  σ) [0..<n]) vs"
    using assms(2)
    by (auto simp: assms(3) in_set_conv_nth) (metis map_map map_nth)
  define Y where "Y  AD  σ ` {0..<n}"
  have inf_UNIV_Y: "infinite (UNIV - Y)"
    using assms(1)
    by (auto simp: Y_def infinite_UNIV)
  have "y. y  Y  map ((λz. if z = σ i then y else z)  σ) [0..<n]  Z"
    using σ_def(3)
    by (auto simp: assms(3) intro!: bexI[OF _ σ_def(4)] ad_agr_list_trans[OF _ σ_def(5)])
       (auto simp: ad_agr_list_def ad_equiv_list_def set_zip Y_def ad_equiv_pair.simps
        sp_equiv_list_def pairwise_def split: if_splits)
  then have "(λx'. map ((λz. if z = σ i then x' else z)  σ) [0..<n]) `
    (UNIV - Y)  Z"
    by auto
  moreover have "inj (λx'. map ((λz. if z = σ i then x' else z)  σ) [0..<n])"
    using σ_def(2)
    by (auto simp: inj_def)
  ultimately show "False"
    using inf_UNIV_Y fin
    by (meson inj_on_diff inj_on_finite)
next
  assume "(set ` Z)  AD"
  then have "Z  all_tuples AD n"
    using assms(2)
    by (auto intro: all_tuplesI)
  then show "finite Z"
    using all_tuples_finite[OF assms(1)] finite_subset
    by auto
qed

lemma proj_out_list:
  fixes AD :: "('a :: infinite) set"
    and σ :: "nat  'a + nat"
    and ns :: "nat list"
  assumes "finite AD"
  shows "τ. ad_agr_list AD (map σ ns) (map (Inl  τ) ns) 
    (j x. j  set ns  σ j = Inl x  τ j = x)"
proof -
  have fin: "finite (AD  Inl -` set (map σ ns))"
    using assms(1) finite_Inl[OF finite_set]
    by blast
  obtain f where f_def: "inj (f :: nat  'a)"
    "range f  UNIV - (AD  Inl -` set (map σ ns))"
    using arb_countable_map[OF fin]
    by auto
  define τ where "τ = case_sum id f  σ"
  have f_out: "i x. i < length ns  σ (ns ! i) = Inl (f x)  False"
    using f_def(2)
    by (auto simp: vimage_def)
       (metis (no_types, lifting) DiffE UNIV_I UnCI imageI image_subset_iff mem_Collect_eq nth_mem)
  have "(a, b)  set (zip (map σ ns) (map (Inl  τ) ns))  ad_equiv_pair AD (a, b)" for a b
    using f_def(2)
    by (auto simp: set_zip τ_def ad_equiv_pair.simps split: sum.splits)+
  moreover have "sp_equiv_list (map σ ns) (map (Inl  τ) ns)"
    using f_def(1) f_out
    by (auto simp: sp_equiv_list_def pairwise_def set_zip τ_def inj_def split: sum.splits)+
  ultimately have "ad_agr_list AD (map σ ns) (map (Inl  τ) ns)"
    by (auto simp: ad_agr_list_def ad_equiv_list_def)
  then show ?thesis
    by (auto simp: τ_def intro!: exI[of _ τ])
qed

lemma proj_out:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
    and J :: "(('a, nat) fo_t, 'b) fo_intp"
  assumes "wf_fo_intp φ I" "esat φ I σ UNIV"
  shows "τ. esat φ I (Inl  τ) UNIV  (i x. i  fv_fo_fmla φ  σ i = Inl x  τ i = x) 
    ad_agr_list (act_edom φ I) (map σ (fv_fo_fmla_list φ)) (map (Inl  τ) (fv_fo_fmla_list φ))"
  using proj_out_list[OF finite_act_edom[OF assms(1)], of σ "fv_fo_fmla_list φ"]
    esat_UNIV_ad_agr_list[OF _ subset_refl] assms(2)
  unfolding fv_fo_fmla_list_set
  by fastforce

lemma proj_fmla_esat_sat:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
    and J :: "(('a, nat) fo_t, 'b) fo_intp"
  assumes wf: "wf_fo_intp φ I"
  shows "proj_fmla φ {σ. esat φ I σ UNIV}  map Inl ` UNIV =
    map Inl ` proj_fmla φ {σ. sat φ I σ}"
  unfolding sat_esat_conv[OF wf]
proof (rule set_eqI, rule iffI)
  fix vs
  assume "vs  proj_fmla φ {σ. esat φ I σ UNIV}  map Inl ` UNIV"
  then obtain σ where σ_def: "vs = map σ (fv_fo_fmla_list φ)" "esat φ I σ UNIV"
    "set vs  range Inl"
    by (auto simp: proj_fmla_map) (metis image_subset_iff list.set_map range_eqI)
  obtain τ where τ_def: "esat φ I (Inl  τ) UNIV"
    "i x. i  fv_fo_fmla φ  σ i = Inl x  τ i = x"
    using proj_out[OF assms σ_def(2)]
    by fastforce
  have "vs = map (Inl  τ) (fv_fo_fmla_list φ)"
    using σ_def(1,3) τ_def(2)
    by (auto simp: fv_fo_fmla_list_set)
  then show "vs  map Inl ` proj_fmla φ {σ. esat φ I (Inl  σ) UNIV}"
    using τ_def(1)
    by (force simp: proj_fmla_map)
qed (auto simp: proj_fmla_map)

lemma norm_proj_fmla_esat_sat:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes "wf_fo_intp φ I"
  shows "fo_nmlz (act_edom φ I) ` proj_fmla φ {σ. esat φ I σ UNIV} =
    fo_nmlz (act_edom φ I) ` map Inl ` proj_fmla φ {σ. sat φ I σ}"
proof -
  have "fo_nmlz (act_edom φ I) (map σ (fv_fo_fmla_list φ)) = fo_nmlz (act_edom φ I) x"
    "x  (λτ. map τ (fv_fo_fmla_list φ)) ` {σ. esat φ I σ UNIV}  range (map Inl)"
    if "esat φ I σ UNIV" "esat φ I (Inl  τ) UNIV" "x = map (Inl  τ) (fv_fo_fmla_list φ)"
      "ad_agr_list (act_edom φ I) (map σ (fv_fo_fmla_list φ)) (map (Inl  τ) (fv_fo_fmla_list φ))"
    for σ τ x
    using that
    by (auto intro!: fo_nmlz_eqI) (metis map_map range_eqI)
  then show ?thesis
    unfolding proj_fmla_esat_sat[OF assms, symmetric]
    using proj_out[OF assms]
    by (fastforce simp: image_iff proj_fmla_map)
qed

lemma proj_sat_fmla: "proj_sat φ I = proj_fmla φ {σ. sat φ I σ}"
  by (auto simp: proj_sat_def proj_fmla_map)

fun fo_wf :: "('a, 'b) fo_fmla  ('b × nat  'a list set)  ('a, nat) fo_t  bool" where
  "fo_wf φ I (AD, n, X)  finite AD  finite X  n = nfv φ 
    wf_fo_intp φ I  AD = act_edom φ I  fo_rep (AD, n, X) = proj_sat φ I 
    Inl -` (set ` X)  AD  (vs  X. fo_nmlzd AD vs  length vs = n)"

fun fo_fin :: "('a, nat) fo_t  bool" where
  "fo_fin (AD, n, X)  (x  (set ` X). isl x)"

lemma fo_rep_fin:
  assumes "fo_wf φ I (AD, n, X)" "fo_fin (AD, n, X)"
  shows "fo_rep (AD, n, X) = map projl ` X"
proof (rule set_eqI, rule iffI)
  fix vs
  assume "vs  fo_rep (AD, n, X)"
  then obtain xs where xs_def: "xs  X" "ad_agr_list AD (map Inl vs) xs"
    by auto
  obtain zs where zs_def: "xs = map Inl zs"
    using xs_def(1) assms
    by auto (meson ex_map_conv isl_def)
  have "set zs  AD"
    using assms(1) xs_def(1) zs_def
    by (force simp: vimage_def)
  then have vs_zs: "vs = zs"
    using xs_def(2)
    unfolding zs_def
    by (fastforce simp: ad_agr_list_def ad_equiv_list_def set_zip ad_equiv_pair.simps
        intro!: nth_equalityI)
  show "vs  map projl ` X"
    using xs_def(1) zs_def
    by (auto simp: image_iff comp_def vs_zs intro!: bexI[of _ "map Inl zs"])
next
  fix vs
  assume "vs  map projl ` X"
  then obtain xs where xs_def: "xs  X" "vs = map projl xs"
    by auto
  have xs_map_Inl: "xs = map Inl vs"
    using assms xs_def
    by (auto simp: map_idI)
  show "vs  fo_rep (AD, n, X)"
    using xs_def(1)
    by (auto simp: xs_map_Inl intro!: bexI[of _ xs] ad_agr_list_refl)
qed

definition eval_abs :: "('a, 'b) fo_fmla  ('a table, 'b) fo_intp  ('a, nat) fo_t" where
  "eval_abs φ I = (act_edom φ I, nfv φ, fo_nmlz (act_edom φ I) ` proj_fmla φ {σ. esat φ I σ UNIV})"

lemma map_projl_Inl: "map projl (map Inl xs) = xs"
  by (metis (mono_tags, lifting) length_map nth_equalityI nth_map sum.sel(1))

lemma fo_rep_eval_abs:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes "wf_fo_intp φ I"
  shows "fo_rep (eval_abs φ I) = proj_sat φ I"
proof -
  obtain AD n X where AD_X_def: "eval_abs φ I = (AD, n, X)" "AD = act_edom φ I"
    "n = nfv φ" "X = fo_nmlz (act_edom φ I) ` proj_fmla φ {σ. esat φ I σ UNIV}"
    by (cases "eval_abs φ I") (auto simp: eval_abs_def)
  have AD_sub: "act_edom φ I  AD"
    by (auto simp: AD_X_def)
  have X_def: "X = fo_nmlz AD ` map Inl ` proj_fmla φ {σ. sat φ I σ}"
    using AD_X_def norm_proj_fmla_esat_sat[OF assms]
    by auto
  have "{ts. ts'  X. ad_agr_list AD (map Inl ts) ts'} = proj_fmla φ {σ. sat φ I σ}"
  proof (rule set_eqI, rule iffI)
    fix vs
    assume "vs  {ts. ts'  X. ad_agr_list AD (map Inl ts) ts'}"
    then obtain vs' where vs'_def: "vs'  proj_fmla φ {σ. sat φ I σ}"
      "ad_agr_list AD (map Inl vs) (fo_nmlz AD (map Inl vs'))"
      using X_def
      by auto
    have "length vs = length (fv_fo_fmla_list φ)"
      using vs'_def
      by (auto simp: proj_fmla_map ad_agr_list_def fo_nmlz_length)
    then obtain σ where σ_def: "vs = map σ (fv_fo_fmla_list φ)"
      using exists_map[of "fv_fo_fmla_list φ" vs] sorted_distinct_fv_list
      by fastforce
    obtain τ where τ_def: "fo_nmlz AD (map Inl vs') = map τ (fv_fo_fmla_list φ)"
      using vs'_def fo_nmlz_map
      by (fastforce simp: proj_fmla_map)
    have ad_agr: "ad_agr_list AD (map (Inl  σ) (fv_fo_fmla_list φ)) (map τ (fv_fo_fmla_list φ))"
      by (metis σ_def τ_def map_map vs'_def(2))
    obtain τ' where τ'_def: "map Inl vs' = map (Inl  τ') (fv_fo_fmla_list φ)"
      "sat φ I τ'"
      using vs'_def(1)
      by (fastforce simp: proj_fmla_map)
    have ad_agr': "ad_agr_list AD (map τ (fv_fo_fmla_list φ))
        (map (Inl  τ') (fv_fo_fmla_list φ))"
      by (rule ad_agr_list_comm) (metis fo_nmlz_ad_agr τ'_def(1) τ_def map_map map_projl_Inl)
    have esat: "esat φ I τ UNIV"
      using esat_UNIV_ad_agr_list[OF ad_agr' AD_sub, folded sat_esat_conv[OF assms]] τ'_def(2)
      by auto
    show "vs  proj_fmla φ {σ. sat φ I σ}"
      using esat_UNIV_ad_agr_list[OF ad_agr AD_sub, folded sat_esat_conv[OF assms]] esat
      unfolding σ_def
      by (auto simp: proj_fmla_map)
  next
    fix vs
    assume "vs  proj_fmla φ {σ. sat φ I σ}"
    then have vs_X: "fo_nmlz AD (map Inl vs)  X"
      using X_def
      by auto
    then show "vs  {ts. ts'  X. ad_agr_list AD (map Inl ts) ts'}"
      using fo_nmlz_ad_agr
      by auto
  qed
  then show ?thesis
    by (auto simp: AD_X_def proj_sat_fmla)
qed

lemma fo_wf_eval_abs:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes "wf_fo_intp φ I"
  shows "fo_wf φ I (eval_abs φ I)"
  using fo_nmlz_set[of "act_edom φ I"] finite_act_edom[OF assms(1)]
    finite_subset[OF fo_nmlz_proj_sub, OF nall_tuples_finite]
    fo_rep_eval_abs[OF assms] assms
  by (auto simp: eval_abs_def fo_nmlz_sound fo_nmlz_length nfv_def proj_sat_def proj_fmla_map) blast

lemma fo_fin:
  fixes t :: "('a :: infinite, nat) fo_t"
  assumes "fo_wf φ I t"
  shows "fo_fin t = finite (fo_rep t)"
proof -
  obtain AD n X where t_def: "t = (AD, n, X)"
    using assms
    by (cases t) auto
  have fin: "finite AD" "finite X"
    using assms
    by (auto simp: t_def)
  have len_in_X: "vs. vs  X  length vs = n"
    using assms
    by (auto simp: t_def)
  have Inl_X_AD: "x. Inl x  (set ` X)  x  AD"
    using assms
    by (fastforce simp: t_def)
  define Z where "Z = {ts. ts'  X. ad_agr_list AD (map Inl ts) ts'}"
  have fin_Z_iff: "finite Z = ((set ` Z)  AD)"
    using assms fin_ad_agr_list_iff[OF fin(1) _ Z_def, of n]
    by (auto simp: Z_def t_def ad_agr_list_def)
  moreover have "((set ` Z)  AD)  (x  (set ` X). isl x)"
  proof (rule iffI, rule ccontr)
    fix x
    assume Z_sub_AD: "(set ` Z)  AD"
    assume "¬(x  (set ` X). isl x)"
    then obtain vs i m where vs_def: "vs  X" "i < n" "vs ! i = Inr m"
      using len_in_X
      by (auto simp: in_set_conv_nth) (metis sum.collapse(2))
    obtain σ where σ_def: "vs = map σ [0..<n]"
      using exists_map[of "[0..<n]" vs] len_in_X[OF vs_def(1)]
      by auto
    obtain τ where τ_def: "ad_agr_list AD vs (map Inl (map τ [0..<n]))"
      using proj_out_list[OF fin(1), of σ "[0..<n]"]
      by (auto simp: σ_def)
    have map_τ_in_Z: "map τ [0..<n]  Z"
      using vs_def(1) ad_agr_list_comm[OF τ_def]
      by (auto simp: Z_def)
    moreover have "τ i  AD"
      using τ_def vs_def(2,3)
      apply (auto simp: ad_agr_list_def ad_equiv_list_def set_zip comp_def σ_def)
      unfolding ad_equiv_pair.simps
      by (metis (no_types, lifting) Inl_Inr_False diff_zero image_iff length_upt nth_map nth_upt
          plus_nat.add_0)
    ultimately show "False"
      using vs_def(2) Z_sub_AD
      by fastforce
  next
    assume "x  (set ` X). isl x"
    then show "(set ` Z)  AD"
      using Inl_X_AD
      apply (auto simp: Z_def ad_agr_list_def ad_equiv_list_def set_zip in_set_conv_nth)
      unfolding ad_equiv_pair.simps
      by (metis image_eqI isl_def nth_map nth_mem)
  qed
  ultimately show ?thesis
    by (auto simp: t_def Z_def[symmetric])
qed

lemma eval_pred:
  fixes I :: "'b × nat  'a :: infinite list set"
  assumes "finite (I (r, length ts))"
  shows "fo_wf (Pred r ts) I (eval_pred ts (I (r, length ts)))"
proof -
  define φ where "φ = Pred r ts"
  have nfv_len: "nfv φ = length (fv_fo_terms_list ts)"
    by (auto simp: φ_def nfv_def fv_fo_fmla_list_def fv_fo_fmla_list_Pred)
  have vimage_unfold: "Inl -` (xI (r, length ts). Inl ` set x) = (set ` I (r, length ts))"
    by auto
  have "eval_table ts (map Inl ` I (r, length ts))  nall_tuples (act_edom φ I) (nfv φ)"
    by (auto simp: φ_def proj_vals_def eval_table nfv_len[unfolded φ_def]
        fo_nmlz_length fo_nmlz_sound eval_eterms_def fv_fo_terms_set_list fv_fo_terms_set_def
        vimage_unfold intro!: nall_tuplesI fo_nmlzd_all_AD dest!: fv_fo_term_setD)
       (smt UN_I Un_iff eval_eterm.simps(2) imageE image_eqI list.set_map)
  then have eval: "eval_pred ts (I (r, length ts)) = eval_abs φ I"
    by (force simp: eval_abs_def φ_def proj_fmla_def eval_pred_def eval_table fv_fo_fmla_list_def
        fv_fo_fmla_list_Pred nall_tuples_set fo_nmlz_idem nfv_len[unfolded φ_def])
  have fin: "wf_fo_intp (Pred r ts) I"
    using assms
    by auto
  show ?thesis
    using fo_wf_eval_abs[OF fin]
    by (auto simp: eval φ_def)
qed

lemma ad_agr_list_eval: "(set (map set_fo_term ts))  AD  ad_agr_list AD (σ ⊙e ts) zs 
  τ. zs = τ ⊙e ts"
proof (induction ts arbitrary: zs)
  case (Cons t ts)
  obtain w ws where zs_split: "zs = w # ws"
    using Cons(3)
    by (cases zs) (auto simp: ad_agr_list_def eval_eterms_def)
  obtain τ where τ_def: "ws = τ ⊙e ts"
    using Cons
    by (fastforce simp: zs_split ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def
        eval_eterms_def)
  show ?case
  proof (cases t)
    case (Const c)
    then show ?thesis
      using Cons(3)[unfolded zs_split] Cons(2)
      unfolding Const
      apply (auto simp: zs_split eval_eterms_def τ_def ad_agr_list_def ad_equiv_list_def)
      unfolding ad_equiv_pair.simps
      by blast
  next
    case (Var n)
    show ?thesis
    proof (cases "n  fv_fo_terms_set ts")
      case True
      obtain i where i_def: "i < length ts" "ts ! i = Var n"
        using True
        by (auto simp: fv_fo_terms_set_def in_set_conv_nth dest!: fv_fo_term_setD)
      have "w = τ n"
        using Cons(3)[unfolded zs_split τ_def] i_def
        using pairwiseD[of sp_equiv_pair _ "(σ n, w)" "(σ ⋅e (ts ! i), τ ⋅e (ts ! i))"]
        by (force simp: Var eval_eterms_def ad_agr_list_def sp_equiv_list_def set_zip)
      then show ?thesis
        by (auto simp: Var zs_split eval_eterms_def τ_def)
    next
      case False
      then have "ws = (τ(n := w)) ⊙e ts"
        using eval_eterms_cong[of ts τ "τ(n := w)"] τ_def
        by fastforce
      then show ?thesis
        by (auto simp: zs_split eval_eterms_def Var fun_upd_def intro: exI[of _ "τ(n := w)"])
    qed
  qed
qed (auto simp: ad_agr_list_def eval_eterms_def)

lemma sp_equiv_list_fv_list:
  assumes "sp_equiv_list (σ ⊙e ts) (τ ⊙e ts)"
  shows "sp_equiv_list (map σ (fv_fo_terms_list ts)) (map τ (fv_fo_terms_list ts))"
proof -
  have "sp_equiv_list (σ ⊙e (map Var (fv_fo_terms_list ts)))
    (τ ⊙e (map Var (fv_fo_terms_list ts)))"
    unfolding eval_eterms_def
    by (rule sp_equiv_list_subset[OF _ assms[unfolded eval_eterms_def]])
       (auto simp: fv_fo_terms_set_list dest: fv_fo_terms_setD)
  then show ?thesis
    by (auto simp: eval_eterms_def comp_def)
qed

lemma ad_agr_list_fv_list: "ad_agr_list X (σ ⊙e ts) (τ ⊙e ts) 
  ad_agr_list X (map σ (fv_fo_terms_list ts)) (map τ (fv_fo_terms_list ts))"
  using sp_equiv_list_fv_list
  by (auto simp: eval_eterms_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def set_zip)
     (metis (no_types, opaque_lifting) eval_eterm.simps(2) fv_fo_terms_setD fv_fo_terms_set_list
      in_set_conv_nth nth_map)

lemma eval_bool: "fo_wf (Bool b) I (eval_bool b)"
  by (auto simp: eval_bool_def fo_nmlzd_def nats_def Let_def List.map_filter_simps
      proj_sat_def fv_fo_fmla_list_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def nfv_def)

lemma eval_eq: fixes I :: "'b × nat  'a :: infinite list set"
  shows "fo_wf (Eqa t t') I (eval_eq t t')"
proof -
  define φ :: "('a, 'b) fo_fmla" where "φ = Eqa t t'"
  obtain AD n X where AD_X_def: "eval_eq t t' = (AD, n, X)"
    by (cases "eval_eq t t'") auto
  have AD_def: "AD = act_edom φ I"
    using AD_X_def
    by (auto simp: eval_eq_def φ_def split: fo_term.splits if_splits)
  have n_def: "n = nfv φ"
    using AD_X_def
    by (cases t; cases t')
       (auto simp: φ_def fv_fo_fmla_list_def eval_eq_def nfv_def split: if_splits)
  have fo_nmlz_empty_x_x: "fo_nmlz {} [x, x] = [Inr 0, Inr 0]" for x :: "'a + nat"
    by (cases x) (auto simp: fo_nmlz_def)
  have Inr_0_in_fo_nmlz_empty: "[Inr 0, Inr 0]  fo_nmlz {} ` (λx. [x n', x n']) ` {σ :: nat  'a + nat. σ n = σ n'}" for n n'
    by (auto simp: image_def fo_nmlz_empty_x_x intro!: exI[of _ "[Inr 0, Inr 0]"])
  have X_def: "X = fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
  proof (rule set_eqI, rule iffI)
    fix vs
    assume assm: "vs  X"
    define pes where "pes = proj_fmla φ {σ. esat φ I σ UNIV}"
    have "c c'. t = Const c  t' = Const c' 
      fo_nmlz AD ` pes = (if c = c' then {[]} else {})"
      by (auto simp: φ_def pes_def proj_fmla_map fo_nmlz_def fv_fo_fmla_list_def)
    moreover have "c n. (t = Const c  t' = Var n)  (t' = Const c  t = Var n) 
      fo_nmlz AD ` pes = {[Inl c]}"
      by (auto simp: φ_def AD_def pes_def proj_fmla_map fo_nmlz_Cons fv_fo_fmla_list_def image_def
          split: sum.splits) (auto simp: fo_nmlz_def)
    moreover have "n. t = Var n  t' = Var n  fo_nmlz AD ` pes = {[Inr 0]}"
      by (auto simp: φ_def AD_def pes_def proj_fmla_map fo_nmlz_Cons fv_fo_fmla_list_def image_def
          split: sum.splits)
    moreover have "n n'. t = Var n  t' = Var n'  n  n' 
      fo_nmlz AD ` pes = {[Inr 0, Inr 0]}"
      using Inr_0_in_fo_nmlz_empty
      by (auto simp: φ_def AD_def pes_def proj_fmla_map fo_nmlz_Cons fv_fo_fmla_list_def fo_nmlz_empty_x_x
          split: sum.splits)
    ultimately show "vs  fo_nmlz AD ` pes"
      using assm AD_X_def
      by (cases t; cases t') (auto simp: eval_eq_def split: if_splits)
  next
    fix vs
    assume assm: "vs  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
    obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
      "esat (Eqa t t') I σ UNIV"
      using assm
      by (auto simp: φ_def fv_fo_fmla_list_def proj_fmla_map)
    show "vs  X"
      using σ_def AD_X_def
      by (cases t; cases t')
         (auto simp: φ_def eval_eq_def fv_fo_fmla_list_def fo_nmlz_Cons fo_nmlz_Cons_Cons
          split: sum.splits)
  qed
  have eval: "eval_eq t t' = eval_abs φ I"
    using X_def[unfolded AD_def]
    by (auto simp: eval_abs_def AD_X_def AD_def n_def)
  have fin: "wf_fo_intp φ I"
    by (auto simp: φ_def)
  show ?thesis
    using fo_wf_eval_abs[OF fin]
    by (auto simp: eval φ_def)
qed

lemma fv_fo_terms_list_Var: "fv_fo_terms_list_rec (map Var ns) = ns"
  by (induction ns) auto

lemma eval_eterms_map_Var: "σ ⊙e map Var ns = map σ ns"
  by (auto simp: eval_eterms_def)

lemma fo_wf_eval_table:
  fixes AD :: "'a set"
  assumes "fo_wf φ I (AD, n, X)"
  shows "X = fo_nmlz AD ` eval_table (map Var [0..<n]) X"
proof -
  have AD_sup: "Inl -` (set ` X)  AD"
    using assms
    by fastforce
  have fvs: "fv_fo_terms_list (map Var [0..<n]) = [0..<n]"
    by (auto simp: fv_fo_terms_list_def fv_fo_terms_list_Var remdups_adj_distinct)
  have "vs. vs  X  length vs = n"
    using assms
    by auto
  then have X_map: "vs. vs  X  σ. vs = map σ [0..<n]"
    using exists_map[of "[0..<n]"]
    by auto
  then have proj_vals_X: "proj_vals {σ. σ ⊙e map Var [0..<n]  X} [0..<n] = X"
    by (auto simp: eval_eterms_map_Var proj_vals_def)
  then show "X = fo_nmlz AD ` eval_table (map Var [0..<n]) X"
    unfolding eval_table fvs proj_vals_X
    using assms fo_nmlz_idem image_iff
    by fastforce
qed

lemma fo_rep_norm:
  fixes AD :: "('a :: infinite) set"
  assumes "fo_wf φ I (AD, n, X)"
  shows "X = fo_nmlz AD ` map Inl ` fo_rep (AD, n, X)"
proof (rule set_eqI, rule iffI)
  fix vs
  assume vs_in: "vs  X"
  have fin_AD: "finite AD"
    using assms(1)
    by auto
  have len_vs: "length vs = n"
    using vs_in assms(1)
    by auto
  obtain τ where τ_def: "ad_agr_list AD vs (map Inl (map τ [0..<n]))"
    using proj_out_list[OF fin_AD, of "(!) vs" "[0..<length vs]", unfolded map_nth]
    by (auto simp: len_vs)
  have map_τ_in: "map τ [0..<n]  fo_rep (AD, n, X)"
    using vs_in ad_agr_list_comm[OF τ_def]
    by auto
  have "vs = fo_nmlz AD (map Inl (map τ [0..<n]))"
    using fo_nmlz_eqI[OF τ_def] fo_nmlz_idem vs_in assms(1)
    by fastforce
  then show "vs  fo_nmlz AD ` map Inl ` fo_rep (AD, n, X)"
    using map_τ_in
    by blast
next
  fix vs
  assume "vs  fo_nmlz AD ` map Inl ` fo_rep (AD, n, X)"
  then obtain xs xs' where vs_def: "xs'  X" "ad_agr_list AD (map Inl xs) xs'"
    "vs = fo_nmlz AD (map Inl xs)"
    by auto
  then have "vs = fo_nmlz AD xs'"
    using fo_nmlz_eqI[OF vs_def(2)]
    by auto
  then have "vs = xs'"
    using vs_def(1) assms(1) fo_nmlz_idem
    by fastforce
  then show "vs  X"
    using vs_def(1)
    by auto
qed

lemma fo_wf_X:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I (AD, n, X)"
  shows "X = fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
proof -
  have fin: "wf_fo_intp φ I"
    using wf
    by auto
  have AD_def: "AD = act_edom φ I"
    using wf
    by auto
  have fo_wf: "fo_wf φ I (AD, n, X)"
    using wf
    by auto
  have fo_rep: "fo_rep (AD, n, X) = proj_fmla φ {σ. sat φ I σ}"
    using wf
    by (auto simp: proj_sat_def proj_fmla_map)
  show ?thesis
    using fo_rep_norm[OF fo_wf] norm_proj_fmla_esat_sat[OF fin]
    unfolding fo_rep AD_def[symmetric]
    by auto
qed

lemma eval_neg:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I t"
  shows "fo_wf (Neg φ) I (eval_neg (fv_fo_fmla_list φ) t)"
proof -
  obtain AD n X where t_def: "t = (AD, n, X)"
    by (cases t) auto
  have eval_neg: "eval_neg (fv_fo_fmla_list φ) t = (AD, nfv φ, nall_tuples AD (nfv φ) - X)"
    by (auto simp: t_def nfv_def)
  have fv_unfold: "fv_fo_fmla_list (Neg φ) = fv_fo_fmla_list φ"
    by (auto simp: fv_fo_fmla_list_def)
  then have nfv_unfold: "nfv (Neg φ) = nfv φ"
    by (auto simp: nfv_def)
  have AD_def: "AD = act_edom (Neg φ) I"
    using wf
    by (auto simp: t_def)
  note X_def = fo_wf_X[OF wf[unfolded t_def]]
  have esat_iff: "vs. vs  nall_tuples AD (nfv φ) 
    vs  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV} 
    vs  fo_nmlz AD ` proj_fmla φ {σ. esat (Neg φ) I σ UNIV}"
  proof (rule iffI; rule ccontr)
    fix vs
    assume "vs  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
    then obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
      "esat φ I σ UNIV"
      by (auto simp: proj_fmla_map)
    assume "¬vs  fo_nmlz AD ` proj_fmla φ {σ. esat (Neg φ) I σ UNIV}"
    then obtain σ' where σ'_def: "vs = fo_nmlz AD (map σ' (fv_fo_fmla_list φ))"
      "esat (Neg φ) I σ' UNIV"
      by (auto simp: proj_fmla_map)
    have "esat φ I σ UNIV = esat φ I σ' UNIV"
      using esat_UNIV_cong[OF ad_agr_sets_restrict[OF iffD2[OF ad_agr_list_link],
            OF fo_nmlz_eqD[OF trans[OF σ_def(1)[symmetric] σ'_def(1)]]]]
      by (auto simp: AD_def)
    then show "False"
      using σ_def(2) σ'_def(2) by simp
  next
    fix vs
    assume assms: "vs  fo_nmlz AD ` proj_fmla φ {σ. esat (Neg φ) I σ UNIV}"
      "vs  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
    assume "vs  nall_tuples AD (nfv φ)"
    then have l_vs: "length vs = length (fv_fo_fmla_list φ)" "fo_nmlzd AD vs"
      by (auto simp: nfv_def dest: nall_tuplesD)
    obtain σ where "vs = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
      using l_vs sorted_distinct_fv_list exists_fo_nmlzd by metis
    with assms show "False"
      by (auto simp: proj_fmla_map)
  qed
  moreover have "R. fo_nmlz AD ` proj_fmla φ R  nall_tuples AD (nfv φ)"
    by (auto simp: proj_fmla_map nfv_def nall_tuplesI fo_nmlz_length fo_nmlz_sound)
  ultimately have eval: "eval_neg (fv_fo_fmla_list φ) t = eval_abs (Neg φ) I"
    unfolding eval_neg eval_abs_def AD_def[symmetric]
    by (auto simp: X_def proj_fmla_def fv_unfold nfv_unfold image_subset_iff)
  have wf_neg: "wf_fo_intp (Neg φ) I"
    using wf
    by (auto simp: t_def)
  show ?thesis
    using fo_wf_eval_abs[OF wf_neg]
    by (auto simp: eval)
qed

definition "cross_with f t t' = ((λxs. (f xs ` t')) ` t)"

lemma mapping_join_cross_with:
  assumes "x x'. x  t  x'  t'  h x  h' x'  f x x' = {}"
  shows "set_of_idx (mapping_join (cross_with f) (cluster (Some  h) t) (cluster (Some  h') t')) = cross_with f t t'"
proof -
  have sub: "cross_with f {y  t. h y = h x} {y  t'. h' y = h x}  cross_with f t t'" for t t' x
    by (auto simp: cross_with_def)
  have "a. a  h ` t  a  h' ` t'  z  cross_with f {y  t. h y = a} {y  t'. h' y = a}" if z: "z  cross_with f t t'" for z
  proof -
    obtain xs ys where wit: "xs  t" "ys  t'" "z  f xs ys"
      using z
      by (auto simp: cross_with_def)
    have h: "h xs = h' ys"
      using assms(1)[OF wit(1-2)] wit(3)
      by auto
    have hys: "h' ys  h ` t"
      using wit(1)
      by (auto simp: h[symmetric])
    show ?thesis
      apply (rule exI[of _ "h xs"])
      using wit hys h
      by (auto simp: cross_with_def)
  qed
  then show ?thesis
    using sub
    apply (transfer fixing: f h h')
    apply (auto simp: ran_def)
     apply fastforce+
    done
qed

lemma fo_nmlzd_mono_sub: "X  X'  fo_nmlzd X xs  fo_nmlzd X' xs"
  by (meson fo_nmlzd_def order_trans)

lemma idx_join:
  assumes Xφ_props: "vs. vs    fo_nmlzd AD vs  length vs = length nsφ"
  assumes Xψ_props: "vs. vs    fo_nmlzd AD vs  length vs = length nsψ"
  assumes sd_ns: "sorted_distinct nsφ" "sorted_distinct nsψ"
  assumes ns_def: "ns = filter (λn. n  set nsψ) nsφ"
  shows "idx_join AD ns nsφ  nsψ  = eval_conj_set AD nsφ  nsψ "
proof -
  have ect_empty: "x    x'    fo_nmlz AD (proj_tuple ns (zip nsφ x))  fo_nmlz AD (proj_tuple ns (zip nsψ x')) 
    eval_conj_tuple AD nsφ nsψ x x' = {}"
    if "Xφ'  " "Xψ'  " for Xφ' Xψ' and x x'
    apply (rule eval_conj_tuple_empty[where ?ns="filter (λn. n  set nsψ) nsφ"])
    using Xφ_props Xψ_props that sd_ns
    by (auto simp: ns_def ad_agr_close_set_def split: if_splits)
  have cross_eval_conj_tuple: "(λXφ''. eval_conj_set AD nsφ Xφ'' nsψ) = cross_with (eval_conj_tuple AD nsφ nsψ)" for AD :: "'a set" and nsφ nsψ
    by (rule ext)+ (auto simp: eval_conj_set_def cross_with_def)
  have "idx_join AD ns nsφ  nsψ  = cross_with (eval_conj_tuple AD nsφ nsψ)  "
    unfolding idx_join_def Let_def cross_eval_conj_tuple
    by (rule mapping_join_cross_with[OF ect_empty]) auto
  moreover have " = eval_conj_set AD nsφ  nsψ "
    by (auto simp: cross_with_def eval_conj_set_def)
  finally show ?thesis .
qed

lemma proj_fmla_conj_sub:
  assumes AD_sub: "act_edom ψ I  AD"
  shows "fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat φ I σ UNIV} 
    fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat ψ I σ UNIV} 
    fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat (Conj φ ψ) I σ UNIV}"
proof (rule subsetI)
  fix vs
  assume "vs  fo_nmlz AD `  proj_fmla (Conj φ ψ) {σ. esat φ I σ UNIV} 
      fo_nmlz AD `  proj_fmla (Conj φ ψ) {σ. esat ψ I σ UNIV}"
  then obtain σ σ' where σ_def:
    "σ  {σ. esat φ I σ UNIV}" "vs = fo_nmlz AD (map σ (fv_fo_fmla_list (Conj φ ψ)))"
    "σ'  {σ. esat ψ I σ UNIV}" "vs = fo_nmlz AD (map σ' (fv_fo_fmla_list (Conj φ ψ)))"
    unfolding proj_fmla_map
    by blast
  have ad_sub: "act_edom ψ I  AD"
    using assms(1)
    by auto
  have ad_agr: "ad_agr_list AD (map σ (fv_fo_fmla_list ψ)) (map σ' (fv_fo_fmla_list ψ))"
    by (rule ad_agr_list_subset[OF _ fo_nmlz_eqD[OF trans[OF σ_def(2)[symmetric] σ_def(4)]]])
       (auto simp: fv_fo_fmla_list_set)
  have "σ  {σ. esat ψ I σ UNIV}"
    using esat_UNIV_cong[OF ad_agr_sets_restrict[OF iffD2[OF ad_agr_list_link]],
          OF ad_agr ad_sub] σ_def(3)
    by blast
  then show "vs  fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat (Conj φ ψ) I σ UNIV}"
    using σ_def(1,2)
    by (auto simp: proj_fmla_map)
qed

lemma eval_conj:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I " "fo_wf ψ I "
  shows "fo_wf (Conj φ ψ) I (eval_conj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ) )"
proof -
  obtain ADφ   ADψ   where ts_def:
    " = (ADφ, , )" " = (ADψ, , )"
    "ADφ = act_edom φ I" "ADψ = act_edom ψ I"
    using assms
    by (cases , cases ) auto
  have AD_sub: "act_edom φ I  ADφ" "act_edom ψ I  ADψ"
    by (auto simp: ts_def(3,4))

  obtain AD n X where AD_X_def:
    "eval_conj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ)  = (AD, n, X)"
    by (cases "eval_conj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ) ") auto
  have AD_def: "AD = act_edom (Conj φ ψ) I" "act_edom (Conj φ ψ) I  AD"
    "ADφ  AD" "ADψ  AD" "AD = ADφ  ADψ"
    using AD_X_def
    by (auto simp: ts_def Let_def)
  have n_def: "n = nfv (Conj φ ψ)"
    using AD_X_def
    by (auto simp: ts_def Let_def nfv_card fv_fo_fmla_list_set)

  define  where "  {σ. esat φ I σ UNIV}"
  define  where "  {σ. esat ψ I σ UNIV}"
  define ADΔφ where "ADΔφ = AD - ADφ"
  define ADΔψ where "ADΔψ = AD - ADψ"
  define nsφ where "nsφ = fv_fo_fmla_list φ"
  define nsψ where "nsψ = fv_fo_fmla_list ψ"
  define ns where "ns = filter (λn. n  fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
  define nsφ' where "nsφ' = filter (λn. n  fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
  define nsψ' where "nsψ' = filter (λn. n  fv_fo_fmla ψ) (fv_fo_fmla_list φ)"

  note Xφ_def = fo_wf_X[OF wf(1)[unfolded ts_def(1)], unfolded proj_fmla_def, folded Sφ_def]
  note Xψ_def = fo_wf_X[OF wf(2)[unfolded ts_def(2)], unfolded proj_fmla_def, folded Sψ_def]

  have sd_ns: "sorted_distinct nsφ" "sorted_distinct nsψ"
    by (auto simp: nsφ_def nsψ_def sorted_distinct_fv_list)
  have ad_agr_Xφ: "ad_agr_close_set ADΔφ  = fo_nmlz AD ` proj_vals  nsφ"
    unfolding Xφ_def ad_agr_close_set_nmlz_eq nsφ_def[symmetric] ADΔφ_def
    apply (rule ad_agr_close_set_correct[OF AD_def(3) sd_ns(1)])
    using AD_sub(1) esat_UNIV_ad_agr_list
    by (fastforce simp: ad_agr_list_link Sφ_def nsφ_def)
  have ad_agr_Xψ: "ad_agr_close_set ADΔψ  = fo_nmlz AD ` proj_vals  nsψ"
    unfolding Xψ_def ad_agr_close_set_nmlz_eq nsψ_def[symmetric] ADΔψ_def
    apply (rule ad_agr_close_set_correct[OF AD_def(4) sd_ns(2)])
    using AD_sub(2) esat_UNIV_ad_agr_list
    by (fastforce simp: ad_agr_list_link Sψ_def nsψ_def)

  have idx_join_eval_conj: "idx_join AD (filter (λn. n  set nsψ) nsφ) nsφ (ad_agr_close_set ADΔφ ) nsψ (ad_agr_close_set ADΔψ ) =
    eval_conj_set AD nsφ (ad_agr_close_set ADΔφ ) nsψ (ad_agr_close_set ADΔψ )"
    apply (rule idx_join[OF _ _ sd_ns])
    unfolding ad_agr_Xφ ad_agr_Xψ
    by (auto simp: fo_nmlz_sound fo_nmlz_length proj_vals_def)

  have fv_sub: "fv_fo_fmla (Conj φ ψ) = fv_fo_fmla φ  set (fv_fo_fmla_list ψ)"
    "fv_fo_fmla (Conj φ ψ) = fv_fo_fmla ψ  set (fv_fo_fmla_list φ)"
    by (auto simp: fv_fo_fmla_list_set)
  note res_left_alt = ext_tuple_ad_agr_close[OF Sφ_def AD_sub(1) AD_def(3)
       Xφ_def(1)[folded Sφ_def] nsφ'_def sorted_distinct_fv_list fv_sub(1)]
  note res_right_alt = ext_tuple_ad_agr_close[OF Sψ_def AD_sub(2) AD_def(4)
       Xψ_def(1)[folded Sψ_def] nsψ'_def sorted_distinct_fv_list fv_sub(2)]

  note eval_conj_set = eval_conj_set_correct[OF nsφ'_def[folded fv_fo_fmla_list_set]
       nsψ'_def[folded fv_fo_fmla_list_set] res_left_alt(2) res_right_alt(2)
       sorted_distinct_fv_list sorted_distinct_fv_list]
  have "X = fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat φ I σ UNIV} 
     fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat ψ I σ UNIV}"
    using AD_X_def
    apply (simp add: ts_def(1,2) Let_def ts_def(3,4)[symmetric] AD_def(5)[symmetric] idx_join_eval_conj[unfolded nsφ_def nsψ_def ADΔφ_def ADΔψ_def])
    unfolding eval_conj_set proj_fmla_def
    unfolding res_left_alt(1) res_right_alt(1) Sφ_def Sψ_def
    by auto
  then have eval: "eval_conj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ)  =
    eval_abs (Conj φ ψ) I"
    using proj_fmla_conj_sub[OF AD_def(4)[unfolded ts_def(4)], of φ]
    unfolding AD_X_def AD_def(1)[symmetric] n_def eval_abs_def
    by (auto simp: proj_fmla_map)
  have wf_conj: "wf_fo_intp (Conj φ ψ) I"
    using wf
    by (auto simp: ts_def)
  show ?thesis
    using fo_wf_eval_abs[OF wf_conj]
    by (auto simp: eval)
qed

lemma map_values_cluster: "(w z Z. Z  X  z  Z  w  f (h z) {z}  w  f (h z) Z) 
  (w z Z. Z  X  z  Z  w  f (h z) Z  (z'Z. w  f (h z) {z'})) 
  set_of_idx (Mapping.map_values f (cluster (Some  h) X)) = ((λx. f (h x) {x}) ` X)"
  apply transfer
  apply (auto simp: ran_def)
   apply (smt (verit, del_insts) mem_Collect_eq subset_eq)
  apply (smt (z3) imageI mem_Collect_eq subset_iff)
  done

lemma fo_nmlz_twice:
  assumes "sorted_distinct ns" "sorted_distinct ns'" "set ns  set ns'"
  shows "fo_nmlz AD (proj_tuple ns (zip ns' (fo_nmlz AD (map σ ns')))) = fo_nmlz AD (map σ ns)"
proof -
  obtain σ' where σ': "fo_nmlz AD (map σ ns') = map σ' ns'"
    using exists_map[where ?ys="fo_nmlz AD (map σ ns')" and ?xs=ns'] assms
    by (auto simp: fo_nmlz_length)
  have proj: "proj_tuple ns (zip ns' (map σ' ns')) = map σ' ns"
    by (rule proj_tuple_map[OF assms])
  show ?thesis
    unfolding σ' proj
    apply (rule fo_nmlz_eqI)
    using σ'
    by (metis ad_agr_list_comm ad_agr_list_subset assms(3) fo_nmlz_ad_agr)
qed

lemma map_values_cong:
  assumes "x y. Mapping.lookup t x = Some y  f x y = f' x y"
  shows "Mapping.map_values f t = Mapping.map_values f' t"
proof -
  have "map_option (f x) (Mapping.lookup t x) = map_option (f' x) (Mapping.lookup t x)" for x
    using assms
    by (cases "Mapping.lookup t x") auto
  then show ?thesis
    by (auto simp: lookup_map_values intro!: mapping_eqI)
qed

lemma ad_agr_close_set_length: "z  ad_agr_close_set AD X  (x. x  X  length x = n)  length z = n"
  by (auto simp: ad_agr_close_set_def ad_agr_close_def split: if_splits dest: ad_agr_close_rec_length)

lemma ad_agr_close_set_sound: "z  ad_agr_close_set (AD - AD') X  (x. x  X  fo_nmlzd AD' x)  AD'  AD  fo_nmlzd AD z"
  using ad_agr_close_sound[where ?X=AD' and ?Y="AD - AD'"]
  by (auto simp: ad_agr_close_set_def Set.is_empty_def split: if_splits) (metis Diff_partition Un_Diff_cancel)

lemma ext_tuple_set_length: "z  ext_tuple_set AD ns ns' X  (x. x  X  length x = length ns)  length z = length ns + length ns'"
  by (auto simp: ext_tuple_set_def ext_tuple_def fo_nmlz_length merge_length dest: nall_tuples_rec_length split: if_splits)

lemma eval_ajoin:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I " "fo_wf ψ I "
  shows "fo_wf (Conj φ (Neg ψ)) I
    (eval_ajoin (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ) )"
proof -
  obtain ADφ   ADψ   where ts_def:
    " = (ADφ, , )" " = (ADψ, , )"
    "ADφ = act_edom φ I" "ADψ = act_edom ψ I"
    using assms
    by (cases , cases ) auto
  have AD_sub: "act_edom φ I  ADφ" "act_edom ψ I  ADψ"
    by (auto simp: ts_def(3,4))

  obtain AD n X where AD_X_def:
    "eval_ajoin (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ)  = (AD, n, X)"
    by (cases "eval_ajoin (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ) ") auto
  have AD_def: "AD = act_edom (Conj φ (Neg ψ)) I"
    "act_edom (Conj φ (Neg ψ)) I  AD" "ADφ  AD" "ADψ  AD" "AD = ADφ  ADψ"
    using AD_X_def
    by (auto simp: ts_def Let_def)
  have n_def: "n = nfv (Conj φ (Neg ψ))"
    using AD_X_def
    by (auto simp: ts_def Let_def nfv_card fv_fo_fmla_list_set)

  define  where "  {σ. esat φ I σ UNIV}"
  define  where "  {σ. esat ψ I σ UNIV}"
  define both where "both = remdups_adj (sort (fv_fo_fmla_list φ @ fv_fo_fmla_list ψ))"
  define nsφ' where "nsφ' = filter (λn. n  fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
  define nsψ' where "nsψ' = filter (λn. n  fv_fo_fmla ψ) (fv_fo_fmla_list φ)"

  define ADΔφ where "ADΔφ = AD - ADφ"
  define ADΔψ where "ADΔψ = AD - ADψ"
  define nsφ where "nsφ = fv_fo_fmla_list φ"
  define nsψ where "nsψ = fv_fo_fmla_list ψ"
  define ns where "ns = filter (λn. n  set nsψ) nsφ"
  define Xφ' where "Xφ' = ext_tuple_set AD nsφ nsφ' (ad_agr_close_set ADΔφ )"
  define idxφ where "idxφ = cluster (Some  (λxs. fo_nmlz ADψ (proj_tuple ns (zip nsφ xs)))) (ad_agr_close_set ADΔφ )"
  define idxψ where "idxψ = cluster (Some  (λys. fo_nmlz ADψ (proj_tuple ns (zip nsψ ys)))) "
  define res where "res = Mapping.map_values (λxs X. case Mapping.lookup idxψ xs of
    Some Y  eval_conj_set AD nsφ X nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {xs} - Y))
    | _  ext_tuple_set AD nsφ nsφ' X) idxφ"

  note Xφ_def = fo_wf_X[OF wf(1)[unfolded ts_def(1)], unfolded proj_fmla_def, folded Sφ_def]
  note Xψ_def = fo_wf_X[OF wf(2)[unfolded ts_def(2)], unfolded proj_fmla_def, folded Sψ_def]

  have fv_sub: "fv_fo_fmla (Conj φ (Neg ψ)) = fv_fo_fmla ψ  set (fv_fo_fmla_list φ)"
    by (auto simp: fv_fo_fmla_list_set)
  have fv_sort: "fv_fo_fmla_list (Conj φ (Neg ψ)) = both"
    unfolding both_def
    apply (rule sorted_distinct_set_unique)
    using sorted_distinct_fv_list
    by (auto simp: fv_fo_fmla_list_def distinct_remdups_adj_sort)

  have AD_disj: "ADφ  ADΔφ = {}" "ADψ  ADΔψ = {}"
    by (auto simp: ADΔφ_def ADΔψ_def)
  have AD_delta: "AD = ADφ  ADΔφ" "AD = ADψ  ADΔψ"
    by (auto simp: ADΔφ_def ADΔψ_def AD_def ts_def)
  have fo_nmlzd_X: "Ball  (fo_nmlzd ADφ)" "Ball  (fo_nmlzd ADψ)"
    using wf
    by (auto simp: ts_def)
  have Ball_ad_agr: "Ball (ad_agr_close_set ADΔφ ) (fo_nmlzd AD)"
    using ad_agr_close_sound[where ?X="ADφ" and ?Y="ADΔφ"] fo_nmlzd_X(1)
    by (auto simp: ad_agr_close_set_eq[OF fo_nmlzd_X(1)] AD_disj AD_delta)
  have ad_agr_φ:
    "σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) ADφ σ τ  σ    τ  "
    "σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD σ τ  σ    τ  "
    using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono AD_sub(1) subset_trans[OF AD_sub(1) AD_def(3)]
    unfolding Sφ_def
    by blast+
  have ad_agr_Sφ: "τ'    ad_agr_list ADφ (map τ' nsφ) (map τ'' nsφ)  τ''  " for τ' τ''
    using ad_agr_φ
    by (auto simp: ad_agr_list_link nsφ_def)
  have ad_agr_ψ:
    "σ τ. ad_agr_sets (set (fv_fo_fmla_list ψ)) (set (fv_fo_fmla_list ψ)) ADψ σ τ  σ    τ  "
    using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono[OF AD_sub(2)]
    unfolding Sψ_def
    by blast+
  have ad_agr_Sψ: "τ'    ad_agr_list ADψ (map τ' nsψ) (map τ'' nsψ)  τ''  " for τ' τ''
    using ad_agr_ψ
    by (auto simp: ad_agr_list_link nsψ_def)
  have aux: "sorted_distinct nsφ" "sorted_distinct nsφ'" "sorted_distinct both" "set nsφ  set nsφ' = {}" "set nsφ  set nsφ' = set both"
    by (auto simp: nsφ_def nsφ'_def fv_sort[symmetric] fv_fo_fmla_list_set sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
  have aux2: "nsφ' = filter (λn. n  set nsφ) nsφ'" "nsφ = filter (λn. n  set nsφ') nsφ"
    by (auto simp: nsφ_def nsφ'_def nsψ_def nsψ'_def fv_fo_fmla_list_set)
  have aux3: "set nsφ'  set ns = {}" "set nsφ'  set ns = set nsψ"
    by (auto simp: nsφ_def nsφ'_def nsψ_def ns_def fv_fo_fmla_list_set)
  have aux4: "set ns  set nsφ' = {}" "set ns  set nsφ' = set nsψ"
    by (auto simp: nsφ_def nsφ'_def nsψ_def ns_def fv_fo_fmla_list_set)
  have aux5: "nsφ' = filter (λn. n  set nsφ) nsψ" "nsψ' = filter (λn. n  set nsψ) nsφ"
    by (auto simp: nsφ_def nsφ'_def nsψ_def nsψ'_def fv_fo_fmla_list_set)
  have aux6: "set nsψ  set nsψ' = {}" "set nsψ  set nsψ' = set both"
    by (auto simp: nsφ_def nsφ'_def nsψ_def nsψ'_def both_def fv_fo_fmla_list_set)
  have ns_sd: "sorted_distinct ns" "sorted_distinct nsφ" "sorted_distinct nsψ" "set ns  set nsφ" "set ns  set nsψ" "set ns  set both" "set nsφ'  set nsψ" "set nsψ  set both"
    by (auto simp: ns_def nsφ_def nsφ'_def nsψ_def both_def sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
  have ns_sd': "sorted_distinct nsψ'"
    by (auto simp: nsψ'_def sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
  have ns: "ns = filter (λn. n  fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
    by (rule sorted_distinct_set_unique)
       (auto simp: ns_def nsφ_def nsψ_def fv_fo_fmla_list_set sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
  have len_nsψ: "length ns + length nsφ' = length nsψ"
    using sum_length_filter_compl[where ?P="λn. n  fv_fo_fmla φ" and ?xs="fv_fo_fmla_list ψ"]
    by (auto simp: ns nsφ_def nsφ'_def nsψ_def fv_fo_fmla_list_set)

  have res_eq: "res = Mapping.map_values (λxs X. case Mapping.lookup idxψ xs of
    Some Y  idx_join AD ns nsφ X nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {xs} - Y))
    | _  ext_tuple_set AD nsφ nsφ' X) idxφ"
  proof -
    have ad_agr_Xφ: "ad_agr_close_set ADΔφ  = fo_nmlz AD ` proj_vals  nsφ"
      unfolding Xφ_def ad_agr_close_set_nmlz_eq nsφ_def[symmetric]
      apply (rule ad_agr_close_set_correct[OF AD_def(3) aux(1), folded ADΔφ_def])
      using ad_agr_Sφ ad_agr_list_comm
      by (fastforce simp: ad_agr_list_link)
    have idx_eval: "idx_join AD ns nsφ y nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2)) =
       eval_conj_set AD nsφ y nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2))"
      if lup: "Mapping.lookup idxφ x = Some y" "Mapping.lookup idxψ x = Some x2" for x y x2
    proof -
      have "vs  y  fo_nmlzd AD vs  length vs = length nsφ" for vs
        using lup(1)
        by (auto simp: idxφ_def lookup_cluster' ad_agr_Xφ fo_nmlz_sound fo_nmlz_length proj_vals_def split: if_splits)
      moreover have "vs  ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2)  fo_nmlzd AD vs" for vs
        apply (rule ad_agr_close_set_sound[OF _ _ AD_def(4), folded ADΔψ_def, where ?X="ext_tuple_set ADψ ns nsφ' {x} - x2"])
        using lup(1)
        by (auto simp: idxφ_def lookup_cluster' ext_tuple_set_def fo_nmlz_sound split: if_splits)
      moreover have "vs  ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2)  length vs = length nsψ" for vs
        apply (erule ad_agr_close_set_length)
        apply (rule ext_tuple_set_length[where ?AD=ADψ and ?ns=ns and ?ns'=nsφ' and ?X="{x}", unfolded len_nsψ])
        using lup(1) ns_sd(1,2,4)
        by (auto simp: idxφ_def lookup_cluster' fo_nmlz_length ad_agr_Xφ proj_vals_def intro!: proj_tuple_length split: if_splits)
      ultimately show ?thesis
        by (auto intro!: idx_join[OF _ _ ns_sd(2-3) ns_def])
    qed
    show ?thesis
      unfolding res_def
      by (rule map_values_cong) (auto simp: idx_eval split: option.splits)
  qed

  have eval_conj: "eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)) =
  ext_tuple_set AD nsφ nsφ' {x}  ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
    if x_ns: "proj_tuple ns (zip nsφ x) = map σ' ns"
      and x_proj_singleton: "{x} = fo_nmlz AD ` proj_vals {σ} nsφ"
      and Some: "Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) = Some Y"
    for x Y σ σ'
  proof -
    have "Y = {ys  fo_nmlz ADψ ` proj_vals  nsψ. fo_nmlz ADψ (proj_tuple ns (zip nsψ ys)) = fo_nmlz ADψ (map σ' ns)}"
      using Some
      apply (auto simp: Xψ_def idxψ_def nsψ_def x_ns lookup_cluster' split: if_splits)
      done
    moreover have " = fo_nmlz ADψ ` proj_vals {σ  . fo_nmlz ADψ (map σ ns) = fo_nmlz ADψ (map σ' ns)} nsψ"
      by (auto simp: proj_vals_def fo_nmlz_twice[OF ns_sd(1,3,5)])+
    moreover have " = fo_nmlz ADψ ` proj_vals {σ  . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
      by (auto simp: fo_nmlz_eq)
    ultimately have Y_def: "Y = fo_nmlz ADψ ` proj_vals {σ  . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
      by auto
    have R_def: "{fo_nmlz ADψ (map σ' ns)} = fo_nmlz ADψ ` proj_vals {σ. ad_agr_list ADψ (map σ ns) (map σ' ns)} ns"
      using ad_agr_list_refl
      by (auto simp: proj_vals_def intro: fo_nmlz_eqI)
    have "ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} = fo_nmlz ADψ ` proj_vals {σ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
      apply (rule ext_tuple_correct[OF ns_sd(1) aux(2) ns_sd(3) aux4 R_def])
      using ad_agr_list_trans ad_agr_list_comm
      apply (auto simp: ad_agr_list_link)
      by fast
    then have "ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} - Y = fo_nmlz ADψ ` proj_vals {σ  -. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
      apply (auto simp: Y_def proj_vals_def fo_nmlz_eq)
      using ad_agr_Sψ ad_agr_list_comm
      by blast+
    moreover have "ad_agr_close_set ADΔψ (fo_nmlz ADψ ` proj_vals {σ  -. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) =
      fo_nmlz AD ` proj_vals {σ  -. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
      unfolding ad_agr_close_set_eq[OF Ball_fo_nmlzd]
      apply (rule ad_agr_close_set_correct[OF AD_def(4) ns_sd(3), folded ADΔψ_def])
      apply (auto simp: ad_agr_list_link)
      using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(5)] ad_agr_list_trans
      by blast+
    ultimately have comp_proj: "ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} - Y) =
          fo_nmlz AD ` proj_vals {σ  -. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
      by simp
    have "ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) = fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
      apply (rule ext_tuple_correct[OF ns_sd(3) ns_sd'(1) aux(3) aux6 refl])
      apply (auto simp: ad_agr_list_link)
      using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(5)] ad_agr_list_trans ad_agr_list_mono[OF AD_def(4)]
      by fast+
    show "eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)) =
      ext_tuple_set AD nsφ nsφ' {x}  ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
      unfolding x_ns comp_proj
      using eval_conj_set_correct[OF aux5 x_proj_singleton refl aux(1) ns_sd(3)]
      by auto
  qed

  have "X = set_of_idx res"
    using AD_X_def
    unfolding eval_ajoin.simps ts_def(1,2) Let_def AD_def(5)[symmetric] fv_fo_fmla_list_set
      nsφ'_def[symmetric] fv_sort[symmetric] proj_fmla_def Sφ_def[symmetric] Sψ_def[symmetric]
      ADΔφ_def[symmetric] ADΔψ_def[symmetric]
      nsφ_def[symmetric] nsφ'_def[symmetric, folded fv_fo_fmla_list_set[of φ, folded nsφ_def] nsψ_def] nsψ_def[symmetric] ns_def[symmetric]
      Xφ'_def[symmetric] idxφ_def[symmetric] idxψ_def[symmetric] res_eq[symmetric]
    by auto
  moreover have " = (xad_agr_close_set ADΔφ .
      case Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) of None  ext_tuple_set AD nsφ nsφ' {x}
      | Some Y  eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)))"
    unfolding res_def[unfolded idxφ_def]
    apply (rule map_values_cluster)
     apply (auto simp: eval_conj_set_def split: option.splits)
     apply (auto simp: ext_tuple_set_def split: if_splits)
    done
  moreover have " = fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat φ I σ UNIV} -
     fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat ψ I σ UNIV}"
    unfolding Sφ_def[symmetric] Sψ_def[symmetric] proj_fmla_def fv_sort
  proof (rule set_eqI, rule iffI)
    fix t
    assume "t  (xad_agr_close_set ADΔφ . case Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) of
      None  ext_tuple_set AD nsφ nsφ' {x}
    | Some Y  eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)))"
    then obtain x where x: "x  ad_agr_close_set ADΔφ "
      "Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) = None  t  ext_tuple_set AD nsφ nsφ' {x}"
      "Y. Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) = Some Y 
      t  eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y))"
      by (fastforce split: option.splits)
    obtain σ where val: "σ  " "x = fo_nmlz AD (map σ nsφ)"
      using ad_agr_close_correct[OF AD_def(3) ad_agr_φ(1), folded ADΔφ_def] Xφ_def[folded proj_fmla_def] ad_agr_close_set_eq[OF fo_nmlzd_X(1)] x(1)
      apply (auto simp: proj_fmla_def proj_vals_def nsφ_def)
      apply fast
      done
    obtain σ' where σ': "x = map σ' nsφ"
      using exists_map[where ?ys=x and ?xs=nsφ] aux(1)
      by (auto simp: val(2) fo_nmlz_length)
    have x_proj_singleton: "{x} = fo_nmlz AD ` proj_vals {σ} nsφ"
      by (auto simp: val(2) proj_vals_def)
    have x_ns: "proj_tuple ns (zip nsφ x) = map σ' ns"
      unfolding σ'
      by (rule proj_tuple_map[OF ns_sd(1-2,4)])
    have ad_agr_σ_σ': "ad_agr_list AD (map σ nsφ) (map σ' nsφ)"
      using σ'
      by (auto simp: val(2)) (metis fo_nmlz_ad_agr)
    have x_proj_ad_agr: "{x} = fo_nmlz AD ` proj_vals {σ. ad_agr_list AD (map σ nsφ) (map σ' nsφ)} nsφ"
      using ad_agr_σ_σ' ad_agr_list_comm ad_agr_list_trans
      by (auto simp: val(2) proj_vals_def fo_nmlz_eq) blast
    have "t  fo_nmlz AD `  (ext_tuple AD nsφ nsφ' ` {x})  fo_nmlz AD (proj_tuple nsφ (zip both t))  {x}"
      apply (rule ext_tuple_sound(1)[OF aux x_proj_ad_agr])
       apply (auto simp: ad_agr_list_link)
      using ad_agr_list_comm ad_agr_list_trans
      by blast+
    then have x_proj: "t  ext_tuple_set AD nsφ nsφ' {x}  x = fo_nmlz AD (proj_tuple nsφ (zip both t))"
      using ext_tuple_set_eq[where ?AD=AD] Ball_ad_agr x(1)
      by (auto simp: val(2) proj_vals_def)
    have x_Sφ: "t  ext_tuple_set AD nsφ nsφ' {x}  t  fo_nmlz AD ` proj_vals  both"
      using ext_tuple_correct[OF aux refl ad_agr_φ(2)[folded nsφ_def]] ext_tuple_set_mono[of "{x}" "fo_nmlz AD ` proj_vals  nsφ"] val(1)
      by (fastforce simp: val(2) proj_vals_def)
    show "t  fo_nmlz AD ` proj_vals  both - fo_nmlz AD ` proj_vals  both"
    proof (cases "Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x)))")
      case None
      have "False" if t_in_Sψ: "t  fo_nmlz AD ` proj_vals  both"
      proof -
        obtain τ where τ: "τ  " "t = fo_nmlz AD (map τ both)"
          using t_in_Sψ
          by (auto simp: proj_vals_def)
        obtain τ' where t_τ': "t = map τ' both"
          using aux(3) exists_map[where ?ys=t and ?xs=both]
          by (auto simp: τ(2) fo_nmlz_length)
        obtain τ'' where τ'': "fo_nmlz ADψ (map τ nsψ) = map τ'' nsψ"
          using ns_sd exists_map[where ?ys="fo_nmlz ADψ (map τ nsψ)" and xs=nsψ]
          by (auto simp: fo_nmlz_length)
        have proj_τ'': "proj_tuple ns (zip nsψ (map τ'' nsψ)) = map τ'' ns"
          apply (rule proj_tuple_map)
          using ns_sd
          by auto
        have "proj_tuple nsφ (zip both t) = map τ' nsφ"
          unfolding t_τ'
          apply (rule proj_tuple_map)
          using aux
          by auto
        then have x_τ': "x = fo_nmlz AD (map τ' nsφ)"
          by (auto simp: x_proj[OF x(2)[OF None]])
        obtain τ''' where τ''': "x = map τ''' nsφ"
          using aux exists_map[where ?ys=x and ?xs=nsφ]
          by (auto simp: x_τ' fo_nmlz_length)
        have ad_τ_τ': "ad_agr_list AD (map τ both) (map τ' both)"
          using t_τ'
          by (auto simp: τ) (metis fo_nmlz_ad_agr)
        have ad_τ_τ'': "ad_agr_list ADψ (map τ nsψ) (map τ'' nsψ)"
          using τ''
          by (metis fo_nmlz_ad_agr)
        have ad_τ'_τ''': "ad_agr_list AD (map τ' nsφ) (map τ''' nsφ)"
          using τ'''
          by (auto simp: x_τ') (metis fo_nmlz_ad_agr)
        have proj_τ''': "proj_tuple ns (zip nsφ (map τ''' nsφ)) = map τ''' ns"
          apply (rule proj_tuple_map)
          using aux ns_sd
          by auto
        have "fo_nmlz ADψ (proj_tuple ns (zip nsφ x)) = fo_nmlz ADψ (proj_tuple ns (zip nsψ (fo_nmlz ADψ (map τ nsψ))))"
          unfolding τ'' proj_τ'' τ''' proj_τ'''
          apply (rule fo_nmlz_eqI)
          using ad_agr_list_trans ad_agr_list_subset ns_sd(4-6) ad_agr_list_mono[OF AD_def(4)] ad_agr_list_comm[OF ad_τ'_τ'''] ad_agr_list_comm[OF ad_τ_τ'] ad_τ_τ''
          by metis
        then show ?thesis
          using None τ(1)
          by (auto simp: idxψ_def lookup_cluster' Xψ_def nsψ_def[symmetric] proj_vals_def split: if_splits)
      qed
      then show ?thesis
        using x_Sφ[OF x(2)[OF None]]
        by auto
    next
      case (Some Y)
      have t_in: "t  ext_tuple_set AD nsφ nsφ' {x}" "t  ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
        using x(3)[OF Some] eval_conj[OF x_ns x_proj_singleton Some]
        by auto
      have "ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) = fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
        apply (rule ext_tuple_correct[OF ns_sd(3) ns_sd'(1) aux(3) aux6 refl])
        apply (auto simp: ad_agr_list_link)
        using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(5)] ad_agr_list_trans ad_agr_list_mono[OF AD_def(4)]
        by fast+
      then have t_both: "t  fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
        using t_in(2)
        by auto
      {
        assume "t  fo_nmlz AD ` proj_vals  both"
        then obtain τ where τ: "τ  " "t = fo_nmlz AD (map τ both)"
          by (auto simp: proj_vals_def)
        obtain τ' where τ': "τ'  " "t = fo_nmlz AD (map τ' both)"
          using t_both
          by (auto simp: proj_vals_def)
        have "False"
          using τ τ'
          apply (auto simp: fo_nmlz_eq)
          using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(8)] ad_agr_list_mono[OF AD_def(4)]
          by blast
      }
      then show ?thesis
        using x_Sφ[OF t_in(1)]
        by auto
    qed
  next
    fix t
    assume t_in_asm: "t  fo_nmlz AD ` proj_vals  both - fo_nmlz AD ` proj_vals  both"
    then obtain σ where val: "σ  " "t = fo_nmlz AD (map σ both)"
      by (auto simp: proj_vals_def)
    define x where "x = fo_nmlz AD (map σ nsφ)"
    obtain σ' where σ': "x = map σ' nsφ"
      using exists_map[where ?ys=x and ?xs=nsφ] aux(1)
      by (auto simp: x_def fo_nmlz_length)
    have x_proj_singleton: "{x} = fo_nmlz AD ` proj_vals {σ} nsφ"
      by (auto simp: x_def proj_vals_def)
    have x_in_ad_agr_close: "x  ad_agr_close_set ADΔφ "
      using ad_agr_close_correct[OF AD_def(3) ad_agr_φ(1), folded ADΔφ_def] val(1)
      unfolding ad_agr_close_set_eq[OF fo_nmlzd_X(1)] x_def
      unfolding Xφ_def[folded proj_fmla_def] proj_fmla_map
      by (fastforce simp: x_def nsφ_def)
    have ad_agr_σ_σ': "ad_agr_list AD (map σ nsφ) (map σ' nsφ)"
      using σ'
      by (auto simp: x_def) (metis fo_nmlz_ad_agr)
    have x_proj_ad_agr: "{x} = fo_nmlz AD ` proj_vals {σ. ad_agr_list AD (map σ nsφ) (map σ' nsφ)} nsφ"
      using ad_agr_σ_σ' ad_agr_list_comm ad_agr_list_trans
      by (auto simp: x_def proj_vals_def fo_nmlz_eq) blast+
    have x_ns: "proj_tuple ns (zip nsφ x) = map σ' ns"
      unfolding σ'
      by (rule proj_tuple_map[OF ns_sd(1-2,4)])
    have "ext_tuple_set AD nsφ nsφ' {x} = fo_nmlz AD ` proj_vals {σ. ad_agr_list AD (map σ nsφ) (map σ' nsφ)} both"
      apply (rule ext_tuple_correct[OF aux x_proj_ad_agr])
      using ad_agr_list_comm ad_agr_list_trans
      by (auto simp: ad_agr_list_link) blast+
    then have t_in_ext_x: "t  ext_tuple_set AD nsφ nsφ' {x}"
      using ad_agr_σ_σ'
      by (auto simp: val(2) proj_vals_def)
    {
      fix Y
      assume Some: "Mapping.lookup idxψ (fo_nmlz ADψ (map σ' ns)) = Some Y"
      have tmp: "proj_tuple ns (zip nsφ x) = map σ' ns"
        unfolding σ'
        by (rule proj_tuple_map[OF ns_sd(1) aux(1) ns_sd(4)])
      have unfold: "ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) =
        fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
        apply (rule ext_tuple_correct[OF ns_sd(3) ns_sd'(1) aux(3) aux6 refl])
        apply (auto simp: ad_agr_list_link)
        using ad_agr_Sψ ad_agr_list_mono[OF AD_def(4)] ad_agr_list_comm ad_agr_list_trans ad_agr_list_subset[OF ns_sd(5)]
        by blast+
      have "σ  "
        using t_in_asm
        by (auto simp: val(2) proj_vals_def)
      moreover have "ad_agr_list ADψ (map σ ns) (map σ' ns)"
        using ad_agr_σ_σ' ad_agr_list_mono[OF AD_def(4)] ad_agr_list_subset[OF ns_sd(4)]
        by blast
      ultimately have "t  ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ  - . ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
        unfolding unfold val(2)
        by (auto simp: proj_vals_def)
      then have "t  eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} - Y))"
        using eval_conj[OF tmp x_proj_singleton Some[folded x_ns]] t_in_ext_x
        by (auto simp: x_ns)
    }
    then show "t  (xad_agr_close_set ADΔφ . case Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) of
      None  ext_tuple_set AD nsφ nsφ' {x}
    | Some Y  eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)))"
      using t_in_ext_x
      by (intro UN_I[OF x_in_ad_agr_close]) (auto simp: x_ns split: option.splits)
  qed
  ultimately have X_def: "X = fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat φ I σ UNIV} -
    fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat ψ I σ UNIV}"
    by simp

  have AD_Neg_sub: "act_edom (Neg ψ) I  AD"
    by (auto simp: AD_def(1))
  have "X = fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat φ I σ UNIV} 
    fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat (Neg ψ) I σ UNIV}"
    unfolding X_def
    by (auto simp: proj_fmla_map dest!: fo_nmlz_eqD)
       (metis AD_def(4) ad_agr_list_subset esat_UNIV_ad_agr_list fv_fo_fmla_list_set fv_sub
        sup_ge1 ts_def(4))
  then have eval: "eval_ajoin (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ)  =
    eval_abs (Conj φ (Neg ψ)) I"
    using proj_fmla_conj_sub[OF AD_Neg_sub, of φ]
    unfolding AD_X_def AD_def(1)[symmetric] n_def eval_abs_def
    by (auto simp: proj_fmla_map)
  have wf_conj_neg: "wf_fo_intp (Conj φ (Neg ψ)) I"
    using wf
    by (auto simp: ts_def)
  show ?thesis
    using fo_wf_eval_abs[OF wf_conj_neg]
    by (auto simp: eval)
qed

lemma eval_disj:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I " "fo_wf ψ I "
  shows "fo_wf (Disj φ ψ) I
    (eval_disj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ) )"
proof -
  obtain ADφ   ADψ   where ts_def:
    " = (ADφ, , )" " = (ADψ, , )"
    "ADφ = act_edom φ I" "ADψ = act_edom ψ I"
    using assms
    by (cases , cases ) auto
  have AD_sub: "act_edom φ I  ADφ" "act_edom ψ I  ADψ"
    by (auto simp: ts_def(3,4))

  obtain AD n X where AD_X_def:
    "eval_disj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ)  = (AD, n, X)"
    by (cases "eval_disj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ) ") auto
  have AD_def: "AD = act_edom (Disj φ ψ) I" "act_edom (Disj φ ψ) I  AD"
    "ADφ  AD" "ADψ  AD" "AD = ADφ  ADψ"
    using AD_X_def
    by (auto simp: ts_def Let_def)
  have n_def: "n = nfv (Disj φ ψ)"
    using AD_X_def
    by (auto simp: ts_def Let_def nfv_card fv_fo_fmla_list_set)

  define  where "  {σ. esat φ I σ UNIV}"
  define  where "  {σ. esat ψ I σ UNIV}"
  define nsφ' where "nsφ' = filter (λn. n  fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
  define nsψ' where "nsψ' = filter (λn. n  fv_fo_fmla ψ) (fv_fo_fmla_list φ)"

  note Xφ_def = fo_wf_X[OF wf(1)[unfolded ts_def(1)], unfolded proj_fmla_def, folded Sφ_def]
  note Xψ_def = fo_wf_X[OF wf(2)[unfolded ts_def(2)], unfolded proj_fmla_def, folded Sψ_def]
  have fv_sub: "fv_fo_fmla (Disj φ ψ) = fv_fo_fmla φ  set (fv_fo_fmla_list ψ)"
    "fv_fo_fmla (Disj φ ψ) = fv_fo_fmla ψ  set (fv_fo_fmla_list φ)"
    by (auto simp: fv_fo_fmla_list_set)
  note res_left_alt = ext_tuple_ad_agr_close[OF Sφ_def AD_sub(1) AD_def(3)
       Xφ_def(1)[folded Sφ_def] nsφ'_def sorted_distinct_fv_list fv_sub(1)]
  note res_right_alt = ext_tuple_ad_agr_close[OF Sψ_def AD_sub(2) AD_def(4)
       Xψ_def(1)[folded Sψ_def] nsψ'_def sorted_distinct_fv_list fv_sub(2)]

  have "X = fo_nmlz AD ` proj_fmla (Disj φ ψ) {σ. esat φ I σ UNIV} 
     fo_nmlz AD ` proj_fmla (Disj φ ψ) {σ. esat ψ I σ UNIV}"
    using AD_X_def
    apply (simp add: ts_def(1,2) Let_def AD_def(5)[symmetric])
    unfolding fv_fo_fmla_list_set proj_fmla_def nsφ'_def[symmetric] nsψ'_def[symmetric]
      Sφ_def[symmetric] Sψ_def[symmetric]
    using res_left_alt(1) res_right_alt(1)
    by auto
  then have eval: "eval_disj (fv_fo_fmla_list φ)  (fv_fo_fmla_list ψ)  =
    eval_abs (Disj φ ψ) I"
    unfolding AD_X_def AD_def(1)[symmetric] n_def eval_abs_def
    by (auto simp: proj_fmla_map)
  have wf_disj: "wf_fo_intp (Disj φ ψ) I"
    using wf
    by (auto simp: ts_def)
  show ?thesis
    using fo_wf_eval_abs[OF wf_disj]
    by (auto simp: eval)
qed

lemma fv_ex_all:
  assumes "pos i (fv_fo_fmla_list φ) = None"
  shows "fv_fo_fmla_list (Exists i φ) = fv_fo_fmla_list φ"
    "fv_fo_fmla_list (Forall i φ) = fv_fo_fmla_list φ"
  using pos_complete[of i "fv_fo_fmla_list φ"] fv_fo_fmla_list_eq[of "Exists i φ" φ]
    fv_fo_fmla_list_eq[of "Forall i φ" φ] assms
  by (auto simp: fv_fo_fmla_list_set)

lemma nfv_ex_all:
  assumes Some: "pos i (fv_fo_fmla_list φ) = Some j"
  shows "nfv φ = Suc (nfv (Exists i φ))" "nfv φ = Suc (nfv (Forall i φ))"
proof -
  have "i  fv_fo_fmla φ" "j < nfv φ" "i  set (fv_fo_fmla_list φ)"
    using fv_fo_fmla_list_set pos_set[of i "fv_fo_fmla_list φ"]
      pos_length[of i "fv_fo_fmla_list φ"] Some
    by (fastforce simp: nfv_def)+
  then show "nfv φ = Suc (nfv (Exists i φ))" "nfv φ = Suc (nfv (Forall i φ))"
    using nfv_card[of φ] nfv_card[of "Exists i φ"] nfv_card[of "Forall i φ"]
    by (auto simp: finite_fv_fo_fmla)
qed

lemma fv_fo_fmla_list_exists: "fv_fo_fmla_list (Exists n φ) = filter ((≠) n) (fv_fo_fmla_list φ)"
  by (auto simp: fv_fo_fmla_list_def)
     (metis (mono_tags, lifting) distinct_filter distinct_remdups_adj_sort
      distinct_remdups_id filter_set filter_sort remdups_adj_set sorted_list_of_set_sort_remdups
      sorted_remdups_adj sorted_sort sorted_sort_id)

lemma eval_exists:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I t"
  shows "fo_wf (Exists i φ) I (eval_exists i (fv_fo_fmla_list φ) t)"
proof -
  obtain AD n X where t_def: "t = (AD, n, X)"
    "AD = act_edom φ I" "AD = act_edom (Exists i φ) I"
    using assms
    by (cases t) auto
  note X_def = fo_wf_X[OF wf[unfolded t_def], folded t_def(2)]
  have eval: "eval_exists i (fv_fo_fmla_list φ) t = eval_abs (Exists i φ) I"
  proof (cases "pos i (fv_fo_fmla_list φ)")
    case None
    note fv_eq = fv_ex_all[OF None]
    have "X = fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat φ I σ UNIV}"
      unfolding X_def
      by (auto simp: proj_fmla_def fv_eq)
    also have " = fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
      using esat_exists_not_fv[of i φ UNIV I] pos_complete[OF None]
      by (simp add: fv_fo_fmla_list_set)
    finally show ?thesis
      by (auto simp: t_def None eval_abs_def fv_eq nfv_def)
  next
    case (Some j)
    have "fo_nmlz AD ` rem_nth j ` X =
      fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
    proof (rule set_eqI, rule iffI)
      fix vs
      assume "vs  fo_nmlz AD ` rem_nth j ` X"
      then obtain ws where ws_def: "ws  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
        "vs = fo_nmlz AD (rem_nth j ws)"
        unfolding X_def
        by auto
      then obtain σ where σ_def: "esat φ I σ UNIV"
        "ws = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
        by (auto simp: proj_fmla_map)
      obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
        using fo_nmlz_map σ_def(2)
        by blast
      have esat_τ: "esat (Exists i φ) I τ UNIV"
        using esat_UNIV_ad_agr_list[OF fo_nmlz_ad_agr[of AD "map σ (fv_fo_fmla_list φ)",
              folded σ_def(2), unfolded τ_def]] σ_def(1)
        by (auto simp: t_def intro!: exI[of _ "τ i"])
      have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Exists i φ))"
        using rem_nth_sound[of "fv_fo_fmla_list φ" i j τ] sorted_distinct_fv_list Some
        unfolding fv_fo_fmla_list_exists τ_def
        by auto
      have "vs  fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
        using ws_def(2) esat_τ
        unfolding rem_nth_ws
        by (auto simp: proj_fmla_map)
      then show "vs  fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
        by auto
    next
      fix vs
      assume assm: "vs  fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
      from assm obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list (Exists i φ)))"
        "esat (Exists i φ) I σ UNIV"
        by (auto simp: proj_fmla_map)
      then obtain x where x_def: "esat φ I (σ(i := x)) UNIV"
        by auto
      define ws where "ws  fo_nmlz AD (map (σ(i := x)) (fv_fo_fmla_list φ))"
      then have "length ws = nfv φ"
        using nfv_def fo_nmlz_length by (metis length_map)
      then have ws_in: "ws  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
        using x_def ws_def
        by (auto simp: fo_nmlz_sound proj_fmla_map)
      obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
        using fo_nmlz_map ws_def
        by blast
      have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Exists i φ))"
        using rem_nth_sound[of "fv_fo_fmla_list φ" i j] sorted_distinct_fv_list Some
        unfolding fv_fo_fmla_list_exists τ_def
        by auto
      have "set (fv_fo_fmla_list (Exists i φ))  set (fv_fo_fmla_list φ)"
        by (auto simp: fv_fo_fmla_list_exists)
      then have ad_agr: "ad_agr_list AD (map (σ(i := x)) (fv_fo_fmla_list (Exists i φ)))
        (map τ (fv_fo_fmla_list (Exists i φ)))"
        by (rule ad_agr_list_subset)
          (rule fo_nmlz_ad_agr[of AD "map (σ(i := x)) (fv_fo_fmla_list φ)", folded ws_def,
              unfolded τ_def])
      have map_fv_cong: "map (σ(i := x)) (fv_fo_fmla_list (Exists i φ)) =
        map σ (fv_fo_fmla_list (Exists i φ))"
        by (auto simp: fv_fo_fmla_list_exists)
      have vs_rem_nth: "vs = fo_nmlz AD (rem_nth j ws)"
        unfolding σ_def(1) rem_nth_ws
        apply (rule fo_nmlz_eqI)
        using ad_agr[unfolded map_fv_cong] .
      show "vs  fo_nmlz AD ` rem_nth j ` X"
        using Some ws_in
        unfolding vs_rem_nth X_def
        by auto
    qed
    then show ?thesis
      using nfv_ex_all[OF Some]
      by (auto simp: t_def Some eval_abs_def nfv_def)
  qed
  have wf_ex: "wf_fo_intp (Exists i φ) I"
    using wf
    by (auto simp: t_def)
  show ?thesis
    using fo_wf_eval_abs[OF wf_ex]
    by (auto simp: eval)
qed

lemma fv_fo_fmla_list_forall: "fv_fo_fmla_list (Forall n φ) = filter ((≠) n) (fv_fo_fmla_list φ)"
  by (auto simp: fv_fo_fmla_list_def)
     (metis (mono_tags, lifting) distinct_filter distinct_remdups_adj_sort
      distinct_remdups_id filter_set filter_sort remdups_adj_set sorted_list_of_set_sort_remdups
      sorted_remdups_adj sorted_sort sorted_sort_id)

lemma pairwise_take_drop:
  assumes "pairwise P (set (zip xs ys))" "length xs = length ys"
  shows "pairwise P (set (zip (take i xs @ drop (Suc i) xs) (take i ys @ drop (Suc i) ys)))"
  by (rule pairwise_subset[OF assms(1)]) (auto simp: set_zip assms(2))

lemma fo_nmlz_set_card:
  "fo_nmlz AD xs = xs  set xs = set xs  Inl ` AD  Inr ` {..<card (Inr -` set xs)}"
  by (metis fo_nmlz_sound fo_nmlzd_set card_Inr_vimage_le_length min.absorb2)

lemma ad_agr_list_take_drop: "ad_agr_list AD xs ys 
  ad_agr_list AD (take i xs @ drop (Suc i) xs) (take i ys @ drop (Suc i) ys)"
  apply (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def)
    apply (metis take_zip in_set_takeD)
   apply (metis drop_zip in_set_dropD)
  using pairwise_take_drop
  by fastforce

lemma fo_nmlz_rem_nth_add_nth:
  assumes "fo_nmlz AD zs = zs" "i  length zs"
  shows "fo_nmlz AD (rem_nth i (fo_nmlz AD (add_nth i z zs))) = zs"
proof -
  have ad_agr: "ad_agr_list AD (add_nth i z zs) (fo_nmlz AD (add_nth i z zs))"
    using fo_nmlz_ad_agr
    by auto
  have i_lt_add: "i < length (add_nth i z zs)" "i < length (fo_nmlz AD (add_nth i z zs))"
    using add_nth_length assms(2)
    by (fastforce simp: fo_nmlz_length)+
  show ?thesis
    using ad_agr_list_take_drop[OF ad_agr, of i, folded rem_nth_take_drop[OF i_lt_add(1)]
        rem_nth_take_drop[OF i_lt_add(2)], unfolded rem_nth_add_nth[OF assms(2)]]
    apply (subst eq_commute)
    apply (subst assms(1)[symmetric])
    apply (auto intro: fo_nmlz_eqI)
    done
qed

lemma ad_agr_list_add:
  assumes "ad_agr_list AD xs ys" "i  length xs"
  shows "z'  Inl ` AD  Inr ` {..<Suc (card (Inr -` set ys))}  set ys.
    ad_agr_list AD (take i xs @ z # drop i xs) (take i ys @ z' # drop i ys)"
proof -
  define n where "n = length xs"
  have len_ys: "n = length ys"
    using assms(1)
    by (auto simp: ad_agr_list_def n_def)
  obtain σ where σ_def: "xs = map σ [0..<n]"
    unfolding n_def
    by (metis map_nth)
  obtain τ where τ_def: "ys = map τ [0..<n]"
    unfolding len_ys
    by (metis map_nth)
  have i_le_n: "i  n"
    using assms(2)
    by (auto simp: n_def)
  have set_n: "set [0..<n] = {..n} - {n}" "set ([0..<i] @ n # [i..<n]) = {..n}"
    using i_le_n
    by auto
  have ad_agr: "ad_agr_sets ({..n} - {n}) ({..n} - {n}) AD σ τ"
    using iffD2[OF ad_agr_list_link, OF assms(1)[unfolded σ_def τ_def]]
    unfolding set_n .
  have set_ys: "τ ` ({..n} - {n}) = set ys"
    by (auto simp: τ_def)
  obtain z' where z'_def: "z'  Inl ` AD  Inr ` {..<Suc (card (Inr -` set ys))}  set ys"
    "ad_agr_sets {..n} {..n} AD (σ(n := z)) (τ(n := z'))"
    using extend_τ[OF ad_agr subset_refl,
        of "Inl ` AD  Inr ` {..<Suc (card (Inr -` set ys))}  set ys" z]
    by (auto simp: set_ys)
  have map_take: "map (σ(n := z)) ([0..<i] @ n # [i..<n]) = take i xs @ z # drop i xs"
    "map (τ(n := z')) ([0..<i] @ n # [i..<n]) = take i ys @ z' # drop i ys"
    using i_le_n
    by (auto simp: σ_def τ_def take_map drop_map)
  show ?thesis
    using iffD1[OF ad_agr_list_link, OF z'_def(2)[unfolded set_n[symmetric]]] z'_def(1)
    unfolding map_take
    by auto
qed

lemma add_nth_restrict:
  assumes "fo_nmlz AD zs = zs" "i  length zs"
  shows "z'  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}.
    fo_nmlz AD (add_nth i z zs) = fo_nmlz AD (add_nth i z' zs)"
proof -
  have "set zs  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}"
    using fo_nmlz_set_card[OF assms(1)]
    by auto
  then obtain z' where z'_def:
    "z'  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}"
    "ad_agr_list AD (take i zs @ z # drop i zs) (take i zs @ z' # drop i zs)"
    using ad_agr_list_add[OF ad_agr_list_refl assms(2), of AD z]
    by auto blast
  then show ?thesis
    unfolding add_nth_take_drop[OF assms(2)]
    by (auto intro: fo_nmlz_eqI)
qed

lemma fo_nmlz_add_rem:
  assumes "i  length zs"
  shows "z'. fo_nmlz AD (add_nth i z zs) = fo_nmlz AD (add_nth i z' (fo_nmlz AD zs))"
proof -
  have ad_agr: "ad_agr_list AD zs (fo_nmlz AD zs)"
    using fo_nmlz_ad_agr
    by auto
  have i_le_fo_nmlz: "i  length (fo_nmlz AD zs)"
    using assms(1)
    by (auto simp: fo_nmlz_length)
  obtain x where x_def: "ad_agr_list AD (add_nth i z zs) (add_nth i x (fo_nmlz AD zs))"
    using ad_agr_list_add[OF ad_agr assms(1)]
    by (auto simp: add_nth_take_drop[OF assms(1)] add_nth_take_drop[OF i_le_fo_nmlz])
  then show ?thesis
    using fo_nmlz_eqI
    by auto
qed

lemma fo_nmlz_add_rem':
  assumes "i  length zs"
  shows "z'. fo_nmlz AD (add_nth i z (fo_nmlz AD zs)) = fo_nmlz AD (add_nth i z' zs)"
proof -
  have ad_agr: "ad_agr_list AD (fo_nmlz AD zs) zs"
    using ad_agr_list_comm[OF fo_nmlz_ad_agr]
    by auto
  have i_le_fo_nmlz: "i  length (fo_nmlz AD zs)"
    using assms(1)
    by (auto simp: fo_nmlz_length)
  obtain x where x_def: "ad_agr_list AD (add_nth i z (fo_nmlz AD zs)) (add_nth i x zs)"
    using ad_agr_list_add[OF ad_agr i_le_fo_nmlz]
    by (auto simp: add_nth_take_drop[OF assms(1)] add_nth_take_drop[OF i_le_fo_nmlz])
  then show ?thesis
    using fo_nmlz_eqI
    by auto
qed

lemma fo_nmlz_add_nth_rem_nth:
  assumes "fo_nmlz AD xs = xs" "i < length xs"
  shows "z. fo_nmlz AD (add_nth i z (fo_nmlz AD (rem_nth i xs))) = xs"
  using rem_nth_length[OF assms(2)] fo_nmlz_add_rem[of i "rem_nth i xs" AD "xs ! i",
      unfolded assms(1) add_nth_rem_nth_self[OF assms(2)]] assms(2)
  by (subst eq_commute) auto

lemma sp_equiv_list_almost_same: "sp_equiv_list (xs @ v # ys) (xs @ w # ys) 
  v  set xs  set ys  w  set xs  set ys  v = w"
  by (auto simp: sp_equiv_list_def pairwise_def) (metis UnCI sp_equiv_pair.simps zip_same)+

lemma ad_agr_list_add_nth:
  assumes "i  length zs" "ad_agr_list AD (add_nth i v zs) (add_nth i w zs)" "v  w"
  shows "{v, w}  (Inl ` AD  set zs) = {}"
  using assms(2)[unfolded add_nth_take_drop[OF assms(1)]] assms(1,3) sp_equiv_list_almost_same
  by (auto simp: ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps)
     (smt append_take_drop_id set_append sp_equiv_list_almost_same)+

lemma Inr_in_tuple:
  assumes "fo_nmlz AD zs = zs" "n < card (Inr -` set zs)"
  shows "Inr n  set zs"
  using assms fo_nmlz_set_card[OF assms(1)]
  by (auto simp: fo_nmlzd_code[symmetric])

lemma card_wit_sub:
  assumes "finite Z" "card Z  card {ts  X. z  Z. ts = f z}"
  shows "f ` Z  X"
proof -
  have set_unfold: "{ts  X. z  Z. ts = f z} = f ` Z  X"
    by auto
  show ?thesis
    using assms
    unfolding set_unfold
    by (metis Int_lower1 card_image_le card_seteq finite_imageI inf.absorb_iff1 le_antisym
        surj_card_le)
qed

lemma add_nth_iff_card:
  assumes "(xs. xs  X  fo_nmlz AD xs = xs)" "(xs. xs  X  i < length xs)"
    "fo_nmlz AD zs = zs" "i  length zs" "finite AD" "finite X"
  shows "(z. fo_nmlz AD (add_nth i z zs)  X) 
    Suc (card AD + card (Inr -` set zs))  card {ts  X. z. ts = fo_nmlz AD (add_nth i z zs)}"
proof -
  have inj: "inj_on (λz. fo_nmlz AD (add_nth i z zs))
    (Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))})"
    using ad_agr_list_add_nth[OF assms(4)] Inr_in_tuple[OF assms(3)] less_Suc_eq
    by (fastforce simp: inj_on_def dest!: fo_nmlz_eqD)
  have card_Un: "card (Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}) =
      Suc (card AD + card (Inr -` set zs))"
    using card_Un_disjoint[of "Inl ` AD" "Inr ` {..<Suc (card (Inr -` set zs))}"] assms(5)
    by (auto simp add: card_image disjoint_iff_not_equal)
  have restrict_z: "(z. fo_nmlz AD (add_nth i z zs)  X) 
    (z  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}. fo_nmlz AD (add_nth i z zs)  X)"
    using add_nth_restrict[OF assms(3,4)]
    by metis
  have restrict_z': "{ts  X. z. ts = fo_nmlz AD (add_nth i z zs)} =
    {ts  X. z  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}.
      ts = fo_nmlz AD (add_nth i z zs)}"
    using add_nth_restrict[OF assms(3,4)]
    by auto
  {
    assume "z. fo_nmlz AD (add_nth i z zs)  X"
    then have image_sub: "(λz. fo_nmlz AD (add_nth i z zs)) `
      (Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}) 
      {ts  X. z. ts = fo_nmlz AD (add_nth i z zs)}"
      by auto
    have "Suc (card AD + card (Inr -` set zs)) 
      card {ts  X. z. ts = fo_nmlz AD (add_nth i z zs)}"
      unfolding card_Un[symmetric]
      using card_inj_on_le[OF inj image_sub] assms(6)
      by auto
    then have "Suc (card AD + card (Inr -` set zs)) 
      card {ts  X. z. ts = fo_nmlz AD (add_nth i z zs)}"
      by (auto simp: card_image)
  }
  moreover
  {
    assume assm: "card (Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}) 
      card {ts  X. z  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}.
        ts = fo_nmlz AD (add_nth i z zs)}"
    have "z  Inl ` AD  Inr ` {..<Suc (card (Inr -` set zs))}. fo_nmlz AD (add_nth i z zs)  X"
      using card_wit_sub[OF _ assm] assms(5)
      by auto
  }
  ultimately show ?thesis
    unfolding restrict_z[symmetric] restrict_z'[symmetric] card_Un
    by auto
qed

lemma set_fo_nmlz_add_nth_rem_nth:
  assumes "j < length xs" "x. x  X  fo_nmlz AD x = x"
    "x. x  X  j < length x"
  shows "{ts  X. z. ts = fo_nmlz AD (add_nth j z (fo_nmlz AD (rem_nth j xs)))} =
  {y  X. fo_nmlz AD (rem_nth j y) = fo_nmlz AD (rem_nth j xs)}"
  using fo_nmlz_rem_nth_add_nth[where ?zs="fo_nmlz AD (rem_nth j xs)"] rem_nth_length[OF assms(1)] fo_nmlz_add_nth_rem_nth assms
  by (fastforce simp: fo_nmlz_idem[OF fo_nmlz_sound] fo_nmlz_length)

lemma eval_forall:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  assumes wf: "fo_wf φ I t"
  shows "fo_wf (Forall i φ) I (eval_forall i (fv_fo_fmla_list φ) t)"
proof -
  obtain AD n X where t_def: "t = (AD, n, X)" "AD = act_edom φ I"
    "AD = act_edom (Forall i φ) I"
    using assms
    by (cases t) auto
  have AD_sub: "act_edom φ I  AD"
    by (auto simp: t_def(2))
  have fin_AD: "finite AD"
    using finite_act_edom wf
    by (auto simp: t_def)
  have fin_X: "finite X"
    using wf
    by (auto simp: t_def)
  note X_def = fo_wf_X[OF wf[unfolded t_def], folded t_def(2)]
  have eval: "eval_forall i (fv_fo_fmla_list φ) t = eval_abs (Forall i φ) I"
  proof (cases "pos i (fv_fo_fmla_list φ)")
    case None
    note fv_eq = fv_ex_all[OF None]
    have "X = fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat φ I σ UNIV}"
      unfolding X_def
      by (auto simp: proj_fmla_def fv_eq)
    also have " = fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
      using esat_forall_not_fv[of i φ UNIV I] pos_complete[OF None]
      by (auto simp: fv_fo_fmla_list_set)
    finally show ?thesis
      by (auto simp: t_def None eval_abs_def fv_eq nfv_def)
  next
    case (Some j)
    have i_in_fv: "i  fv_fo_fmla φ"
      by (rule pos_set[OF Some, unfolded fv_fo_fmla_list_set])
    have fo_nmlz_X: "xs. xs  X  fo_nmlz AD xs = xs"
      by (auto simp: X_def proj_fmla_map fo_nmlz_idem[OF fo_nmlz_sound])
    have j_lt_len: "xs. xs  X  j < length xs"
      using pos_sound[OF Some]
      by (auto simp: X_def proj_fmla_map fo_nmlz_length)
    have rem_nth_j_le_len: "xs. xs  X  j  length (fo_nmlz AD (rem_nth j xs))"
      using rem_nth_length j_lt_len
      by (fastforce simp: fo_nmlz_length)
    have img_proj_fmla: "Mapping.keys (Mapping.filter (λt Z. Suc (card AD + card (Inr -` set t))  card Z)
      (cluster (Some  (λts. fo_nmlz AD (rem_nth j ts))) X)) =
      fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
    proof (rule set_eqI, rule iffI)
      fix vs
      assume "vs  Mapping.keys (Mapping.filter (λt Z. Suc (card AD + card (Inr -` set t))  card Z)
        (cluster (Some  (λts. fo_nmlz AD (rem_nth j ts))) X))"
      then obtain ws where ws_def: "ws  X" "vs = fo_nmlz AD (rem_nth j ws)"
        "a. fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws)))  X"
        using add_nth_iff_card[OF fo_nmlz_X j_lt_len fo_nmlz_idem[OF fo_nmlz_sound]
            rem_nth_j_le_len fin_AD fin_X] set_fo_nmlz_add_nth_rem_nth[OF j_lt_len fo_nmlz_X j_lt_len]
        by transfer (fastforce split: option.splits if_splits)
      then obtain σ where σ_def:
        "esat φ I σ UNIV" "ws = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
        unfolding X_def
        by (auto simp: proj_fmla_map)
      obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
        using fo_nmlz_map σ_def(2)
        by blast
      have fo_nmlzd_τ: "fo_nmlzd AD (map τ (fv_fo_fmla_list φ))"
        unfolding τ_def[symmetric] σ_def(2)
        by (rule fo_nmlz_sound)
      have rem_nth_j_ws: "rem_nth j ws = map τ (filter ((≠) i) (fv_fo_fmla_list φ))"
        using rem_nth_sound[OF _ Some] sorted_distinct_fv_list
        by (auto simp: τ_def)
      have esat_τ: "esat (Forall i φ) I τ UNIV"
        unfolding esat.simps
      proof (rule ballI)
        fix x
        have "fo_nmlz AD (add_nth j x (rem_nth j ws))  X"
          using fo_nmlz_add_rem[of j "rem_nth j ws" AD x] rem_nth_length
            j_lt_len[OF ws_def(1)] ws_def(3)
          by fastforce
        then have "fo_nmlz AD (map (τ(i := x)) (fv_fo_fmla_list φ))  X"
          using add_nth_rem_nth_map[OF _ Some, of x] sorted_distinct_fv_list
          unfolding τ_def
          by fastforce
        then show "esat φ I (τ(i := x)) UNIV"
          by (auto simp: X_def proj_fmla_map esat_UNIV_ad_agr_list[OF _ AD_sub]
              dest!: fo_nmlz_eqD)
      qed
      have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Forall i φ))"
        using rem_nth_sound[OF _ Some] sorted_distinct_fv_list
        by (auto simp: fv_fo_fmla_list_forall τ_def)
      then show "vs  fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
        using ws_def(2) esat_τ
        by (auto simp: proj_fmla_map rem_nth_ws)
    next
      fix vs
      assume assm: "vs  fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
      from assm obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list (Forall i φ)))"
        "esat (Forall i φ) I σ UNIV"
        by (auto simp: proj_fmla_map)
      then have all_esat: "x. esat φ I (σ(i := x)) UNIV"
        by auto
      define ws where "ws  fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
      then have "length ws = nfv φ"
        using nfv_def fo_nmlz_length by (metis length_map)
      then have ws_in: "ws  fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
        using all_esat[of "σ i"] ws_def
        by (auto simp: fo_nmlz_sound proj_fmla_map)
      then have ws_in_X: "ws  X"
        by (auto simp: X_def)
      obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
        using fo_nmlz_map ws_def
        by blast
      have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Forall i φ))"
        using rem_nth_sound[of "fv_fo_fmla_list φ" i j] sorted_distinct_fv_list Some
        unfolding fv_fo_fmla_list_forall τ_def
        by auto
      have "set (fv_fo_fmla_list (Forall i φ))  set (fv_fo_fmla_list φ)"
        by (auto simp: fv_fo_fmla_list_forall)
      then have ad_agr: "ad_agr_list AD (map σ (fv_fo_fmla_list (Forall i φ)))
        (map τ (fv_fo_fmla_list (Forall i φ)))"
        apply (rule ad_agr_list_subset)
        using fo_nmlz_ad_agr[of AD] ws_def τ_def
        by metis
      have map_fv_cong: "x. map (σ(i := x)) (fv_fo_fmla_list (Forall i φ)) =
        map σ (fv_fo_fmla_list (Forall i φ))"
        by (auto simp: fv_fo_fmla_list_forall)
      have vs_rem_nth: "vs = fo_nmlz AD (rem_nth j ws)"
        unfolding σ_def(1) rem_nth_ws
        apply (rule fo_nmlz_eqI)
        using ad_agr[unfolded map_fv_cong] .
      have "a. fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) 
        fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
      proof -
        fix a
        obtain x where add_rem: "fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) =
          fo_nmlz AD (map (τ(i := x)) (fv_fo_fmla_list φ))"
          using add_nth_rem_nth_map[OF _ Some, of _ τ] sorted_distinct_fv_list
            fo_nmlz_add_rem'[of j "rem_nth j ws"] rem_nth_length[of j ws]
            j_lt_len[OF ws_in_X]
          by (fastforce simp: τ_def)
        have "esat (Forall i φ) I τ UNIV"
          apply (rule iffD1[OF esat_UNIV_ad_agr_list σ_def(2), OF _ subset_refl, folded t_def])
          using fo_nmlz_ad_agr[of AD "map σ (fv_fo_fmla_list φ)", folded ws_def, unfolded τ_def]
          unfolding ad_agr_list_link[symmetric]
          by (auto simp: fv_fo_fmla_list_set ad_agr_sets_def sp_equiv_def pairwise_def)
        then have "esat φ I (τ(i := x)) UNIV"
          by auto
        then show "fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) 
          fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
          by (auto simp: add_rem proj_fmla_map)
      qed
      then show "vs  Mapping.keys (Mapping.filter (λt Z. Suc (card AD + card (Inr -` set t))  card Z)
        (cluster (Some  (λts. fo_nmlz AD (rem_nth j ts))) X))"
        unfolding vs_rem_nth X_def[symmetric]
        using add_nth_iff_card[OF fo_nmlz_X j_lt_len fo_nmlz_idem[OF fo_nmlz_sound]
            rem_nth_j_le_len fin_AD fin_X] set_fo_nmlz_add_nth_rem_nth[OF j_lt_len fo_nmlz_X j_lt_len] ws_in_X
        by transfer (fastforce split: option.splits if_splits)
    qed
    show ?thesis
      using nfv_ex_all[OF Some]
      by (simp add: t_def Some eval_abs_def nfv_def img_proj_fmla[unfolded t_def(2)]
          split: option.splits)
  qed
  have wf_all: "wf_fo_intp (Forall i φ) I"
    using wf
    by (auto simp: t_def)
  show ?thesis
    using fo_wf_eval_abs[OF wf_all]
    by (auto simp: eval)
qed

fun fo_res :: "('a, nat) fo_t  'a eval_res" where
  "fo_res (AD, n, X) = (if fo_fin (AD, n, X) then Fin (map projl ` X) else Infin)"

lemma fo_res_fin:
  fixes t :: "('a :: infinite, nat) fo_t"
  assumes "fo_wf φ I t" "finite (fo_rep t)"
  shows "fo_res t = Fin (fo_rep t)"
proof -
  obtain AD n X where t_def: "t = (AD, n, X)"
    using assms(1)
    by (cases t) auto
  show ?thesis
    using fo_fin assms
    by (fastforce simp only: t_def fo_res.simps fo_rep_fin split: if_splits)
qed

lemma fo_res_infin:
  fixes t :: "('a :: infinite, nat) fo_t"
  assumes "fo_wf φ I t" "¬finite (fo_rep t)"
  shows "fo_res t = Infin"
proof -
  obtain AD n X where t_def: "t = (AD, n, X)"
    using assms(1)
    by (cases t) auto
  show ?thesis
    using fo_fin assms
    by (fastforce simp only: t_def fo_res.simps split: if_splits)
qed

lemma fo_rep: "fo_wf φ I t  fo_rep t = proj_sat φ I"
  by (cases t) auto

global_interpretation Ailamazyan: eval_fo fo_wf eval_pred fo_rep fo_res
  eval_bool eval_eq eval_neg eval_conj eval_ajoin eval_disj
  eval_exists eval_forall
  defines eval_fmla = Ailamazyan.eval_fmla
      and eval = Ailamazyan.eval
  apply standard
             apply (rule fo_rep, assumption+)
            apply (rule fo_res_fin, assumption+)
           apply (rule fo_res_infin, assumption+)
          apply (rule eval_pred, assumption+)
         apply (rule eval_bool)
        apply (rule eval_eq)
       apply (rule eval_neg, assumption+)
      apply (rule eval_conj, assumption+)
     apply (rule eval_ajoin, assumption+)
    apply (rule eval_disj, assumption+)
   apply (rule eval_exists, assumption+)
  apply (rule eval_forall, assumption+)
  done

definition esat_UNIV :: "('a :: infinite, 'b) fo_fmla  ('a table, 'b) fo_intp  ('a + nat) val  bool" where
  "esat_UNIV φ I σ = esat φ I σ UNIV"

lemma esat_UNIV_code[code]: "esat_UNIV φ I σ  (if wf_fo_intp φ I then
  (case eval_fmla φ I of (AD, n, X) 
    fo_nmlz (act_edom φ I) (map σ (fv_fo_fmla_list φ))  X)
  else esat_UNIV φ I σ)"
proof -
  obtain AD n T where t_def: "Ailamazyan.eval_fmla φ I = (AD, n, T)"
    by (cases "Ailamazyan.eval_fmla φ I") auto
  {
    assume wf_fo_intp: "wf_fo_intp φ I"
    note fo_wf = Ailamazyan.eval_fmla_correct[OF wf_fo_intp, unfolded t_def]
    note T_def = fo_wf_X[OF fo_wf]
    have AD_def: "AD = act_edom φ I"
      using fo_wf
      by auto
    have "esat_UNIV φ I σ 
      fo_nmlz (act_edom φ I) (map σ (fv_fo_fmla_list φ))  T"
      using esat_UNIV_ad_agr_list[OF _ subset_refl]
      by (force simp add: esat_UNIV_def T_def AD_def proj_fmla_map
          dest!: fo_nmlz_eqD)
  }
  then show ?thesis
    by (auto simp: t_def)
qed

lemma sat_code[code]:
  fixes φ :: "('a :: infinite, 'b) fo_fmla"
  shows "sat φ I σ  (if wf_fo_intp φ I then
  (case eval_fmla φ I of (AD, n, X) 
    fo_nmlz (act_edom φ I) (map (Inl  σ) (fv_fo_fmla_list φ))  X)
  else sat φ I σ)"
  using esat_UNIV_code sat_esat_conv[folded esat_UNIV_def]
  by metis

end