Theory Ailamazyan
theory Ailamazyan
imports Eval_FO Cluster Mapping_Code
begin
fun SP :: "('a, 'b) fo_fmla ⇒ nat set" where
"SP (Eqa (Var n) (Var n')) = (if n ≠ n' then {n, n'} else {})"
| "SP (Neg φ) = SP φ"
| "SP (Conj φ ψ) = SP φ ∪ SP ψ"
| "SP (Disj φ ψ) = SP φ ∪ SP ψ"
| "SP (Exists n φ) = SP φ - {n}"
| "SP (Forall n φ) = SP φ - {n}"
| "SP _ = {}"
lemma SP_fv: "SP φ ⊆ fv_fo_fmla φ"
by (induction φ rule: SP.induct) auto
lemma finite_SP: "finite (SP φ)"
using SP_fv finite_fv_fo_fmla finite_subset by fastforce
fun SP_list_rec :: "('a, 'b) fo_fmla ⇒ nat list" where
"SP_list_rec (Eqa (Var n) (Var n')) = (if n ≠ n' then [n, n'] else [])"
| "SP_list_rec (Neg φ) = SP_list_rec φ"
| "SP_list_rec (Conj φ ψ) = SP_list_rec φ @ SP_list_rec ψ"
| "SP_list_rec (Disj φ ψ) = SP_list_rec φ @ SP_list_rec ψ"
| "SP_list_rec (Exists n φ) = filter (λm. n ≠ m) (SP_list_rec φ)"
| "SP_list_rec (Forall n φ) = filter (λm. n ≠ m) (SP_list_rec φ)"
| "SP_list_rec _ = []"
definition SP_list :: "('a, 'b) fo_fmla ⇒ nat list" where
"SP_list φ = remdups_adj (sort (SP_list_rec φ))"
lemma SP_list_set: "set (SP_list φ) = SP φ"
unfolding SP_list_def
by (induction φ rule: SP.induct) (auto simp: fv_fo_terms_set_list)
lemma sorted_distinct_SP_list: "sorted_distinct (SP_list φ)"
unfolding SP_list_def
by (auto intro: distinct_remdups_adj_sort)
fun d :: "('a, 'b) fo_fmla ⇒ nat" where
"d (Eqa (Var n) (Var n')) = (if n ≠ n' then 2 else 1)"
| "d (Neg φ) = d φ"
| "d (Conj φ ψ) = max (d φ) (max (d ψ) (card (SP (Conj φ ψ))))"
| "d (Disj φ ψ) = max (d φ) (max (d ψ) (card (SP (Disj φ ψ))))"
| "d (Exists n φ) = d φ"
| "d (Forall n φ) = d φ"
| "d _ = 1"
lemma d_pos: "1 ≤ d φ"
by (induction φ rule: d.induct) auto
lemma card_SP_d: "card (SP φ) ≤ d φ"
using dual_order.trans
by (induction φ rule: SP.induct) (fastforce simp: card_Diff1_le finite_SP)+
fun eval_eterm :: "('a + 'c) val ⇒ 'a fo_term ⇒ 'a + 'c" (infix ‹⋅e› 60) where
"eval_eterm σ (Const c) = Inl c"
| "eval_eterm σ (Var n) = σ n"
definition eval_eterms :: "('a + 'c) val ⇒ ('a fo_term) list ⇒
('a + 'c) list" (infix ‹⊙e› 60) where
"eval_eterms σ ts = map (eval_eterm σ) ts"
lemma eval_eterm_cong: "(⋀n. n ∈ fv_fo_term_set t ⟹ σ n = σ' n) ⟹
eval_eterm σ t = eval_eterm σ' t"
by (cases t) auto
lemma eval_eterms_fv_fo_terms_set: "σ ⊙e ts = σ' ⊙e ts ⟹ n ∈ fv_fo_terms_set ts ⟹ σ n = σ' n"
proof (induction ts)
case (Cons t ts)
then show ?case
by (cases t) (auto simp: eval_eterms_def fv_fo_terms_set_def)
qed (auto simp: eval_eterms_def fv_fo_terms_set_def)
lemma eval_eterms_cong: "(⋀n. n ∈ fv_fo_terms_set ts ⟹ σ n = σ' n) ⟹
eval_eterms σ ts = eval_eterms σ' ts"
by (auto simp: eval_eterms_def fv_fo_terms_set_def intro: eval_eterm_cong)
lemma eval_terms_eterms: "map Inl (σ ⊙ ts) = (Inl ∘ σ) ⊙e ts"
proof (induction ts)
case (Cons t ts)
then show ?case
by (cases t) (auto simp: eval_terms_def eval_eterms_def)
qed (auto simp: eval_terms_def eval_eterms_def)
fun ad_equiv_pair :: "'a set ⇒ ('a + 'c) × ('a + 'c) ⇒ bool" where
"ad_equiv_pair X (a, a') ⟷ (a ∈ Inl ` X ⟶ a = a') ∧ (a' ∈ Inl ` X ⟶ a = a')"
fun sp_equiv_pair :: "'a × 'b ⇒ 'a × 'b ⇒ bool" where
"sp_equiv_pair (a, b) (a', b') ⟷ (a = a' ⟷ b = b')"
definition ad_equiv_list :: "'a set ⇒ ('a + 'c) list ⇒ ('a + 'c) list ⇒ bool" where
"ad_equiv_list X xs ys ⟷ length xs = length ys ∧ (∀x ∈ set (zip xs ys). ad_equiv_pair X x)"
definition sp_equiv_list :: "('a + 'c) list ⇒ ('a + 'c) list ⇒ bool" where
"sp_equiv_list xs ys ⟷ length xs = length ys ∧ pairwise sp_equiv_pair (set (zip xs ys))"
definition ad_agr_list :: "'a set ⇒ ('a + 'c) list ⇒ ('a + 'c) list ⇒ bool" where
"ad_agr_list X xs ys ⟷ length xs = length ys ∧ ad_equiv_list X xs ys ∧ sp_equiv_list xs ys"
lemma ad_equiv_pair_refl[simp]: "ad_equiv_pair X (a, a)"
by auto
declare ad_equiv_pair.simps[simp del]
lemma ad_equiv_pair_comm: "ad_equiv_pair X (a, a') ⟷ ad_equiv_pair X (a', a)"
by (auto simp: ad_equiv_pair.simps)
lemma ad_equiv_pair_mono: "X ⊆ Y ⟹ ad_equiv_pair Y (a, a') ⟹ ad_equiv_pair X (a, a')"
unfolding ad_equiv_pair.simps
by fastforce
lemma sp_equiv_pair_comm: "sp_equiv_pair x y ⟷ sp_equiv_pair y x"
by (cases x; cases y) auto
definition sp_equiv :: "('a + 'c) val ⇒ ('a + 'c) val ⇒ nat set ⇒ bool" where
"sp_equiv σ τ I ⟷ pairwise sp_equiv_pair ((λn. (σ n, τ n)) ` I)"
lemma sp_equiv_mono: "I ⊆ J ⟹ sp_equiv σ τ J ⟹ sp_equiv σ τ I"
by (auto simp: sp_equiv_def pairwise_def)
definition ad_agr_sets :: "nat set ⇒ nat set ⇒ 'a set ⇒ ('a + 'c) val ⇒
('a + 'c) val ⇒ bool" where
"ad_agr_sets FV S X σ τ ⟷ (∀i ∈ FV. ad_equiv_pair X (σ i, τ i)) ∧ sp_equiv σ τ S"
lemma ad_agr_sets_comm: "ad_agr_sets FV S X σ τ ⟹ ad_agr_sets FV S X τ σ"
unfolding ad_agr_sets_def sp_equiv_def pairwise_def
by (subst ad_equiv_pair_comm) auto
lemma ad_agr_sets_mono: "X ⊆ Y ⟹ ad_agr_sets FV S Y σ τ ⟹ ad_agr_sets FV S X σ τ"
using ad_equiv_pair_mono
by (fastforce simp: ad_agr_sets_def)
lemma ad_agr_sets_mono': "S ⊆ S' ⟹ ad_agr_sets FV S' X σ τ ⟹ ad_agr_sets FV S X σ τ"
by (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def)
lemma ad_equiv_list_comm: "ad_equiv_list X xs ys ⟹ ad_equiv_list X ys xs"
by (auto simp: ad_equiv_list_def) (smt (verit, del_insts) ad_equiv_pair_comm in_set_zip prod.sel(1) prod.sel(2))
lemma ad_equiv_list_mono: "X ⊆ Y ⟹ ad_equiv_list Y xs ys ⟹ ad_equiv_list X xs ys"
using ad_equiv_pair_mono
by (fastforce simp: ad_equiv_list_def)
lemma ad_equiv_list_trans:
assumes "ad_equiv_list X xs ys" "ad_equiv_list X ys zs"
shows "ad_equiv_list X xs zs"
proof -
have lens: "length xs = length ys" "length xs = length zs" "length ys = length zs"
using assms
by (auto simp: ad_equiv_list_def)
have "⋀x z. (x, z) ∈ set (zip xs zs) ⟹ ad_equiv_pair X (x, z)"
proof -
fix x z
assume "(x, z) ∈ set (zip xs zs)"
then obtain i where i_def: "i < length xs" "xs ! i = x" "zs ! i = z"
by (auto simp: set_zip)
define y where "y = ys ! i"
have "ad_equiv_pair X (x, y)" "ad_equiv_pair X (y, z)"
using assms lens i_def
by (fastforce simp: set_zip y_def ad_equiv_list_def)+
then show "ad_equiv_pair X (x, z)"
unfolding ad_equiv_pair.simps
by blast
qed
then show ?thesis
using assms
by (auto simp: ad_equiv_list_def)
qed
lemma ad_equiv_list_link: "(∀i ∈ set ns. ad_equiv_pair X (σ i, τ i)) ⟷
ad_equiv_list X (map σ ns) (map τ ns)"
by (auto simp: ad_equiv_list_def set_zip) (metis in_set_conv_nth nth_map)
lemma set_zip_comm: "(x, y) ∈ set (zip xs ys) ⟹ (y, x) ∈ set (zip ys xs)"
by (metis in_set_zip prod.sel(1) prod.sel(2))
lemma set_zip_map: "set (zip (map σ ns) (map τ ns)) = (λn. (σ n, τ n)) ` set ns"
by (induction ns) auto
lemma sp_equiv_list_comm: "sp_equiv_list xs ys ⟹ sp_equiv_list ys xs"
unfolding sp_equiv_list_def
using set_zip_comm
by (auto simp: pairwise_def) force+
lemma sp_equiv_list_trans:
assumes "sp_equiv_list xs ys" "sp_equiv_list ys zs"
shows "sp_equiv_list xs zs"
proof -
have lens: "length xs = length ys" "length xs = length zs" "length ys = length zs"
using assms
by (auto simp: sp_equiv_list_def)
have "pairwise sp_equiv_pair (set (zip xs zs))"
proof (rule pairwiseI)
fix xz xz'
assume "xz ∈ set (zip xs zs)" "xz' ∈ set (zip xs zs)"
then obtain x z i x' z' i' where xz_def: "i < length xs" "xs ! i = x" "zs ! i = z"
"xz = (x, z)" "i' < length xs" "xs ! i' = x'" "zs ! i' = z'" "xz' = (x', z')"
by (auto simp: set_zip)
define y where "y = ys ! i"
define y' where "y' = ys ! i'"
have "sp_equiv_pair (x, y) (x', y')" "sp_equiv_pair (y, z) (y', z')"
using assms lens xz_def
by (auto simp: sp_equiv_list_def pairwise_def y_def y'_def set_zip) metis+
then show "sp_equiv_pair xz xz'"
by (auto simp: xz_def)
qed
then show ?thesis
using assms
by (auto simp: sp_equiv_list_def)
qed
lemma sp_equiv_list_link: "sp_equiv_list (map σ ns) (map τ ns) ⟷ sp_equiv σ τ (set ns)"
apply (auto simp: sp_equiv_list_def sp_equiv_def pairwise_def set_zip in_set_conv_nth)
apply (metis nth_map)
apply (metis nth_map)
apply fastforce+
done
lemma ad_agr_list_comm: "ad_agr_list X xs ys ⟹ ad_agr_list X ys xs"
using ad_equiv_list_comm sp_equiv_list_comm
by (fastforce simp: ad_agr_list_def)
lemma ad_agr_list_mono: "X ⊆ Y ⟹ ad_agr_list Y ys xs ⟹ ad_agr_list X ys xs"
using ad_equiv_list_mono
by (force simp: ad_agr_list_def)
lemma ad_agr_list_rev_mono:
assumes "Y ⊆ X" "ad_agr_list Y ys xs" "Inl -` set xs ⊆ Y" "Inl -` set ys ⊆ Y"
shows "ad_agr_list X ys xs"
proof -
have "(a, b) ∈ set (zip ys xs) ⟹ ad_equiv_pair Y (a, b) ⟹ ad_equiv_pair X (a, b)" for a b
using assms
apply (cases a; cases b)
apply (auto simp: ad_agr_list_def ad_equiv_list_def vimage_def set_zip)
unfolding ad_equiv_pair.simps
apply (metis Collect_mem_eq Collect_mono_iff imageI nth_mem)
apply (metis Collect_mem_eq Collect_mono_iff imageI nth_mem)
apply (metis Collect_mem_eq Collect_mono_iff imageI nth_mem)
apply (metis Inl_Inr_False image_iff)
done
then show ?thesis
using assms
by (fastforce simp: ad_agr_list_def ad_equiv_list_def)
qed
lemma ad_agr_list_trans: "ad_agr_list X xs ys ⟹ ad_agr_list X ys zs ⟹ ad_agr_list X xs zs"
using ad_equiv_list_trans sp_equiv_list_trans
by (force simp: ad_agr_list_def)
lemma ad_agr_list_refl: "ad_agr_list X xs xs"
by (auto simp: ad_agr_list_def ad_equiv_list_def set_zip ad_equiv_pair.simps
sp_equiv_list_def pairwise_def)
lemma ad_agr_list_set: "ad_agr_list X xs ys ⟹ y ∈ X ⟹ Inl y ∈ set ys ⟹ Inl y ∈ set xs"
by (auto simp: ad_agr_list_def ad_equiv_list_def set_zip in_set_conv_nth)
(metis ad_equiv_pair.simps image_eqI)
lemma ad_agr_list_length: "ad_agr_list X xs ys ⟹ length xs = length ys"
by (auto simp: ad_agr_list_def)
lemma ad_agr_list_eq: "set ys ⊆ AD ⟹ ad_agr_list AD (map Inl xs) (map Inl ys) ⟹ xs = ys"
by (fastforce simp: ad_agr_list_def ad_equiv_list_def set_zip ad_equiv_pair.simps
intro!: nth_equalityI)
lemma sp_equiv_list_subset:
assumes "set ms ⊆ set ns" "sp_equiv_list (map σ ns) (map σ' ns)"
shows "sp_equiv_list (map σ ms) (map σ' ms)"
unfolding sp_equiv_list_def length_map pairwise_def
proof (rule conjI, rule refl, (rule ballI)+, rule impI)
fix x y
assume "x ∈ set (zip (map σ ms) (map σ' ms))" "y ∈ set (zip (map σ ms) (map σ' ms))" "x ≠ y"
then have "x ∈ set (zip (map σ ns) (map σ' ns))" "y ∈ set (zip (map σ ns) (map σ' ns))" "x ≠ y"
using assms(1)
by (auto simp: set_zip) (metis in_set_conv_nth nth_map subset_iff)+
then show "sp_equiv_pair x y"
using assms(2)
by (auto simp: sp_equiv_list_def pairwise_def)
qed
lemma ad_agr_list_subset: "set ms ⊆ set ns ⟹ ad_agr_list X (map σ ns) (map σ' ns) ⟹
ad_agr_list X (map σ ms) (map σ' ms)"
by (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_subset set_zip)
(metis (no_types, lifting) in_set_conv_nth nth_map subset_iff)
lemma ad_agr_list_link: "ad_agr_sets (set ns) (set ns) AD σ τ ⟷
ad_agr_list AD (map σ ns) (map τ ns)"
unfolding ad_agr_sets_def ad_agr_list_def
using ad_equiv_list_link sp_equiv_list_link
by fastforce
definition ad_agr :: "('a, 'b) fo_fmla ⇒ 'a set ⇒ ('a + 'c) val ⇒ ('a + 'c) val ⇒ bool" where
"ad_agr φ X σ τ ⟷ ad_agr_sets (fv_fo_fmla φ) (SP φ) X σ τ"
lemma ad_agr_sets_restrict:
"ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD σ τ ⟹ ad_agr φ AD σ τ"
using sp_equiv_mono SP_fv
unfolding fv_fo_fmla_list_set
by (auto simp: ad_agr_sets_def ad_agr_def) blast
lemma finite_Inl: "finite X ⟹ finite (Inl -` X)"
using finite_vimageI[of X Inl]
by (auto simp: vimage_def)
lemma ex_out:
assumes "finite X"
shows "∃k. k ∉ X ∧ k < Suc (card X)"
using card_mono[OF assms, of "{..<Suc (card X)}"]
by auto
lemma extend_τ:
assumes "ad_agr_sets (FV - {n}) (S - {n}) X σ τ" "S ⊆ FV" "finite S" "τ ` (FV - {n}) ⊆ Z"
"Inl ` X ∪ Inr ` {..<max 1 (card (Inr -` τ ` (S - {n})) + (if n ∈ S then 1 else 0))} ⊆ Z"
shows "∃k ∈ Z. ad_agr_sets FV S X (σ(n := x)) (τ(n := k))"
proof (cases "n ∈ S")
case True
note n_in_S = True
show ?thesis
proof (cases "x ∈ Inl ` X")
case True
show ?thesis
using assms n_in_S True
apply (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "x"])
unfolding ad_equiv_pair.simps
apply (metis True insert_Diff insert_iff subsetD)+
done
next
case False
note σ_n_not_Inl = False
show ?thesis
proof (cases "∃m ∈ S - {n}. x = σ m")
case True
obtain m where m_def: "m ∈ S - {n}" "x = σ m"
using True
by auto
have τ_m_in: "τ m ∈ Z"
using assms m_def
by auto
show ?thesis
using assms n_in_S σ_n_not_Inl True m_def
by (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "τ m"])
next
case False
have out: "x ∉ σ ` (S - {n})"
using False
by auto
have fin: "finite (Inr -` τ ` (S - {n}))"
using assms(3)
by (simp add: finite_vimageI)
obtain k where k_def: "Inr k ∉ τ ` (S - {n})" "k < Suc (card (Inr -` τ ` (S - {n})))"
using ex_out[OF fin] True
by auto
show ?thesis
using assms n_in_S σ_n_not_Inl out k_def assms(5)
apply (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "Inr k"])
unfolding ad_equiv_pair.simps
apply fastforce
apply (metis image_eqI insertE insert_Diff)
done
qed
qed
next
case False
show ?thesis
proof (cases "x ∈ Inl ` X")
case x_in: True
then show ?thesis
using assms False
by (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "x"])
next
case x_out: False
then show ?thesis
using assms False
apply (auto simp: ad_agr_sets_def sp_equiv_def pairwise_def intro!: bexI[of _ "Inr 0"])
unfolding ad_equiv_pair.simps
apply fastforce
done
qed
qed
lemma esat_Pred:
assumes "ad_agr_sets FV S (⋃(set ` X)) σ τ" "fv_fo_terms_set ts ⊆ FV" "σ ⊙e ts ∈ map Inl ` X"
"t ∈ set ts"
shows "σ ⋅e t = τ ⋅e t"
proof (cases t)
case (Var n)
obtain vs where vs_def: "σ ⊙e ts = map Inl vs" "vs ∈ X"
using assms(3)
by auto
have "σ n ∈ set (σ ⊙e ts)"
using assms(4)
by (force simp: eval_eterms_def Var)
then have "σ n ∈ Inl ` ⋃ (set ` X)"
using vs_def(2)
unfolding vs_def(1)
by auto
moreover have "n ∈ FV"
using assms(2,4)
by (fastforce simp: Var fv_fo_terms_set_def)
ultimately show ?thesis
using assms(1)
unfolding ad_equiv_pair.simps ad_agr_sets_def Var
by fastforce
qed auto
lemma sp_equiv_list_fv:
assumes "(⋀i. i ∈ fv_fo_terms_set ts ⟹ ad_equiv_pair X (σ i, τ i))"
"⋃(set_fo_term ` set ts) ⊆ X" "sp_equiv σ τ (fv_fo_terms_set ts)"
shows "sp_equiv_list (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)"
using assms
proof (induction ts)
case (Cons t ts)
have ind: "sp_equiv_list (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)"
using Cons
by (auto simp: fv_fo_terms_set_def sp_equiv_def pairwise_def)
show ?case
proof (cases t)
case (Const c)
have c_X: "c ∈ X"
using Cons(3)
by (auto simp: Const)
have fv_t: "fv_fo_term_set t = {}"
by (auto simp: Const)
have "t' ∈ set ts ⟹ sp_equiv_pair (σ ⋅e t, τ ⋅e t) (σ ⋅e t', τ ⋅e t')" for t'
using c_X Const Cons(2)
apply (cases t')
apply (auto simp: fv_fo_terms_set_def)
unfolding ad_equiv_pair.simps
by (metis Cons(2) ad_equiv_pair.simps fv_fo_terms_setI image_insert insert_iff list.set(2)
mk_disjoint_insert)+
then show "sp_equiv_list (map ((⋅e) σ) (t # ts)) (map ((⋅e) τ) (t # ts))"
using ind pairwise_insert[of sp_equiv_pair "(σ ⋅e t, τ ⋅e t)"]
unfolding sp_equiv_list_def set_zip_map
by (auto simp: sp_equiv_pair_comm fv_fo_terms_set_def fv_t)
next
case (Var n)
have ad_n: "ad_equiv_pair X (σ n, τ n)"
using Cons(2)
by (auto simp: fv_fo_terms_set_def Var)
have sp_equiv_Var: "⋀n'. Var n' ∈ set ts ⟹ sp_equiv_pair (σ n, τ n) (σ n', τ n')"
using Cons(4)
by (auto simp: sp_equiv_def pairwise_def fv_fo_terms_set_def Var)
have "t' ∈ set ts ⟹ sp_equiv_pair (σ ⋅e t, τ ⋅e t) (σ ⋅e t', τ ⋅e t')" for t'
using Cons(2,3) sp_equiv_Var
apply (cases t')
apply (auto simp: Var)
apply (metis SUP_le_iff ad_equiv_pair.simps ad_n fo_term.set_intros imageI subset_eq)
apply (metis SUP_le_iff ad_equiv_pair.simps ad_n fo_term.set_intros imageI subset_eq)
done
then show ?thesis
using ind pairwise_insert[of sp_equiv_pair "(σ ⋅e t, τ ⋅e t)" "(λn. (σ ⋅e n, τ ⋅e n)) ` set ts"]
unfolding sp_equiv_list_def set_zip_map
by (auto simp: sp_equiv_pair_comm)
qed
qed (auto simp: sp_equiv_def sp_equiv_list_def fv_fo_terms_set_def)
lemma esat_Pred_inf:
assumes "fv_fo_terms_set ts ⊆ FV" "fv_fo_terms_set ts ⊆ S"
"ad_agr_sets FV S AD σ τ" "ad_agr_list AD (σ ⊙e ts) vs"
"⋃(set_fo_term ` set ts) ⊆ AD"
shows "ad_agr_list AD (τ ⊙e ts) vs"
proof -
have sp: "sp_equiv σ τ (fv_fo_terms_set ts)"
using assms(2,3) sp_equiv_mono
unfolding ad_agr_sets_def
by auto
have "(⋀i. i ∈ fv_fo_terms_set ts ⟹ ad_equiv_pair AD (σ i, τ i))"
using assms(1,3)
by (auto simp: ad_agr_sets_def)
then have "sp_equiv_list (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)"
using sp_equiv_list_fv[OF _ assms(5) sp]
by auto
moreover have "t ∈ set ts ⟹ ∀i∈fv_fo_terms_set ts. ad_equiv_pair AD (σ i, τ i) ⟹ sp_equiv σ τ S ⟹ ad_equiv_pair AD (σ ⋅e t, τ ⋅e t)" for t
by (cases t) (auto simp: ad_equiv_pair.simps intro!: fv_fo_terms_setI)
ultimately have ad_agr_list:
"ad_agr_list AD (σ ⊙e ts) (τ ⊙e ts)"
unfolding eval_eterms_def ad_agr_list_def ad_equiv_list_link[symmetric]
using assms(1,3)
by (auto simp: ad_agr_sets_def)
show ?thesis
by (rule ad_agr_list_comm[OF ad_agr_list_trans[OF ad_agr_list_comm[OF assms(4)] ad_agr_list]])
qed
type_synonym ('a, 'c) fo_t = "'a set × nat × ('a + 'c) table"
fun esat :: "('a, 'b) fo_fmla ⇒ ('a table, 'b) fo_intp ⇒ ('a + nat) val ⇒ ('a + nat) set ⇒ bool" where
"esat (Pred r ts) I σ X ⟷ σ ⊙e ts ∈ map Inl ` I (r, length ts)"
| "esat (Bool b) I σ X ⟷ b"
| "esat (Eqa t t') I σ X ⟷ σ ⋅e t = σ ⋅e t'"
| "esat (Neg φ) I σ X ⟷ ¬esat φ I σ X"
| "esat (Conj φ ψ) I σ X ⟷ esat φ I σ X ∧ esat ψ I σ X"
| "esat (Disj φ ψ) I σ X ⟷ esat φ I σ X ∨ esat ψ I σ X"
| "esat (Exists n φ) I σ X ⟷ (∃x ∈ X. esat φ I (σ(n := x)) X)"
| "esat (Forall n φ) I σ X ⟷ (∀x ∈ X. esat φ I (σ(n := x)) X)"
fun sz_fmla :: "('a, 'b) fo_fmla ⇒ nat" where
"sz_fmla (Neg φ) = Suc (sz_fmla φ)"
| "sz_fmla (Conj φ ψ) = Suc (sz_fmla φ + sz_fmla ψ)"
| "sz_fmla (Disj φ ψ) = Suc (sz_fmla φ + sz_fmla ψ)"
| "sz_fmla (Exists n φ) = Suc (sz_fmla φ)"
| "sz_fmla (Forall n φ) = Suc (Suc (Suc (Suc (sz_fmla φ))))"
| "sz_fmla _ = 0"
lemma sz_fmla_induct[case_names Pred Bool Eqa Neg Conj Disj Exists Forall]:
"(⋀r ts. P (Pred r ts)) ⟹ (⋀b. P (Bool b)) ⟹
(⋀t t'. P (Eqa t t')) ⟹ (⋀φ. P φ ⟹ P (Neg φ)) ⟹
(⋀φ ψ. P φ ⟹ P ψ ⟹ P (Conj φ ψ)) ⟹ (⋀φ ψ. P φ ⟹ P ψ ⟹ P (Disj φ ψ)) ⟹
(⋀n φ. P φ ⟹ P (Exists n φ)) ⟹ (⋀n φ. P (Exists n (Neg φ)) ⟹ P (Forall n φ)) ⟹ P φ"
proof (induction "sz_fmla φ" arbitrary: φ rule: nat_less_induct)
case 1
have IH: "⋀ψ. sz_fmla ψ < sz_fmla φ ⟹ P ψ"
using 1
by auto
then show ?case
using 1(2,3,4,5,6,7,8,9)
by (cases φ) auto
qed
lemma esat_fv_cong: "(⋀n. n ∈ fv_fo_fmla φ ⟹ σ n = σ' n) ⟹ esat φ I σ X ⟷ esat φ I σ' X"
proof (induction φ arbitrary: σ σ' rule: sz_fmla_induct)
case (Pred r ts)
then show ?case
by (auto simp: eval_eterms_def fv_fo_terms_set_def)
(smt comp_apply eval_eterm_cong fv_fo_term_set_cong image_insert insertCI map_eq_conv
mk_disjoint_insert)+
next
case (Eqa t t')
then show ?case
by (cases t; cases t') auto
next
case (Neg φ)
show ?case
using Neg(1)[of σ σ'] Neg(2) by auto
next
case (Conj φ1 φ2)
show ?case
using Conj(1,2)[of σ σ'] Conj(3) by auto
next
case (Disj φ1 φ2)
show ?case
using Disj(1,2)[of σ σ'] Disj(3) by auto
next
case (Exists n φ)
show ?case
proof (rule iffI)
assume "esat (Exists n φ) I σ X"
then obtain x where x_def: "x ∈ X" "esat φ I (σ(n := x)) X"
by auto
from x_def(2) have "esat φ I (σ'(n := x)) X"
using Exists(1)[of "σ(n := x)" "σ'(n := x)"] Exists(2) by fastforce
with x_def(1) show "esat (Exists n φ) I σ' X"
by auto
next
assume "esat (Exists n φ) I σ' X"
then obtain x where x_def: "x ∈ X" "esat φ I (σ'(n := x)) X"
by auto
from x_def(2) have "esat φ I (σ(n := x)) X"
using Exists(1)[of "σ(n := x)" "σ'(n := x)"] Exists(2) by fastforce
with x_def(1) show "esat (Exists n φ) I σ X"
by auto
qed
next
case (Forall n φ)
then show ?case
by auto
qed auto
fun ad_terms :: "('a fo_term) list ⇒ 'a set" where
"ad_terms ts = ⋃(set (map set_fo_term ts))"
fun act_edom :: "('a, 'b) fo_fmla ⇒ ('a table, 'b) fo_intp ⇒ 'a set" where
"act_edom (Pred r ts) I = ad_terms ts ∪ ⋃(set ` I (r, length ts))"
| "act_edom (Bool b) I = {}"
| "act_edom (Eqa t t') I = set_fo_term t ∪ set_fo_term t'"
| "act_edom (Neg φ) I = act_edom φ I"
| "act_edom (Conj φ ψ) I = act_edom φ I ∪ act_edom ψ I"
| "act_edom (Disj φ ψ) I = act_edom φ I ∪ act_edom ψ I"
| "act_edom (Exists n φ) I = act_edom φ I"
| "act_edom (Forall n φ) I = act_edom φ I"
lemma finite_act_edom: "wf_fo_intp φ I ⟹ finite (act_edom φ I)"
using finite_Inl
by (induction φ I rule: wf_fo_intp.induct)
(auto simp: finite_set_fo_term vimage_def)
fun fo_adom :: "('a, 'c) fo_t ⇒ 'a set" where
"fo_adom (AD, n, X) = AD"
theorem main: "ad_agr φ AD σ τ ⟹ act_edom φ I ⊆ AD ⟹
Inl ` AD ∪ Inr ` {..<d φ} ⊆ X ⟹ τ ` fv_fo_fmla φ ⊆ X ⟹
esat φ I σ UNIV ⟷ esat φ I τ X"
proof (induction φ arbitrary: σ τ rule: sz_fmla_induct)
case (Pred r ts)
have fv_sub: "fv_fo_terms_set ts ⊆ fv_fo_fmla (Pred r ts)"
by auto
have sub_AD: "⋃(set ` I (r, length ts)) ⊆ AD"
using Pred(2)
by auto
show ?case
unfolding esat.simps
proof (rule iffI)
assume assm: "σ ⊙e ts ∈ map Inl ` I (r, length ts)"
have "σ ⊙e ts = τ ⊙e ts"
using esat_Pred[OF ad_agr_sets_mono[OF sub_AD Pred(1)[unfolded ad_agr_def]]
fv_sub assm]
by (auto simp: eval_eterms_def)
with assm show "τ ⊙e ts ∈ map Inl ` I (r, length ts)"
by auto
next
assume assm: "τ ⊙e ts ∈ map Inl ` I (r, length ts)"
have "τ ⊙e ts = σ ⊙e ts"
using esat_Pred[OF ad_agr_sets_comm[OF ad_agr_sets_mono[OF
sub_AD Pred(1)[unfolded ad_agr_def]]] fv_sub assm]
by (auto simp: eval_eterms_def)
with assm show "σ ⊙e ts ∈ map Inl ` I (r, length ts)"
by auto
qed
next
case (Eqa x1 x2)
show ?case
proof (cases x1; cases x2)
fix c c'
assume "x1 = Const c" "x2 = Const c'"
with Eqa show ?thesis
by auto
next
fix c m'
assume assms: "x1 = Const c" "x2 = Var m'"
with Eqa(1,2) have "σ m' = Inl c ⟷ τ m' = Inl c"
apply (auto simp: ad_agr_def ad_agr_sets_def)
unfolding ad_equiv_pair.simps
by fastforce+
with assms show ?thesis
by fastforce
next
fix m c'
assume assms: "x1 = Var m" "x2 = Const c'"
with Eqa(1,2) have "σ m = Inl c' ⟷ τ m = Inl c'"
apply (auto simp: ad_agr_def ad_agr_sets_def)
unfolding ad_equiv_pair.simps
by fastforce+
with assms show ?thesis
by auto
next
fix m m'
assume assms: "x1 = Var m" "x2 = Var m'"
with Eqa(1,2) have "σ m = σ m' ⟷ τ m = τ m'"
by (auto simp: ad_agr_def ad_agr_sets_def sp_equiv_def pairwise_def split: if_splits)
with assms show ?thesis
by auto
qed
next
case (Neg φ)
from Neg(2) have "ad_agr φ AD σ τ"
by (auto simp: ad_agr_def)
with Neg show ?case
by auto
next
case (Conj φ1 φ2)
have aux: "ad_agr φ1 AD σ τ" "ad_agr φ2 AD σ τ"
"Inl ` AD ∪ Inr ` {..<d φ1} ⊆ X" "Inl ` AD ∪ Inr ` {..<d φ2} ⊆ X"
"τ ` fv_fo_fmla φ1 ⊆ X" "τ ` fv_fo_fmla φ2 ⊆ X"
using Conj(3,5,6)
by (auto simp: ad_agr_def ad_agr_sets_def sp_equiv_def pairwise_def)
show ?case
using Conj(1)[OF aux(1) _ aux(3) aux(5)] Conj(2)[OF aux(2) _ aux(4) aux(6)] Conj(4)
by auto
next
case (Disj φ1 φ2)
have aux: "ad_agr φ1 AD σ τ" "ad_agr φ2 AD σ τ"
"Inl ` AD ∪ Inr ` {..<d φ1} ⊆ X" "Inl ` AD ∪ Inr ` {..<d φ2} ⊆ X"
"τ ` fv_fo_fmla φ1 ⊆ X" "τ ` fv_fo_fmla φ2 ⊆ X"
using Disj(3,5,6)
by (auto simp: ad_agr_def ad_agr_sets_def sp_equiv_def pairwise_def)
show ?case
using Disj(1)[OF aux(1) _ aux(3) aux(5)] Disj(2)[OF aux(2) _ aux(4) aux(6)] Disj(4)
by auto
next
case (Exists m φ)
show ?case
proof (rule iffI)
assume "esat (Exists m φ) I σ UNIV"
then obtain x where assm: "esat φ I (σ(m := x)) UNIV"
by auto
have "m ∈ SP φ ⟹ Suc (card (Inr -` τ ` (SP φ - {m}))) ≤ card (SP φ)"
by (metis Diff_insert_absorb card_image card_le_Suc_iff finite_Diff finite_SP
image_vimage_subset inj_Inr mk_disjoint_insert surj_card_le)
moreover have "card (Inr -` τ ` SP φ) ≤ card (SP φ)"
by (metis card_image finite_SP image_vimage_subset inj_Inr surj_card_le)
ultimately have "max 1 (card (Inr -` τ ` (SP φ - {m})) + (if m ∈ SP φ then 1 else 0)) ≤ d φ"
using d_pos card_SP_d[of φ]
by auto
then have "∃x' ∈ X. ad_agr φ AD (σ(m := x)) (τ(m := x'))"
using extend_τ[OF Exists(2)[unfolded ad_agr_def fv_fo_fmla.simps SP.simps]
SP_fv[of φ] finite_SP Exists(5)[unfolded fv_fo_fmla.simps]]
Exists(4)
by (force simp: ad_agr_def)
then obtain x' where x'_def: "x' ∈ X" "ad_agr φ AD (σ(m := x)) (τ(m := x'))"
by auto
from Exists(5) have "τ(m := x') ` fv_fo_fmla φ ⊆ X"
using x'_def(1) by fastforce
then have "esat φ I (τ(m := x')) X"
using Exists x'_def(1,2) assm
by fastforce
with x'_def show "esat (Exists m φ) I τ X"
by auto
next
assume "esat (Exists m φ) I τ X"
then obtain z where assm: "z ∈ X" "esat φ I (τ(m := z)) X"
by auto
have ad_agr: "ad_agr_sets (fv_fo_fmla φ - {m}) (SP φ - {m}) AD τ σ"
using Exists(2)[unfolded ad_agr_def fv_fo_fmla.simps SP.simps]
by (rule ad_agr_sets_comm)
have "∃x. ad_agr φ AD (σ(m := x)) (τ(m := z))"
using extend_τ[OF ad_agr SP_fv[of φ] finite_SP subset_UNIV subset_UNIV] ad_agr_sets_comm
unfolding ad_agr_def
by fastforce
then obtain x where x_def: "ad_agr φ AD (σ(m := x)) (τ(m := z))"
by auto
have "τ(m := z) ` fv_fo_fmla (Exists m φ) ⊆ X"
using Exists
by fastforce
with x_def have "esat φ I (σ(m := x)) UNIV"
using Exists assm
by fastforce
then show "esat (Exists m φ) I σ UNIV"
by auto
qed
next
case (Forall n φ)
have unfold: "act_edom (Forall n φ) I = act_edom (Exists n (Neg φ)) I"
"Inl ` AD ∪ Inr ` {..<d (Forall n φ)} = Inl ` AD ∪ Inr ` {..<d (Exists n (Neg φ))}"
"fv_fo_fmla (Forall n φ) = fv_fo_fmla (Exists n (Neg φ))"
by auto
have pred: "ad_agr (Exists n (Neg φ)) AD σ τ"
using Forall(2)
by (auto simp: ad_agr_def)
show ?case
using Forall(1)[OF pred Forall(3,4,5)[unfolded unfold]]
by auto
qed auto
lemma main_cor_inf:
assumes "ad_agr φ AD σ τ" "act_edom φ I ⊆ AD" "d φ ≤ n"
"τ ` fv_fo_fmla φ ⊆ Inl ` AD ∪ Inr ` {..<n}"
shows "esat φ I σ UNIV ⟷ esat φ I τ (Inl ` AD ∪ Inr ` {..<n})"
proof -
show ?thesis
using main[OF assms(1,2) _ assms(4)] assms(3)
by fastforce
qed
lemma esat_UNIV_cong:
fixes σ :: "nat ⇒ 'a + nat"
assumes "ad_agr φ AD σ τ" "act_edom φ I ⊆ AD"
shows "esat φ I σ UNIV ⟷ esat φ I τ UNIV"
proof -
show ?thesis
using main[OF assms(1,2) subset_UNIV subset_UNIV]
by auto
qed
lemma esat_UNIV_ad_agr_list:
fixes σ :: "nat ⇒ 'a + nat"
assumes "ad_agr_list AD (map σ (fv_fo_fmla_list φ)) (map τ (fv_fo_fmla_list φ))"
"act_edom φ I ⊆ AD"
shows "esat φ I σ UNIV ⟷ esat φ I τ UNIV"
using esat_UNIV_cong[OF iffD2[OF ad_agr_def, OF ad_agr_sets_mono'[OF SP_fv],
OF iffD2[OF ad_agr_list_link, OF assms(1), unfolded fv_fo_fmla_list_set]] assms(2)] .
fun fo_rep :: "('a, 'c) fo_t ⇒ 'a table" where
"fo_rep (AD, n, X) = {ts. ∃ts' ∈ X. ad_agr_list AD (map Inl ts) ts'}"
lemma sat_esat_conv:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes fin: "wf_fo_intp φ I"
shows "sat φ I σ ⟷ esat φ I (Inl ∘ σ :: nat ⇒ 'a + nat) UNIV"
using assms
proof (induction φ arbitrary: I σ rule: sz_fmla_induct)
case (Pred r ts)
show ?case
unfolding sat.simps esat.simps comp_def[symmetric] eval_terms_eterms[symmetric]
by auto
next
case (Eqa t t')
show ?case
by (cases t; cases t') auto
next
case (Exists n φ)
show ?case
proof (rule iffI)
assume "sat (Exists n φ) I σ"
then obtain x where x_def: "esat φ I (Inl ∘ σ(n := x)) UNIV"
using Exists
by fastforce
have Inl_unfold: "Inl ∘ σ(n := x) = (Inl ∘ σ)(n := Inl x)"
by auto
show "esat (Exists n φ) I (Inl ∘ σ) UNIV"
using x_def
unfolding Inl_unfold
by auto
next
assume "esat (Exists n φ) I (Inl ∘ σ) UNIV"
then obtain x where x_def: "esat φ I ((Inl ∘ σ)(n := x)) UNIV"
by auto
show "sat (Exists n φ) I σ"
proof (cases x)
case (Inl a)
have Inl_unfold: "(Inl ∘ σ)(n := x) = Inl ∘ σ(n := a)"
by (auto simp: Inl)
show ?thesis
using x_def[unfolded Inl_unfold] Exists
by fastforce
next
case (Inr b)
obtain c where c_def: "c ∉ act_edom φ I ∪ σ ` fv_fo_fmla φ"
using arb_element finite_act_edom[OF Exists(2), simplified] finite_fv_fo_fmla
by (metis finite_Un finite_imageI)
have wf_local: "wf_fo_intp φ I"
using Exists(2)
by auto
have "(a, a') ∈ set (zip (map (λx. if x = n then Inr b else (Inl ∘ σ) x) (fv_fo_fmla_list φ))
(map (λa. Inl (if a = n then c else σ a)) (fv_fo_fmla_list φ))) ⟹
ad_equiv_pair (act_edom φ I) (a, a')" for a a'
using c_def
by (cases a; cases a') (auto simp: set_zip ad_equiv_pair.simps split: if_splits)
then have "sat φ I (σ(n := c))"
using c_def[folded fv_fo_fmla_list_set]
by (auto simp: ad_agr_list_def ad_equiv_list_def fun_upd_def sp_equiv_list_def pairwise_def set_zip split: if_splits
intro!: Exists(1)[OF wf_local, THEN iffD2, OF esat_UNIV_ad_agr_list[OF _ subset_refl, THEN iffD1, OF _ x_def[unfolded Inr]]])
then show ?thesis
by auto
qed
qed
next
case (Forall n φ)
show ?case
using Forall(1)[of I σ] Forall(2)
by auto
qed auto
lemma sat_ad_agr_list:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
and J :: "(('a, nat) fo_t, 'b) fo_intp"
assumes "wf_fo_intp φ I"
"ad_agr_list AD (map (Inl ∘ σ :: nat ⇒ 'a + nat) (fv_fo_fmla_list φ))
(map (Inl ∘ τ) (fv_fo_fmla_list φ))" "act_edom φ I ⊆ AD"
shows "sat φ I σ ⟷ sat φ I τ"
using esat_UNIV_ad_agr_list[OF assms(2,3)] sat_esat_conv[OF assms(1)]
by auto
definition nfv :: "('a, 'b) fo_fmla ⇒ nat" where
"nfv φ = length (fv_fo_fmla_list φ)"
lemma nfv_card: "nfv φ = card (fv_fo_fmla φ)"
proof -
have "distinct (fv_fo_fmla_list φ)"
using sorted_distinct_fv_list
by auto
then have "length (fv_fo_fmla_list φ) = card (set (fv_fo_fmla_list φ))"
using distinct_card by fastforce
then show ?thesis
unfolding fv_fo_fmla_list_set by (auto simp: nfv_def)
qed
fun rremdups :: "'a list ⇒ 'a list" where
"rremdups [] = []"
| "rremdups (x # xs) = x # rremdups (filter ((≠) x) xs)"
lemma filter_rremdups_filter: "filter P (rremdups (filter Q xs)) =
rremdups (filter (λx. P x ∧ Q x) xs)"
apply (induction xs arbitrary: Q)
apply auto
by metis
lemma filter_rremdups: "filter P (rremdups xs) = rremdups (filter P xs)"
using filter_rremdups_filter[where Q="λ_. True"]
by auto
lemma filter_take: "∃j. filter P (take i xs) = take j (filter P xs)"
apply (induction xs arbitrary: i)
apply (auto)
apply (metis filter.simps(1) filter.simps(2) take_Cons' take_Suc_Cons)
apply (metis filter.simps(2) take0 take_Cons')
done
lemma rremdups_take: "∃j. rremdups (take i xs) = take j (rremdups xs)"
proof (induction xs arbitrary: i)
case (Cons x xs)
show ?case
proof (cases i)
case (Suc n)
obtain j where j_def: "rremdups (take n xs) = take j (rremdups xs)"
using Cons by auto
obtain j' where j'_def: "filter ((≠) x) (take j (rremdups xs)) =
take j' (filter ((≠) x) (rremdups xs))"
using filter_take
by blast
show ?thesis
by (auto simp: Suc filter_rremdups[symmetric] j_def j'_def intro: exI[of _ "Suc j'"])
qed (auto simp add: take_Cons')
qed auto
lemma rremdups_app: "rremdups (xs @ [x]) = rremdups xs @ (if x ∈ set xs then [] else [x])"
apply (induction xs)
apply auto
apply (smt filter.simps(1) filter.simps(2) filter_append filter_rremdups)+
done
lemma rremdups_set: "set (rremdups xs) = set xs"
by (induction xs) (auto simp: filter_rremdups[symmetric])
lemma distinct_rremdups: "distinct (rremdups xs)"
proof (induction "length xs" arbitrary: xs rule: nat_less_induct)
case 1
then have IH: "⋀m ys. length (ys :: 'a list) < length xs ⟹ distinct (rremdups ys)"
by auto
show ?case
proof (cases xs)
case (Cons z zs)
show ?thesis
using IH
by (auto simp: Cons rremdups_set le_imp_less_Suc)
qed auto
qed
lemma length_rremdups: "length (rremdups xs) = card (set xs)"
using distinct_card[OF distinct_rremdups]
by (subst eq_commute) (auto simp: rremdups_set)
lemma set_map_filter_sum: "set (List.map_filter (case_sum Map.empty Some) xs) = Inr -` set xs"
by (induction xs) (auto simp: List.map_filter_simps split: sum.splits)
definition nats :: "nat list ⇒ bool" where
"nats ns = (ns = [0..<length ns])"
definition fo_nmlzd :: "'a set ⇒ ('a + nat) list ⇒ bool" where
"fo_nmlzd AD xs ⟷ Inl -` set xs ⊆ AD ∧
(let ns = List.map_filter (case_sum Map.empty Some) xs in nats (rremdups ns))"
lemma fo_nmlzd_all_AD:
assumes "set xs ⊆ Inl ` AD"
shows "fo_nmlzd AD xs"
proof -
have "List.map_filter (case_sum Map.empty Some) xs = []"
using assms
by (induction xs) (auto simp: List.map_filter_simps)
then show ?thesis
using assms
by (auto simp: fo_nmlzd_def nats_def Let_def)
qed
lemma card_Inr_vimage_le_length: "card (Inr -` set xs) ≤ length xs"
proof -
have "card (Inr -` set xs) ≤ card (set xs)"
by (meson List.finite_set card_inj_on_le image_vimage_subset inj_Inr)
moreover have "… ≤ length xs"
by (rule card_length)
finally show ?thesis .
qed
lemma fo_nmlzd_set:
assumes "fo_nmlzd AD xs"
shows "set xs = set xs ∩ Inl ` AD ∪ Inr ` {..<min (length xs) (card (Inr -` set xs))}"
proof -
have "Inl -` set xs ⊆ AD"
using assms
by (auto simp: fo_nmlzd_def)
moreover have "Inr -` set xs = {..<card (Inr -` set xs)}"
using assms
by (auto simp: Let_def fo_nmlzd_def nats_def length_rremdups set_map_filter_sum rremdups_set
dest!: arg_cong[of _ _ set])
ultimately have "set xs = set xs ∩ Inl ` AD ∪ Inr ` {..<card (Inr -` set xs)}"
by auto (metis (no_types, lifting) UNIV_I UNIV_sum UnE image_iff subset_iff vimageI)
then show ?thesis
using card_Inr_vimage_le_length[of xs]
by (metis min.absorb2)
qed
lemma map_filter_take: "∃j. List.map_filter f (take i xs) = take j (List.map_filter f xs)"
apply (induction xs arbitrary: i)
apply (auto simp: List.map_filter_simps split: option.splits)
apply (metis map_filter_simps(1) option.case(1) take0 take_Cons')
apply (metis map_filter_simps(1) map_filter_simps(2) option.case(2) take_Cons' take_Suc_Cons)
done
lemma fo_nmlzd_take: assumes "fo_nmlzd AD xs"
shows "fo_nmlzd AD (take i xs)"
proof -
have aux: "rremdups zs = [0..<length (rremdups zs)] ⟹ rremdups (take j zs) =
[0..<length (rremdups (take j zs))]" for j zs
using rremdups_take[of j zs]
by (auto simp add: min_def) (metis add_0 linorder_le_cases take_upt)
show ?thesis
using assms map_filter_take[of "case_sum Map.empty Some" i xs] set_take_subset
using aux[where ?zs="List.map_filter (case_sum Map.empty Some) xs"]
by (fastforce simp: fo_nmlzd_def vimage_def nats_def Let_def)
qed
lemma map_filter_app: "List.map_filter f (xs @ [x]) = List.map_filter f xs @
(case f x of Some y ⇒ [y] | _ ⇒ [])"
by (induction xs) (auto simp: List.map_filter_simps split: option.splits)
lemma fo_nmlzd_app_Inr: "Inr n ∉ set xs ⟹ Inr n' ∉ set xs ⟹ fo_nmlzd AD (xs @ [Inr n]) ⟹
fo_nmlzd AD (xs @ [Inr n']) ⟹ n = n'"
by (auto simp: List.map_filter_simps fo_nmlzd_def nats_def Let_def map_filter_app
rremdups_app set_map_filter_sum)
fun all_tuples :: "'c set ⇒ nat ⇒ 'c table" where
"all_tuples xs 0 = {[]}"
| "all_tuples xs (Suc n) = ⋃((λas. (λx. x # as) ` xs) ` (all_tuples xs n))"
definition nall_tuples :: "'a set ⇒ nat ⇒ ('a + nat) table" where
"nall_tuples AD n = {zs ∈ all_tuples (Inl ` AD ∪ Inr ` {..<n}) n. fo_nmlzd AD zs}"
lemma all_tuples_finite: "finite xs ⟹ finite (all_tuples xs n)"
by (induction xs n rule: all_tuples.induct) auto
lemma nall_tuples_finite: "finite AD ⟹ finite (nall_tuples AD n)"
by (auto simp: nall_tuples_def all_tuples_finite)
lemma all_tuplesI: "length vs = n ⟹ set vs ⊆ xs ⟹ vs ∈ all_tuples xs n"
proof (induction xs n arbitrary: vs rule: all_tuples.induct)
case (2 xs n)
then obtain w ws where "vs = w # ws" "length ws = n" "set ws ⊆ xs" "w ∈ xs"
by (metis Suc_length_conv contra_subsetD list.set_intros(1) order_trans set_subset_Cons)
with 2(1) show ?case
by auto
qed auto
lemma nall_tuplesI: "length vs = n ⟹ fo_nmlzd AD vs ⟹ vs ∈ nall_tuples AD n"
using fo_nmlzd_set[of AD vs]
by (auto simp: nall_tuples_def intro!: all_tuplesI)
lemma all_tuplesD: "vs ∈ all_tuples xs n ⟹ length vs = n ∧ set vs ⊆ xs"
by (induction xs n arbitrary: vs rule: all_tuples.induct) auto+
lemma all_tuples_setD: "vs ∈ all_tuples xs n ⟹ set vs ⊆ xs"
by (auto dest: all_tuplesD)
lemma nall_tuplesD: "vs ∈ nall_tuples AD n ⟹
length vs = n ∧ set vs ⊆ Inl ` AD ∪ Inr ` {..<n} ∧ fo_nmlzd AD vs"
by (auto simp: nall_tuples_def dest: all_tuplesD)
lemma all_tuples_set: "all_tuples xs n = {ys. length ys = n ∧ set ys ⊆ xs}"
proof (induction xs n rule: all_tuples.induct)
case (2 xs n)
show ?case
proof (rule subset_antisym; rule subsetI)
fix ys
assume "ys ∈ all_tuples xs (Suc n)"
then show "ys ∈ {ys. length ys = Suc n ∧ set ys ⊆ xs}"
using 2 by auto
next
fix ys
assume "ys ∈ {ys. length ys = Suc n ∧ set ys ⊆ xs}"
then have assm: "length ys = Suc n" "set ys ⊆ xs"
by auto
then obtain z zs where zs_def: "ys = z # zs" "z ∈ xs" "length zs = n" "set zs ⊆ xs"
by (cases ys) auto
with 2 have "zs ∈ all_tuples xs n"
by auto
with zs_def(1,2) show "ys ∈ all_tuples xs (Suc n)"
by auto
qed
qed auto
lemma nall_tuples_set: "nall_tuples AD n = {ys. length ys = n ∧ fo_nmlzd AD ys}"
using fo_nmlzd_set[of AD] card_Inr_vimage_le_length
by (auto simp: nall_tuples_def all_tuples_set) (smt UnE nall_tuplesD nall_tuplesI subsetD)
fun pos :: "'a ⇒ 'a list ⇒ nat option" where
"pos a [] = None"
| "pos a (x # xs) =
(if a = x then Some 0 else (case pos a xs of Some n ⇒ Some (Suc n) | _ ⇒ None))"
lemma pos_set: "pos a xs = Some i ⟹ a ∈ set xs"
by (induction a xs arbitrary: i rule: pos.induct) (auto split: if_splits option.splits)
lemma pos_length: "pos a xs = Some i ⟹ i < length xs"
by (induction a xs arbitrary: i rule: pos.induct) (auto split: if_splits option.splits)
lemma pos_sound: "pos a xs = Some i ⟹ i < length xs ∧ xs ! i = a"
by (induction a xs arbitrary: i rule: pos.induct) (auto split: if_splits option.splits)
lemma pos_complete: "pos a xs = None ⟹ a ∉ set xs"
by (induction a xs rule: pos.induct) (auto split: if_splits option.splits)
fun rem_nth :: "nat ⇒ 'a list ⇒ 'a list" where
"rem_nth _ [] = []"
| "rem_nth 0 (x # xs) = xs"
| "rem_nth (Suc n) (x # xs) = x # rem_nth n xs"
lemma rem_nth_length: "i < length xs ⟹ length (rem_nth i xs) = length xs - 1"
by (induction i xs rule: rem_nth.induct) auto
lemma rem_nth_take_drop: "i < length xs ⟹ rem_nth i xs = take i xs @ drop (Suc i) xs"
by (induction i xs rule: rem_nth.induct) auto
lemma rem_nth_sound: "distinct xs ⟹ pos n xs = Some i ⟹
rem_nth i (map σ xs) = map σ (filter ((≠) n) xs)"
apply (induction xs arbitrary: i)
apply (auto simp: pos_set split: option.splits)
by (metis (mono_tags, lifting) filter_True)
fun add_nth :: "nat ⇒ 'a ⇒ 'a list ⇒ 'a list" where
"add_nth 0 a xs = a # xs"
| "add_nth (Suc n) a zs = (case zs of x # xs ⇒ x # add_nth n a xs)"
lemma add_nth_length: "i ≤ length zs ⟹ length (add_nth i z zs) = Suc (length zs)"
by (induction i z zs rule: add_nth.induct) (auto split: list.splits)
lemma add_nth_take_drop: "i ≤ length zs ⟹ add_nth i v zs = take i zs @ v # drop i zs"
by (induction i v zs rule: add_nth.induct) (auto split: list.splits)
lemma add_nth_rem_nth_map: "distinct xs ⟹ pos n xs = Some i ⟹
add_nth i a (rem_nth i (map σ xs)) = map (σ(n := a)) xs"
by (induction xs arbitrary: i) (auto simp: pos_set split: option.splits)
lemma add_nth_rem_nth_self: "i < length xs ⟹ add_nth i (xs ! i) (rem_nth i xs) = xs"
by (induction i xs rule: rem_nth.induct) auto
lemma rem_nth_add_nth: "i ≤ length zs ⟹ rem_nth i (add_nth i z zs) = zs"
by (induction i z zs rule: add_nth.induct) (auto split: list.splits)
fun merge :: "(nat × 'a) list ⇒ (nat × 'a) list ⇒ (nat × 'a) list" where
"merge [] mys = mys"
| "merge nxs [] = nxs"
| "merge ((n, x) # nxs) ((m, y) # mys) =
(if n ≤ m then (n, x) # merge nxs ((m, y) # mys)
else (m, y) # merge ((n, x) # nxs) mys)"
lemma merge_Nil2[simp]: "merge nxs [] = nxs"
by (cases nxs) auto
lemma merge_length: "length (merge nxs mys) = length (map fst nxs @ map fst mys)"
by (induction nxs mys rule: merge.induct) auto
lemma insort_aux_le: "∀x∈set nxs. n ≤ fst x ⟹ ∀x∈set mys. m ≤ fst x ⟹ n ≤ m ⟹
insort n (sort (map fst nxs @ m # map fst mys)) = n # sort (map fst nxs @ m # map fst mys)"
by (induction nxs) (auto simp: insort_is_Cons insort_left_comm)
lemma insort_aux_gt: "∀x∈set nxs. n ≤ fst x ⟹ ∀x∈set mys. m ≤ fst x ⟹ ¬ n ≤ m ⟹
insort n (sort (map fst nxs @ m # map fst mys)) =
m # insort n (sort (map fst nxs @ map fst mys))"
apply (induction nxs)
apply (auto simp: insort_is_Cons)
by (metis dual_order.trans insort_key.simps(2) insort_left_comm)
lemma map_fst_merge: "sorted_distinct (map fst nxs) ⟹ sorted_distinct (map fst mys) ⟹
map fst (merge nxs mys) = sort (map fst nxs @ map fst mys)"
by (induction nxs mys rule: merge.induct)
(auto simp add: sorted_sort_id insort_is_Cons insort_aux_le insort_aux_gt)
lemma merge_map': "sorted_distinct (map fst nxs) ⟹ sorted_distinct (map fst mys) ⟹
fst ` set nxs ∩ fst ` set mys = {} ⟹
map snd nxs = map σ (map fst nxs) ⟹ map snd mys = map σ (map fst mys) ⟹
map snd (merge nxs mys) = map σ (sort (map fst nxs @ map fst mys))"
by (induction nxs mys rule: merge.induct)
(auto simp: sorted_sort_id insort_is_Cons insort_aux_le insort_aux_gt)
lemma merge_map: "sorted_distinct ns ⟹ sorted_distinct ms ⟹ set ns ∩ set ms = {} ⟹
map snd (merge (zip ns (map σ ns)) (zip ms (map σ ms))) = map σ (sort (ns @ ms))"
using merge_map'[of "zip ns (map σ ns)" "zip ms (map σ ms)" σ]
by auto (metis length_map list.set_map map_fst_zip)
fun fo_nmlz_rec :: "nat ⇒ ('a + nat ⇀ nat) ⇒ 'a set ⇒
('a + nat) list ⇒ ('a + nat) list" where
"fo_nmlz_rec i m AD [] = []"
| "fo_nmlz_rec i m AD (Inl x # xs) = (if x ∈ AD then Inl x # fo_nmlz_rec i m AD xs else
(case m (Inl x) of None ⇒ Inr i # fo_nmlz_rec (Suc i) (m(Inl x ↦ i)) AD xs
| Some j ⇒ Inr j # fo_nmlz_rec i m AD xs))"
| "fo_nmlz_rec i m AD (Inr n # xs) = (case m (Inr n) of None ⇒
Inr i # fo_nmlz_rec (Suc i) (m(Inr n ↦ i)) AD xs
| Some j ⇒ Inr j # fo_nmlz_rec i m AD xs)"
lemma fo_nmlz_rec_sound: "ran m ⊆ {..<i} ⟹ filter ((≤) i) (rremdups
(List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec i m AD xs))) = ns ⟹
ns = [i..<i + length ns]"
proof (induction i m AD xs arbitrary: ns rule: fo_nmlz_rec.induct)
case (2 i m AD x xs)
then show ?case
proof (cases "x ∈ AD")
case False
show ?thesis
proof (cases "m (Inl x)")
case None
have pred: "ran (m(Inl x ↦ i)) ⊆ {..<Suc i}"
using 2(4) None
by (auto simp: inj_on_def dom_def ran_def)
have "ns = i # filter ((≤) (Suc i)) (rremdups
(List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec (Suc i) (m(Inl x ↦ i)) AD xs)))"
using 2(5) False None
by (auto simp: List.map_filter_simps filter_rremdups)
(metis Suc_leD antisym not_less_eq_eq)
then show ?thesis
by (auto simp: 2(2)[OF False None pred, OF refl])
(smt Suc_le_eq Suc_pred le_add1 le_zero_eq less_add_same_cancel1 not_less_eq_eq
upt_Suc_append upt_rec)
next
case (Some j)
then have j_lt_i: "j < i"
using 2(4)
by (auto simp: ran_def)
have ns_def: "ns = filter ((≤) i) (rremdups
(List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec i m AD xs)))"
using 2(5) False Some j_lt_i
by (auto simp: List.map_filter_simps filter_rremdups) (metis leD)
show ?thesis
by (rule 2(3)[OF False Some 2(4) ns_def[symmetric]])
qed
qed (auto simp: List.map_filter_simps split: option.splits)
next
case (3 i m AD n xs)
show ?case
proof (cases "m (Inr n)")
case None
have pred: "ran (m(Inr n ↦ i)) ⊆ {..<Suc i}"
using 3(3) None
by (auto simp: inj_on_def dom_def ran_def)
have "ns = i # filter ((≤) (Suc i)) (rremdups
(List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec (Suc i) (m(Inr n ↦ i)) AD xs)))"
using 3(4) None
by (auto simp: List.map_filter_simps filter_rremdups) (metis Suc_leD antisym not_less_eq_eq)
then show ?thesis
by (auto simp add: 3(1)[OF None pred, OF refl])
(smt Suc_le_eq Suc_pred le_add1 le_zero_eq less_add_same_cancel1 not_less_eq_eq
upt_Suc_append upt_rec)
next
case (Some j)
then have j_lt_i: "j < i"
using 3(3)
by (auto simp: ran_def)
have ns_def: "ns = filter ((≤) i) (rremdups
(List.map_filter (case_sum Map.empty Some) (fo_nmlz_rec i m AD xs)))"
using 3(4) Some j_lt_i
by (auto simp: List.map_filter_simps filter_rremdups) (metis leD)
show ?thesis
by (rule 3(2)[OF Some 3(3) ns_def[symmetric]])
qed
qed (auto simp: List.map_filter_simps)
definition id_map :: "nat ⇒ ('a + nat ⇀ nat)" where
"id_map n = (λx. case x of Inl x ⇒ None | Inr x ⇒ if x < n then Some x else None)"
lemma fo_nmlz_rec_idem: "Inl -` set ys ⊆ AD ⟹
rremdups (List.map_filter (case_sum Map.empty Some) ys) = ns ⟹
set (filter (λn. n < i) ns) ⊆ {..<i} ⟹ filter ((≤) i) ns = [i..<i + k] ⟹
fo_nmlz_rec i (id_map i) AD ys = ys"
proof (induction ys arbitrary: i k ns)
case (Cons y ys)
show ?case
proof (cases y)
case (Inl a)
show ?thesis
using Cons(1)[OF _ _ Cons(4,5)] Cons(2,3)
by (auto simp: Inl List.map_filter_simps)
next
case (Inr j)
show ?thesis
proof (cases "j < i")
case False
have j_i: "j = i"
using False Cons(3,5)
by (auto simp: Inr List.map_filter_simps filter_rremdups in_mono split: if_splits)
(metis (no_types, lifting) upt_eq_Cons_conv)
obtain kk where k_def: "k = Suc kk"
using Cons(3,5)
by (cases k) (auto simp: Inr List.map_filter_simps j_i)
define ns' where "ns' = rremdups (List.map_filter (case_sum Map.empty Some) ys)"
have id_map_None: "id_map i (Inr i) = None"
by (auto simp: id_map_def)
have id_map_upd: "(id_map i)(Inr i ↦ i) = id_map (Suc i)"
by (auto simp: id_map_def split: sum.splits)
have "set (filter (λn. n < Suc i) ns') ⊆ {..<Suc i}"
using Cons(2,3)
by auto
moreover have "filter ((≤) (Suc i)) ns' = [Suc i..<i + k]"
using Cons(3,5)
by (auto simp: Inr List.map_filter_simps j_i filter_rremdups[symmetric] ns'_def[symmetric])
(smt One_nat_def Suc_eq_plus1 Suc_le_eq add_diff_cancel_left' diff_is_0_eq'
dual_order.order_iff_strict filter_cong n_not_Suc_n upt_eq_Cons_conv)
moreover have "Inl -` set ys ⊆ AD"
using Cons(2)
by (auto simp: vimage_def)
ultimately have "fo_nmlz_rec (Suc i) ((id_map i)(Inr i ↦ i)) AD ys = ys"
using Cons(1)[OF _ ns'_def[symmetric], of "Suc i" kk]
by (auto simp: ns'_def k_def id_map_upd split: if_splits)
then show ?thesis
by (auto simp: Inr j_i id_map_None)
next
case True
define ns' where "ns' = rremdups (List.map_filter (case_sum Map.empty Some) ys)"
have "set (filter (λy. y < i) ns') ⊆ set (filter (λy. y < i) ns)"
"filter ((≤) i) ns' = filter ((≤) i) ns"
using Cons(3) True
by (auto simp: Inr List.map_filter_simps filter_rremdups[symmetric] ns'_def[symmetric])
(smt filter_cong leD)
then have "fo_nmlz_rec i (id_map i) AD ys = ys"
using Cons(1)[OF _ ns'_def[symmetric]] Cons(3,5) Cons(2)
by (auto simp: vimage_def)
then show ?thesis
using True
by (auto simp: Inr id_map_def)
qed
qed
qed (auto simp: List.map_filter_simps intro!: exI[of _ "[]"])
lemma fo_nmlz_rec_length: "length (fo_nmlz_rec i m AD xs) = length xs"
by (induction i m AD xs rule: fo_nmlz_rec.induct) (auto simp: fun_upd_def split: option.splits)
lemma insert_Inr: "⋀X. insert (Inr i) (X ∪ Inr ` {..<i}) = X ∪ Inr ` {..<Suc i}"
by auto
lemma fo_nmlz_rec_set: "ran m ⊆ {..<i} ⟹ set (fo_nmlz_rec i m AD xs) ∪ Inr ` {..<i} =
set xs ∩ Inl ` AD ∪ Inr ` {..<i + card (set xs - Inl ` AD - dom m)}"
proof (induction i m AD xs rule: fo_nmlz_rec.induct)
case (2 i m AD x xs)
have fin: "finite (set (Inl x # xs) - Inl ` AD - dom m)"
by auto
show ?case
using 2(1)[OF _ 2(4)]
proof (cases "x ∈ AD")
case True
have "card (set (Inl x # xs) - Inl ` AD - dom m) = card (set xs - Inl ` AD - dom m)"
using True
by auto
then show ?thesis
using 2(1)[OF True 2(4)] True
by auto
next
case False
show ?thesis
proof (cases "m (Inl x)")
case None
have pred: "ran (m(Inl x ↦ i)) ⊆ {..<Suc i}"
using 2(4) None
by (auto simp: inj_on_def dom_def ran_def)
have "set (Inl x # xs) - Inl ` AD - dom m =
{Inl x} ∪ (set xs - Inl ` AD - dom (m(Inl x ↦ i)))"
using None False
by (auto simp: dom_def)
then have Suc: "Suc i + card (set xs - Inl ` AD - dom (m(Inl x ↦ i))) =
i + card (set (Inl x # xs) - Inl ` AD - dom m)"
using None
by auto
show ?thesis
using 2(2)[OF False None pred] False None
unfolding Suc
by (auto simp: fun_upd_def[symmetric] insert_Inr)
next
case (Some j)
then have j_lt_i: "j < i"
using 2(4)
by (auto simp: ran_def)
have "card (set (Inl x # xs) - Inl ` AD - dom m) = card (set xs - Inl ` AD - dom m)"
by (auto simp: Some intro: arg_cong[of _ _ card])
then show ?thesis
using 2(3)[OF False Some 2(4)] False Some j_lt_i
by auto
qed
qed
next
case (3 i m AD k xs)
then show ?case
proof (cases "m (Inr k)")
case None
have preds: "ran (m(Inr k ↦ i)) ⊆ {..<Suc i}"
using 3(3)
by (auto simp: ran_def)
have "set (Inr k # xs) - Inl ` AD - dom m =
{Inr k} ∪ (set xs - Inl ` AD - dom (m(Inr k ↦ i)))"
using None
by (auto simp: dom_def)
then have Suc: "Suc i + card (set xs - Inl ` AD - dom (m(Inr k ↦ i))) =
i + card (set (Inr k # xs) - Inl ` AD - dom m)"
using None
by auto
show ?thesis
using None 3(1)[OF None preds]
unfolding Suc
by (auto simp: fun_upd_def[symmetric] insert_Inr)
next
case (Some j)
have fin: "finite (set (Inr k # xs) - Inl ` AD - dom m)"
by auto
have card_eq: "card (set xs - Inl ` AD - dom m) = card (set (Inr k # xs) - Inl ` AD - dom m)"
by (auto simp: Some intro!: arg_cong[of _ _ card])
have j_lt_i: "j < i"
using 3(3) Some
by (auto simp: ran_def)
show ?thesis
using 3(2)[OF Some 3(3)] j_lt_i
unfolding card_eq
by (auto simp: ran_def insert_Inr Some)
qed
qed auto
lemma fo_nmlz_rec_set_rev: "set (fo_nmlz_rec i m AD xs) ⊆ Inl ` AD ⟹ set xs ⊆ Inl ` AD"
by (induction i m AD xs rule: fo_nmlz_rec.induct) (auto split: if_splits option.splits)
lemma fo_nmlz_rec_map: "inj_on m (dom m) ⟹ ran m ⊆ {..<i} ⟹ ∃m'. inj_on m' (dom m') ∧
(∀n. m n ≠ None ⟶ m' n = m n) ∧ (∀(x, y) ∈ set (zip xs (fo_nmlz_rec i m AD xs)).
(case x of Inl x' ⇒ if x' ∈ AD then x = y else ∃j. m' (Inl x') = Some j ∧ y = Inr j
| Inr n ⇒ ∃j. m' (Inr n) = Some j ∧ y = Inr j))"
proof (induction i m AD xs rule: fo_nmlz_rec.induct)
case (2 i m AD x xs)
show ?case
using 2(1)[OF _ 2(4,5)]
proof (cases "x ∈ AD")
case False
show ?thesis
proof (cases "m (Inl x)")
case None
have preds: "inj_on (m(Inl x ↦ i)) (dom (m(Inl x ↦ i)))" "ran (m(Inl x ↦ i)) ⊆ {..<Suc i}"
using 2(4,5)
by (auto simp: inj_on_def ran_def)
show ?thesis
using 2(2)[OF False None preds] False None
apply safe
subgoal for m'
by (auto simp: fun_upd_def split: sum.splits intro!: exI[of _ m'])
done
next
case (Some j)
show ?thesis
using 2(3)[OF False Some 2(4,5)] False Some
apply safe
subgoal for m'
by (auto split: sum.splits intro!: exI[of _ m'])
done
qed
qed auto
next
case (3 i m AD n xs)
show ?case
proof (cases "m (Inr n)")
case None
have preds: "inj_on (m(Inr n ↦ i)) (dom (m(Inr n ↦ i)))" "ran (m(Inr n ↦ i)) ⊆ {..<Suc i}"
using 3(3,4)
by (auto simp: inj_on_def ran_def)
show ?thesis
using 3(1)[OF None preds] None
apply safe
subgoal for m'
by (auto simp: fun_upd_def intro!: exI[of _ m'] split: sum.splits)
done
next
case (Some j)
show ?thesis
using 3(2)[OF Some 3(3,4)] Some
apply safe
subgoal for m'
by (auto simp: fun_upd_def intro!: exI[of _ m'] split: sum.splits)
done
qed
qed auto
lemma ad_agr_map:
assumes "length xs = length ys" "inj_on m (dom m)"
"⋀x y. (x, y) ∈ set (zip xs ys) ⟹ (case x of Inl x' ⇒
if x' ∈ AD then x = y else m x = Some y ∧ (case y of Inl z ⇒ z ∉ AD | Inr _ ⇒ True)
| Inr n ⇒ m x = Some y ∧ (case y of Inl z ⇒ z ∉ AD | Inr _ ⇒ True))"
shows "ad_agr_list AD xs ys"
proof -
have "ad_equiv_pair AD (a, b)" if "(a, b) ∈ set (zip xs ys)" for a b
unfolding ad_equiv_pair.simps
using assms(3)[OF that]
by (auto split: sum.splits if_splits)
moreover have "False" if "(a, c) ∈ set (zip xs ys)" "(b, c) ∈ set (zip xs ys)" "a ≠ b" for a b c
using assms(3)[OF that(1)] assms(3)[OF that(2)] assms(2) that(3)
by (auto split: sum.splits if_splits) (metis domI inj_onD that(3))+
moreover have "False" if "(a, b) ∈ set (zip xs ys)" "(a, c) ∈ set (zip xs ys)" "b ≠ c" for a b c
using assms(3)[OF that(1)] assms(3)[OF that(2)] assms(2) that(3)
by (auto split: sum.splits if_splits)
ultimately show ?thesis
using assms
by (fastforce simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
qed
lemma fo_nmlz_rec_take: "take n (fo_nmlz_rec i m AD xs) = fo_nmlz_rec i m AD (take n xs)"
by (induction i m AD xs arbitrary: n rule: fo_nmlz_rec.induct)
(auto simp: take_Cons' split: option.splits)
definition fo_nmlz :: "'a set ⇒ ('a + nat) list ⇒ ('a + nat) list" where
"fo_nmlz = fo_nmlz_rec 0 Map.empty"
lemma fo_nmlz_Nil[simp]: "fo_nmlz AD [] = []"
by (auto simp: fo_nmlz_def)
lemma fo_nmlz_Cons: "fo_nmlz AD [x] =
(case x of Inl x ⇒ if x ∈ AD then [Inl x] else [Inr 0] | _ ⇒ [Inr 0])"
by (auto simp: fo_nmlz_def split: sum.splits)
lemma fo_nmlz_Cons_Cons: "fo_nmlz AD [x, x] =
(case x of Inl x ⇒ if x ∈ AD then [Inl x, Inl x] else [Inr 0, Inr 0] | _ ⇒ [Inr 0, Inr 0])"
by (auto simp: fo_nmlz_def split: sum.splits)
lemma fo_nmlz_sound: "fo_nmlzd AD (fo_nmlz AD xs)"
using fo_nmlz_rec_sound[of Map.empty 0] fo_nmlz_rec_set[of Map.empty 0 AD xs]
by (auto simp: fo_nmlzd_def fo_nmlz_def nats_def Let_def)
lemma fo_nmlz_length: "length (fo_nmlz AD xs) = length xs"
using fo_nmlz_rec_length
by (auto simp: fo_nmlz_def)
lemma fo_nmlz_map: "∃τ. fo_nmlz AD (map σ ns) = map τ ns"
proof -
obtain m' where m'_def: "∀(x, y)∈set (zip (map σ ns) (fo_nmlz AD (map σ ns))).
case x of Inl x' ⇒ if x' ∈ AD then x = y else ∃j. m' (Inl x') = Some j ∧ y = Inr j
| Inr n ⇒ ∃j. m' (Inr n) = Some j ∧ y = Inr j"
using fo_nmlz_rec_map[of Map.empty 0, of "map σ ns"]
by (auto simp: fo_nmlz_def)
define τ where "τ ≡ (λn. case σ n of Inl x ⇒ if x ∈ AD then Inl x else Inr (the (m' (Inl x)))
| Inr j ⇒ Inr (the (m' (Inr j))))"
have "fo_nmlz AD (map σ ns) = map τ ns"
proof (rule nth_equalityI)
show "length (fo_nmlz AD (map σ ns)) = length (map τ ns)"
using fo_nmlz_length[of AD "map σ ns"]
by auto
fix i
assume "i < length (fo_nmlz AD (map σ ns))"
then show "fo_nmlz AD (map σ ns) ! i = map τ ns ! i"
using m'_def fo_nmlz_length[of AD "map σ ns"]
apply (auto simp: set_zip τ_def split: sum.splits)
apply (metis nth_map)
apply (metis nth_map option.sel)+
done
qed
then show ?thesis
by auto
qed
lemma card_set_minus: "card (set xs - X) ≤ length xs"
by (meson Diff_subset List.finite_set card_length card_mono order_trans)
lemma fo_nmlz_set: "set (fo_nmlz AD xs) =
set xs ∩ Inl ` AD ∪ Inr ` {..<min (length xs) (card (set xs - Inl ` AD))}"
using fo_nmlz_rec_set[of Map.empty 0 AD xs]
by (auto simp add: fo_nmlz_def card_set_minus)
lemma fo_nmlz_set_rev: "set (fo_nmlz AD xs) ⊆ Inl ` AD ⟹ set xs ⊆ Inl ` AD"
using fo_nmlz_rec_set_rev[of 0 Map.empty AD xs]
by (auto simp: fo_nmlz_def)
lemma inj_on_empty: "inj_on Map.empty (dom Map.empty)" and ran_empty_upto: "ran Map.empty ⊆ {..<0}"
by auto
lemma fo_nmlz_ad_agr: "ad_agr_list AD xs (fo_nmlz AD xs)"
using fo_nmlz_rec_map[OF inj_on_empty ran_empty_upto, of xs AD]
unfolding fo_nmlz_def
apply safe
subgoal for m'
by (fastforce simp: inj_on_def dom_def split: sum.splits if_splits
intro!: ad_agr_map[OF fo_nmlz_rec_length[symmetric], of "map_option Inr ∘ m'"])
done
lemma fo_nmlzd_mono: "Inl -` set xs ⊆ AD ⟹ fo_nmlzd AD' xs ⟹ fo_nmlzd AD xs"
by (auto simp: fo_nmlzd_def)
lemma fo_nmlz_idem: "fo_nmlzd AD ys ⟹ fo_nmlz AD ys = ys"
using fo_nmlz_rec_idem[where ?i=0]
by (auto simp: fo_nmlzd_def fo_nmlz_def id_map_def nats_def Let_def)
lemma fo_nmlz_take: "take n (fo_nmlz AD xs) = fo_nmlz AD (take n xs)"
using fo_nmlz_rec_take
by (auto simp: fo_nmlz_def)
fun nall_tuples_rec :: "'a set ⇒ nat ⇒ nat ⇒ ('a + nat) table" where
"nall_tuples_rec AD i 0 = {[]}"
| "nall_tuples_rec AD i (Suc n) = ⋃((λas. (λx. x # as) ` (Inl ` AD ∪ Inr ` {..<i})) `
nall_tuples_rec AD i n) ∪ (λas. Inr i # as) ` nall_tuples_rec AD (Suc i) n"
lemma nall_tuples_rec_Inl: "vs ∈ nall_tuples_rec AD i n ⟹ Inl -` set vs ⊆ AD"
by (induction AD i n arbitrary: vs rule: nall_tuples_rec.induct) (fastforce simp: vimage_def)+
lemma nall_tuples_rec_length: "xs ∈ nall_tuples_rec AD i n ⟹ length xs = n"
by (induction AD i n arbitrary: xs rule: nall_tuples_rec.induct) auto
lemma fun_upd_id_map: "(id_map i)(Inr i ↦ i) = id_map (Suc i)"
by (rule ext) (auto simp: id_map_def split: sum.splits)
lemma id_mapD: "id_map j (Inr i) = None ⟹ j ≤ i" "id_map j (Inr i) = Some x ⟹ i < j ∧ i = x"
by (auto simp: id_map_def split: if_splits)
lemma nall_tuples_rec_fo_nmlz_rec_sound: "i ≤ j ⟹ xs ∈ nall_tuples_rec AD i n ⟹
fo_nmlz_rec j (id_map j) AD xs = xs"
apply (induction n arbitrary: i j xs)
apply (auto simp: fun_upd_id_map dest!: id_mapD split: option.splits)
apply (meson dual_order.strict_trans2 id_mapD(1) not_Some_eq sup.strict_order_iff)
using Suc_leI apply blast+
done
lemma nall_tuples_rec_fo_nmlz_rec_complete:
assumes "fo_nmlz_rec j (id_map j) AD xs = xs"
shows "xs ∈ nall_tuples_rec AD j (length xs)"
using assms
proof (induction xs arbitrary: j)
case (Cons x xs)
show ?case
proof (cases x)
case (Inl a)
have a_AD: "a ∈ AD"
using Cons(2)
by (auto simp: Inl split: if_splits option.splits)
show ?thesis
using Cons a_AD
by (auto simp: Inl)
next
case (Inr b)
have b_j: "b ≤ j"
using Cons(2)
by (auto simp: Inr split: option.splits dest: id_mapD)
show ?thesis
proof (cases "b = j")
case True
have preds: "fo_nmlz_rec (Suc j) (id_map (Suc j)) AD xs = xs"
using Cons(2)
by (auto simp: Inr True fun_upd_id_map dest: id_mapD split: option.splits)
show ?thesis
using Cons(1)[OF preds]
by (auto simp: Inr True)
next
case False
have b_lt_j: "b < j"
using b_j False
by auto
have id_map: "id_map j (Inr b) = Some b"
using b_lt_j
by (auto simp: id_map_def)
have preds: "fo_nmlz_rec j (id_map j) AD xs = xs"
using Cons(2)
by (auto simp: Inr id_map)
show ?thesis
using Cons(1)[OF preds] b_lt_j
by (auto simp: Inr)
qed
qed
qed auto
lemma nall_tuples_rec_fo_nmlz: "xs ∈ nall_tuples_rec AD 0 (length xs) ⟷ fo_nmlz AD xs = xs"
using nall_tuples_rec_fo_nmlz_rec_sound[of 0 0 xs AD "length xs"]
nall_tuples_rec_fo_nmlz_rec_complete[of 0 AD xs]
by (auto simp: fo_nmlz_def id_map_def)
lemma fo_nmlzd_code[code]: "fo_nmlzd AD xs ⟷ fo_nmlz AD xs = xs"
using fo_nmlz_idem fo_nmlz_sound
by metis
lemma nall_tuples_code[code]: "nall_tuples AD n = nall_tuples_rec AD 0 n"
unfolding nall_tuples_set
using nall_tuples_rec_length trans[OF nall_tuples_rec_fo_nmlz fo_nmlzd_code[symmetric]]
by fastforce
lemma exists_map: "length xs = length ys ⟹ distinct xs ⟹ ∃f. ys = map f xs"
proof (induction xs ys rule: list_induct2)
case (Cons x xs y ys)
then obtain f where f_def: "ys = map f xs"
by auto
with Cons(3) have "y # ys = map (f(x := y)) (x # xs)"
by auto
then show ?case
by metis
qed auto
lemma exists_fo_nmlzd:
assumes "length xs = length ys" "distinct xs" "fo_nmlzd AD ys"
shows "∃f. ys = fo_nmlz AD (map f xs)"
using fo_nmlz_idem[OF assms(3)] exists_map[OF _ assms(2)] assms(1)
by metis
lemma list_induct2_rev[consumes 1]: "length xs = length ys ⟹ (P [] []) ⟹
(⋀x y xs ys. P xs ys ⟹ P (xs @ [x]) (ys @ [y])) ⟹ P xs ys"
proof (induction "length xs" arbitrary: xs ys)
case (Suc n)
then show ?case
by (cases xs rule: rev_cases; cases ys rule: rev_cases) auto
qed auto
lemma ad_agr_list_fo_nmlzd:
assumes "ad_agr_list AD vs vs'" "fo_nmlzd AD vs" "fo_nmlzd AD vs'"
shows "vs = vs'"
using ad_agr_list_length[OF assms(1)] assms
proof (induction vs vs' rule: list_induct2_rev)
case (2 x y xs ys)
have norms: "fo_nmlzd AD xs" "fo_nmlzd AD ys"
using 2(3,4)
by (auto simp: fo_nmlzd_def nats_def Let_def map_filter_app rremdups_app
split: sum.splits if_splits)
have ad_agr: "ad_agr_list AD xs ys"
using 2(2)
by (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
note xs_ys = 2(1)[OF ad_agr norms]
have "x = y"
proof (cases "isl x ∨ isl y")
case True
then have "isl x ⟶ projl x ∈ AD" "isl y ⟶ projl y ∈ AD"
using 2(3,4)
by (auto simp: fo_nmlzd_def)
then show ?thesis
using 2(2) True
apply (auto simp: ad_agr_list_def ad_equiv_list_def isl_def)
unfolding ad_equiv_pair.simps
by blast+
next
case False
then obtain x' y' where inr: "x = Inr x'" "y = Inr y'"
by (cases x; cases y) auto
show ?thesis
using 2(2) xs_ys
proof (cases "x ∈ set xs ∨ y ∈ set ys")
case False
then show ?thesis
using fo_nmlzd_app_Inr 2(3,4)
unfolding inr xs_ys
by auto
qed (auto simp: ad_agr_list_def sp_equiv_list_def pairwise_def set_zip in_set_conv_nth)
qed
then show ?case
using xs_ys
by auto
qed auto
lemma fo_nmlz_eqI:
assumes "ad_agr_list AD vs vs'"
shows "fo_nmlz AD vs = fo_nmlz AD vs'"
using ad_agr_list_fo_nmlzd[OF
ad_agr_list_trans[OF ad_agr_list_trans[OF
ad_agr_list_comm[OF fo_nmlz_ad_agr[of AD vs]] assms]
fo_nmlz_ad_agr[of AD vs']] fo_nmlz_sound fo_nmlz_sound] .
lemma fo_nmlz_eqD:
assumes "fo_nmlz AD vs = fo_nmlz AD vs'"
shows "ad_agr_list AD vs vs'"
using ad_agr_list_trans[OF fo_nmlz_ad_agr[of AD vs, unfolded assms]
ad_agr_list_comm[OF fo_nmlz_ad_agr[of AD vs']]] .
lemma fo_nmlz_eq: "fo_nmlz AD vs = fo_nmlz AD vs' ⟷ ad_agr_list AD vs vs'"
using fo_nmlz_eqI[where ?AD=AD] fo_nmlz_eqD[where ?AD=AD]
by blast
lemma fo_nmlz_mono:
assumes "AD ⊆ AD'" "Inl -` set xs ⊆ AD"
shows "fo_nmlz AD' xs = fo_nmlz AD xs"
proof -
have "fo_nmlz AD (fo_nmlz AD' xs) = fo_nmlz AD' xs"
apply (rule fo_nmlz_idem[OF fo_nmlzd_mono[OF _ fo_nmlz_sound]])
using assms
by (auto simp: fo_nmlz_set)
moreover have "fo_nmlz AD xs = fo_nmlz AD (fo_nmlz AD' xs)"
apply (rule fo_nmlz_eqI)
apply (rule ad_agr_list_mono[OF assms(1)])
apply (rule fo_nmlz_ad_agr)
done
ultimately show ?thesis
by auto
qed
definition proj_vals :: "'c val set ⇒ nat list ⇒ 'c table" where
"proj_vals R ns = (λτ. map τ ns) ` R"
definition proj_fmla :: "('a, 'b) fo_fmla ⇒ 'c val set ⇒ 'c table" where
"proj_fmla φ R = proj_vals R (fv_fo_fmla_list φ)"
lemmas proj_fmla_map = proj_fmla_def[unfolded proj_vals_def]
definition "extends_subst σ τ = (∀x. σ x ≠ None ⟶ σ x = τ x)"
definition ext_tuple :: "'a set ⇒ nat list ⇒ nat list ⇒
('a + nat) list ⇒ ('a + nat) list set" where
"ext_tuple AD fv_sub fv_sub_comp as = (if fv_sub_comp = [] then {as}
else (λfs. map snd (merge (zip fv_sub as) (zip fv_sub_comp fs))) `
(nall_tuples_rec AD (card (Inr -` set as)) (length fv_sub_comp)))"
lemma ext_tuple_eq: "length fv_sub = length as ⟹
ext_tuple AD fv_sub fv_sub_comp as =
(λfs. map snd (merge (zip fv_sub as) (zip fv_sub_comp fs))) `
(nall_tuples_rec AD (card (Inr -` set as)) (length fv_sub_comp))"
using fo_nmlz_idem[of AD as]
by (auto simp: ext_tuple_def)
lemma map_map_of: "length xs = length ys ⟹ distinct xs ⟹
ys = map (the ∘ (map_of (zip xs ys))) xs"
by (induction xs ys rule: list_induct2) (auto simp: fun_upd_comp)
lemma id_map_empty: "id_map 0 = Map.empty"
by (rule ext) (auto simp: id_map_def split: sum.splits)
lemma fo_nmlz_rec_shift:
fixes xs :: "('a + nat) list"
shows "fo_nmlz_rec i (id_map i) AD xs = xs ⟹
i' = card (Inr -` (Inr ` {..<i} ∪ set (take n xs))) ⟹ n ≤ length xs ⟹
fo_nmlz_rec i' (id_map i') AD (drop n xs) = drop n xs"
proof (induction i "id_map i :: 'a + nat ⇀ nat" AD xs arbitrary: n rule: fo_nmlz_rec.induct)
case (2 i AD x xs)
have preds: "x ∈ AD" "fo_nmlz_rec i (id_map i) AD xs = xs"
using 2(4)
by (auto split: if_splits option.splits)
show ?case
using 2(4,5)
proof (cases n)
case (Suc k)
have k_le: "k ≤ length xs"
using 2(6)
by (auto simp: Suc)
have i'_def: "i' = card (Inr -` (Inr ` {..<i} ∪ set (take k xs)))"
using 2(5)
by (auto simp: Suc vimage_def)
show ?thesis
using 2(1)[OF preds i'_def k_le]
by (auto simp: Suc)
qed (auto simp: inj_vimage_image_eq)
next
case (3 i AD j xs)
show ?case
using 3(3,4)
proof (cases n)
case (Suc k)
have k_le: "k ≤ length xs"
using 3(5)
by (auto simp: Suc)
have j_le_i: "j ≤ i"
using 3(3)
by (auto split: option.splits dest: id_mapD)
show ?thesis
proof (cases "j = i")
case True
have id_map: "id_map i (Inr j) = None" "(id_map i)(Inr j ↦ i) = id_map (Suc i)"
unfolding True fun_upd_id_map
by (auto simp: id_map_def)
have norm_xs: "fo_nmlz_rec (Suc i) (id_map (Suc i)) AD xs = xs"
using 3(3)
by (auto simp: id_map split: option.splits dest: id_mapD)
have i'_def: "i' = card (Inr -` (Inr ` {..<Suc i} ∪ set (take k xs)))"
using 3(4)
by (auto simp: Suc True inj_vimage_image_eq)
(metis Un_insert_left image_insert inj_Inr inj_vimage_image_eq lessThan_Suc vimage_Un)
show ?thesis
using 3(1)[OF id_map norm_xs i'_def k_le]
by (auto simp: Suc)
next
case False
have id_map: "id_map i (Inr j) = Some j"
using j_le_i False
by (auto simp: id_map_def)
have norm_xs: "fo_nmlz_rec i (id_map i) AD xs = xs"
using 3(3)
by (auto simp: id_map)
have i'_def: "i' = card (Inr -` (Inr ` {..<i} ∪ set (take k xs)))"
using 3(4) j_le_i False
by (auto simp: Suc inj_vimage_image_eq insert_absorb)
show ?thesis
using 3(2)[OF id_map norm_xs i'_def k_le]
by (auto simp: Suc)
qed
qed (auto simp: inj_vimage_image_eq)
qed auto
fun proj_tuple :: "nat list ⇒ (nat × ('a + nat)) list ⇒ ('a + nat) list" where
"proj_tuple [] mys = []"
| "proj_tuple ns [] = []"
| "proj_tuple (n # ns) ((m, y) # mys) =
(if m < n then proj_tuple (n # ns) mys else
if m = n then y # proj_tuple ns mys
else proj_tuple ns ((m, y) # mys))"
lemma proj_tuple_idle: "proj_tuple (map fst nxs) nxs = map snd nxs"
by (induction nxs) auto
lemma proj_tuple_merge: "sorted_distinct (map fst nxs) ⟹ sorted_distinct (map fst mys) ⟹
set (map fst nxs) ∩ set (map fst mys) = {} ⟹
proj_tuple (map fst nxs) (merge nxs mys) = map snd nxs"
using proj_tuple_idle
by (induction nxs mys rule: merge.induct) auto+
lemma proj_tuple_map:
assumes "sorted_distinct ns" "sorted_distinct ms" "set ns ⊆ set ms"
shows "proj_tuple ns (zip ms (map σ ms)) = map σ ns"
proof -
define ns' where "ns' = filter (λn. n ∉ set ns) ms"
have sd_ns': "sorted_distinct ns'"
using assms(2) sorted_filter[of id]
by (auto simp: ns'_def)
have disj: "set ns ∩ set ns' = {}"
by (auto simp: ns'_def)
have ms_def: "ms = sort (ns @ ns')"
apply (rule sorted_distinct_set_unique)
using assms
by (auto simp: ns'_def)
have zip: "zip ms (map σ ms) = merge (zip ns (map σ ns)) (zip ns' (map σ ns'))"
unfolding merge_map[OF assms(1) sd_ns' disj, folded ms_def, symmetric]
using map_fst_merge assms(1)
by (auto simp: ms_def) (smt length_map map_fst_merge map_fst_zip sd_ns' zip_map_fst_snd)
show ?thesis
unfolding zip
using proj_tuple_merge
by (smt assms(1) disj length_map map_fst_zip map_snd_zip sd_ns')
qed
lemma proj_tuple_length:
assumes "sorted_distinct ns" "sorted_distinct ms" "set ns ⊆ set ms" "length ms = length xs"
shows "length (proj_tuple ns (zip ms xs)) = length ns"
proof -
obtain σ where σ: "xs = map σ ms"
using exists_map[OF assms(4)] assms(2)
by auto
show ?thesis
unfolding σ
by (auto simp: proj_tuple_map[OF assms(1-3)])
qed
lemma ext_tuple_sound:
assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
"set fv_sub ∩ set fv_sub_comp = {}" "set fv_sub ∪ set fv_sub_comp = set fv_all"
"ass = fo_nmlz AD ` proj_vals R fv_sub"
"⋀σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ ⟹ σ ∈ R ⟷ τ ∈ R"
"xs ∈ fo_nmlz AD ` ⋃(ext_tuple AD fv_sub fv_sub_comp ` ass)"
shows "fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs)) ∈ ass"
"xs ∈ fo_nmlz AD ` proj_vals R fv_all"
proof -
have fv_all_sort: "fv_all = sort (fv_sub @ fv_sub_comp)"
using assms(1,2,3,4,5)
by (simp add: sorted_distinct_set_unique)
have len_in_ass: "⋀xs. xs ∈ ass ⟹ xs = fo_nmlz AD xs ∧ length xs = length fv_sub"
by (auto simp: assms(6) proj_vals_def fo_nmlz_length fo_nmlz_idem fo_nmlz_sound)
obtain as fs where as_fs_def: "as ∈ ass"
"fs ∈ nall_tuples_rec AD (card (Inr -` set as)) (length fv_sub_comp)"
"xs = fo_nmlz AD (map snd (merge (zip fv_sub as) (zip fv_sub_comp fs)))"
using fo_nmlz_sound len_in_ass assms(8)
by (auto simp: ext_tuple_def split: if_splits)
then have vs_norm: "fo_nmlzd AD xs"
using fo_nmlz_sound
by auto
obtain σ where σ_def: "σ ∈ R" "as = fo_nmlz AD (map σ fv_sub)"
using as_fs_def(1) assms(6)
by (auto simp: proj_vals_def)
then obtain τ where τ_def: "as = map τ fv_sub" "ad_agr_list AD (map σ fv_sub) (map τ fv_sub)"
using fo_nmlz_map fo_nmlz_ad_agr
by metis
have τ_R: "τ ∈ R"
using assms(7) ad_agr_list_link σ_def(1) τ_def(2)
by fastforce
define σ' where "σ' ≡ λn. if n ∈ set fv_sub_comp then the (map_of (zip fv_sub_comp fs) n)
else τ n"
then have "∀n ∈ set fv_sub. τ n = σ' n"
using assms(4) by auto
then have σ'_S: "σ' ∈ R"
using assms(7) τ_R
by (fastforce simp: ad_agr_sets_def sp_equiv_def pairwise_def ad_equiv_pair.simps)
have length_as: "length as = length fv_sub"
using as_fs_def(1) assms(6)
by (auto simp: proj_vals_def fo_nmlz_length)
have length_fs: "length fs = length fv_sub_comp"
using as_fs_def(2)
by (auto simp: nall_tuples_rec_length)
have map_fv_sub: "map σ' fv_sub = map τ fv_sub"
using assms(4) τ_def(2)
by (auto simp: σ'_def)
have fs_map_map_of: "fs = map (the ∘ (map_of (zip fv_sub_comp fs))) fv_sub_comp"
using map_map_of length_fs assms(2)
by metis
have fs_map: "fs = map σ' fv_sub_comp"
using σ'_def length_fs by (subst fs_map_map_of) simp
have vs_map_fv_all: "xs = fo_nmlz AD (map σ' fv_all)"
unfolding as_fs_def(3) τ_def(1) map_fv_sub[symmetric] fs_map fv_all_sort
using merge_map[OF assms(1,2,4)]
by metis
show "xs ∈ fo_nmlz AD ` proj_vals R fv_all"
using σ'_S vs_map_fv_all
by (auto simp: proj_vals_def)
obtain σ'' where σ''_def: "xs = map σ'' fv_all"
using exists_map[of fv_all xs] fo_nmlz_map vs_map_fv_all
by blast
have proj: "proj_tuple fv_sub (zip fv_all xs) = map σ'' fv_sub"
using proj_tuple_map assms(1,3,5)
unfolding σ''_def
by blast
have σ''_σ': "fo_nmlz AD (map σ'' fv_sub) = as"
using σ''_def vs_map_fv_all σ_def(2)
by (metis τ_def(2) ad_agr_list_subset assms(5) fo_nmlz_ad_agr fo_nmlz_eqI map_fv_sub sup_ge1)
show "fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs)) ∈ ass"
unfolding proj σ''_σ' map_fv_sub
by (rule as_fs_def(1))
qed
lemma ext_tuple_complete:
assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
"set fv_sub ∩ set fv_sub_comp = {}" "set fv_sub ∪ set fv_sub_comp = set fv_all"
"ass = fo_nmlz AD ` proj_vals R fv_sub"
"⋀σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ ⟹ σ ∈ R ⟷ τ ∈ R"
"xs = fo_nmlz AD (map σ fv_all)" "σ ∈ R"
shows "xs ∈ fo_nmlz AD ` ⋃(ext_tuple AD fv_sub fv_sub_comp ` ass)"
proof -
have fv_all_sort: "fv_all = sort (fv_sub @ fv_sub_comp)"
using assms(1,2,3,4,5)
by (simp add: sorted_distinct_set_unique)
note σ_def = assms(9,8)
have vs_norm: "fo_nmlzd AD xs"
using σ_def(2) fo_nmlz_sound
by auto
define fs where "fs = map σ fv_sub_comp"
define as where "as = map σ fv_sub"
define nos where "nos = fo_nmlz AD (as @ fs)"
define as' where "as' = take (length fv_sub) nos"
define fs' where "fs' = drop (length fv_sub) nos"
have length_as': "length as' = length fv_sub"
by (auto simp: as'_def nos_def as_def fo_nmlz_length)
have length_fs': "length fs' = length fv_sub_comp"
by (auto simp: fs'_def nos_def as_def fs_def fo_nmlz_length)
have len_fv_sub_nos: "length fv_sub ≤ length nos"
by (auto simp: nos_def fo_nmlz_length as_def)
have norm_as': "fo_nmlzd AD as'"
using fo_nmlzd_take[OF fo_nmlz_sound]
by (auto simp: as'_def nos_def)
have as'_norm_as: "as' = fo_nmlz AD as"
by (auto simp: as'_def nos_def as_def fo_nmlz_take)
have ad_agr_as': "ad_agr_list AD as as'"
using fo_nmlz_ad_agr
unfolding as'_norm_as .
have nos_as'_fs': "nos = as' @ fs'"
using length_as' length_fs'
by (auto simp: as'_def fs'_def)
obtain τ where τ_def: "as' = map τ fv_sub" "fs' = map τ fv_sub_comp"
using exists_map[of "fv_sub @ fv_sub_comp" "as' @ fs'"] assms(1,2,4) length_as' length_fs'
by auto
have "length fv_sub + length fv_sub_comp ≤ length fv_all"
using assms(1,2,3,4,5)
by (metis distinct_append distinct_card eq_iff length_append set_append)
then have nos_sub: "set nos ⊆ Inl ` AD ∪ Inr ` {..<length fv_all}"
using fo_nmlz_set[of AD "as @ fs"]
by (auto simp: nos_def as_def fs_def)
have len_fs': "length fs' = length fv_sub_comp"
by (auto simp: fs'_def nos_def fo_nmlz_length as_def fs_def)
have norm_nos_idem: "fo_nmlz_rec 0 (id_map 0) AD nos = nos"
using fo_nmlz_idem[of AD nos] fo_nmlz_sound
by (auto simp: nos_def fo_nmlz_def id_map_empty)
have fs'_all: "fs' ∈ nall_tuples_rec AD (card (Inr -` set as')) (length fv_sub_comp)"
unfolding len_fs'[symmetric]
by (rule nall_tuples_rec_fo_nmlz_rec_complete)
(rule fo_nmlz_rec_shift[OF norm_nos_idem, simplified, OF refl len_fv_sub_nos,
folded as'_def fs'_def])
have "as' ∈ nall_tuples AD (length fv_sub)"
using length_as'
apply (rule nall_tuplesI)
using norm_as' .
then have as'_ass: "as' ∈ ass"
using as'_norm_as σ_def(1) as_def
unfolding assms(6)
by (auto simp: proj_vals_def)
have vs_norm: "xs = fo_nmlz AD (map snd (merge (zip fv_sub as) (zip fv_sub_comp fs)))"
using assms(1,2,4) σ_def(2)
by (auto simp: merge_map as_def fs_def fv_all_sort)
have set_sort': "set (sort (fv_sub @ fv_sub_comp)) = set (fv_sub @ fv_sub_comp)"
by auto
have "xs = fo_nmlz AD (map snd (merge (zip fv_sub as') (zip fv_sub_comp fs')))"
unfolding vs_norm as_def fs_def τ_def
merge_map[OF assms(1,2,4)]
apply (rule fo_nmlz_eqI)
apply (rule ad_agr_list_subset[OF equalityD1, OF set_sort'])
using fo_nmlz_ad_agr[of AD "as @ fs", folded nos_def, unfolded nos_as'_fs']
unfolding as_def fs_def τ_def map_append[symmetric] .
then show ?thesis
using as'_ass fs'_all
by (auto simp: ext_tuple_def length_as')
qed
definition "ext_tuple_set AD ns ns' X = (if ns' = [] then X else fo_nmlz AD ` ⋃(ext_tuple AD ns ns' ` X))"
lemma ext_tuple_set_eq: "Ball X (fo_nmlzd AD) ⟹ ext_tuple_set AD ns ns' X = fo_nmlz AD ` ⋃(ext_tuple AD ns ns' ` X)"
by (auto simp: ext_tuple_set_def ext_tuple_def fo_nmlzd_code)
lemma ext_tuple_set_mono: "A ⊆ B ⟹ ext_tuple_set AD ns ns' A ⊆ ext_tuple_set AD ns ns' B"
by (auto simp: ext_tuple_set_def)
lemma ext_tuple_correct:
assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
"set fv_sub ∩ set fv_sub_comp = {}" "set fv_sub ∪ set fv_sub_comp = set fv_all"
"ass = fo_nmlz AD ` proj_vals R fv_sub"
"⋀σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ ⟹ σ ∈ R ⟷ τ ∈ R"
shows "ext_tuple_set AD fv_sub fv_sub_comp ass = fo_nmlz AD ` proj_vals R fv_all"
proof (rule set_eqI, rule iffI)
fix xs
assume xs_in: "xs ∈ ext_tuple_set AD fv_sub fv_sub_comp ass"
show "xs ∈ fo_nmlz AD ` proj_vals R fv_all"
using ext_tuple_sound(2)[OF assms] xs_in
by (auto simp: ext_tuple_set_def ext_tuple_def assms(6) fo_nmlz_idem[OF fo_nmlz_sound] image_iff
split: if_splits)
next
fix xs
assume "xs ∈ fo_nmlz AD ` proj_vals R fv_all"
then obtain σ where σ_def: "xs = fo_nmlz AD (map σ fv_all)" "σ ∈ R"
by (auto simp: proj_vals_def)
show "xs ∈ ext_tuple_set AD fv_sub fv_sub_comp ass"
using ext_tuple_complete[OF assms σ_def]
by (auto simp: ext_tuple_set_def ext_tuple_def assms(6) fo_nmlz_idem[OF fo_nmlz_sound] image_iff
split: if_splits)
qed
lemma proj_tuple_sound:
assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
"set fv_sub ∩ set fv_sub_comp = {}" "set fv_sub ∪ set fv_sub_comp = set fv_all"
"ass = fo_nmlz AD ` proj_vals R fv_sub"
"⋀σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ ⟹ σ ∈ R ⟷ τ ∈ R"
"fo_nmlz AD xs = xs" "length xs = length fv_all"
"fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs)) ∈ ass"
shows "xs ∈ fo_nmlz AD ` ⋃(ext_tuple AD fv_sub fv_sub_comp ` ass)"
proof -
have fv_all_sort: "fv_all = sort (fv_sub @ fv_sub_comp)"
using assms(1,2,3,4,5)
by (simp add: sorted_distinct_set_unique)
obtain σ where σ_def: "xs = map σ fv_all"
using exists_map[of fv_all xs] assms(3,9)
by auto
have xs_norm: "xs = fo_nmlz AD (map σ fv_all)"
using assms(8)
by (auto simp: σ_def)
have proj: "proj_tuple fv_sub (zip fv_all xs) = map σ fv_sub"
unfolding σ_def
apply (rule proj_tuple_map[OF assms(1,3)])
using assms(5)
by blast
obtain τ where τ_def: "fo_nmlz AD (map σ fv_sub) = fo_nmlz AD (map τ fv_sub)" "τ ∈ R"
using assms(10)
by (auto simp: assms(6) proj proj_vals_def)
have σ_R: "σ ∈ R"
using assms(7) fo_nmlz_eqD[OF τ_def(1)] τ_def(2)
unfolding ad_agr_list_link[symmetric]
by auto
show ?thesis
by (rule ext_tuple_complete[OF assms(1,2,3,4,5,6,7) xs_norm σ_R]) assumption
qed
lemma proj_tuple_correct:
assumes "sorted_distinct fv_sub" "sorted_distinct fv_sub_comp" "sorted_distinct fv_all"
"set fv_sub ∩ set fv_sub_comp = {}" "set fv_sub ∪ set fv_sub_comp = set fv_all"
"ass = fo_nmlz AD ` proj_vals R fv_sub"
"⋀σ τ. ad_agr_sets (set fv_sub) (set fv_sub) AD σ τ ⟹ σ ∈ R ⟷ τ ∈ R"
"fo_nmlz AD xs = xs" "length xs = length fv_all"
shows "xs ∈ fo_nmlz AD ` ⋃(ext_tuple AD fv_sub fv_sub_comp ` ass) ⟷
fo_nmlz AD (proj_tuple fv_sub (zip fv_all xs)) ∈ ass"
using ext_tuple_sound(1)[OF assms(1,2,3,4,5,6,7)] proj_tuple_sound[OF assms]
by blast
fun unify_vals_terms :: "('a + 'c) list ⇒ ('a fo_term) list ⇒ (nat ⇀ ('a + 'c)) ⇒
(nat ⇀ ('a + 'c)) option" where
"unify_vals_terms [] [] σ = Some σ"
| "unify_vals_terms (v # vs) ((Const c') # ts) σ =
(if v = Inl c' then unify_vals_terms vs ts σ else None)"
| "unify_vals_terms (v # vs) ((Var n) # ts) σ =
(case σ n of Some x ⇒ (if v = x then unify_vals_terms vs ts σ else None)
| None ⇒ unify_vals_terms vs ts (σ(n := Some v)))"
| "unify_vals_terms _ _ _ = None"
lemma unify_vals_terms_extends: "unify_vals_terms vs ts σ = Some σ' ⟹ extends_subst σ σ'"
unfolding extends_subst_def
by (induction vs ts σ arbitrary: σ' rule: unify_vals_terms.induct)
(force split: if_splits option.splits)+
lemma unify_vals_terms_sound: "unify_vals_terms vs ts σ = Some σ' ⟹ (the ∘ σ') ⊙e ts = vs"
using unify_vals_terms_extends
by (induction vs ts σ arbitrary: σ' rule: unify_vals_terms.induct)
(force simp: eval_eterms_def extends_subst_def fv_fo_terms_set_def
split: if_splits option.splits)+
lemma unify_vals_terms_complete: "σ'' ⊙e ts = vs ⟹ (⋀n. σ n ≠ None ⟹ σ n = Some (σ'' n)) ⟹
∃σ'. unify_vals_terms vs ts σ = Some σ'"
by (induction vs ts σ rule: unify_vals_terms.induct)
(force simp: eval_eterms_def extends_subst_def split: if_splits option.splits)+
definition eval_table :: "'a fo_term list ⇒ ('a + 'c) table ⇒ ('a + 'c) table" where
"eval_table ts X = (let fvs = fv_fo_terms_list ts in
⋃((λvs. case unify_vals_terms vs ts Map.empty of Some σ ⇒
{map (the ∘ σ) fvs} | _ ⇒ {}) ` X))"
lemma eval_table:
fixes X :: "('a + 'c) table"
shows "eval_table ts X = proj_vals {σ. σ ⊙e ts ∈ X} (fv_fo_terms_list ts)"
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ eval_table ts X"
then obtain as σ where as_def: "as ∈ X" "unify_vals_terms as ts Map.empty = Some σ"
"vs = map (the ∘ σ) (fv_fo_terms_list ts)"
by (auto simp: eval_table_def split: option.splits)
have "(the ∘ σ) ⊙e ts ∈ X"
using unify_vals_terms_sound[OF as_def(2)] as_def(1)
by auto
with as_def(3) show "vs ∈ proj_vals {σ. σ ⊙e ts ∈ X} (fv_fo_terms_list ts)"
by (fastforce simp: proj_vals_def)
next
fix vs :: "('a + 'c) list"
assume "vs ∈ proj_vals {σ. σ ⊙e ts ∈ X} (fv_fo_terms_list ts)"
then obtain σ where σ_def: "vs = map σ (fv_fo_terms_list ts)" "σ ⊙e ts ∈ X"
by (auto simp: proj_vals_def)
obtain σ' where σ'_def: "unify_vals_terms (σ ⊙e ts) ts Map.empty = Some σ'"
using unify_vals_terms_complete[OF refl, of Map.empty σ ts]
by auto
have "(the ∘ σ') ⊙e ts = (σ ⊙e ts)"
using unify_vals_terms_sound[OF σ'_def(1)]
by auto
then have "vs = map (the ∘ σ') (fv_fo_terms_list ts)"
using fv_fo_terms_set_list eval_eterms_fv_fo_terms_set
unfolding σ_def(1)
by fastforce
then show "vs ∈ eval_table ts X"
using σ_def(2) σ'_def
by (force simp: eval_table_def)
qed
fun ad_agr_close_rec :: "nat ⇒ (nat ⇀ 'a + nat) ⇒ 'a set ⇒
('a + nat) list ⇒ ('a + nat) list set" where
"ad_agr_close_rec i m AD [] = {[]}"
| "ad_agr_close_rec i m AD (Inl x # xs) = (λxs. Inl x # xs) ` ad_agr_close_rec i m AD xs"
| "ad_agr_close_rec i m AD (Inr n # xs) = (case m n of None ⇒ ⋃((λx. (λxs. Inl x # xs) `
ad_agr_close_rec i (m(n := Some (Inl x))) (AD - {x}) xs) ` AD) ∪
(λxs. Inr i # xs) ` ad_agr_close_rec (Suc i) (m(n := Some (Inr i))) AD xs
| Some v ⇒ (λxs. v # xs) ` ad_agr_close_rec i m AD xs)"
lemma ad_agr_close_rec_length: "ys ∈ ad_agr_close_rec i m AD xs ⟹ length xs = length ys"
by (induction i m AD xs arbitrary: ys rule: ad_agr_close_rec.induct) (auto split: option.splits)
lemma ad_agr_close_rec_sound: "ys ∈ ad_agr_close_rec i m AD xs ⟹
fo_nmlz_rec j (id_map j) X xs = xs ⟹ X ∩ AD = {} ⟹ X ∩ Y = {} ⟹ Y ∩ AD = {} ⟹
inj_on m (dom m) ⟹ dom m = {..<j} ⟹ ran m ⊆ Inl ` Y ∪ Inr ` {..<i} ⟹ i ≤ j ⟹
fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) ys = ys ∧
(∃m'. inj_on m' (dom m') ∧ (∀n v. m n = Some v ⟶ m' (Inr n) = Some v) ∧
(∀(x, y) ∈ set (zip xs ys). case x of Inl x' ⇒
if x' ∈ X then x = y else m' x = Some y ∧ (case y of Inl z ⇒ z ∉ X | Inr x ⇒ True)
| Inr n ⇒ m' x = Some y ∧ (case y of Inl z ⇒ z ∉ X | Inr x ⇒ True)))"
proof (induction i m AD xs arbitrary: Y j ys rule: ad_agr_close_rec.induct)
case (1 i m AD)
then show ?case
by (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def inj_on_def dom_def
split: sum.splits intro!: exI[of _ "case_sum Map.empty m"])
next
case (2 i m AD x xs)
obtain zs where ys_def: "ys = Inl x # zs" "zs ∈ ad_agr_close_rec i m AD xs"
using 2(2)
by auto
have preds: "fo_nmlz_rec j (id_map j) X xs = xs" "x ∈ X"
using 2(3)
by (auto split: if_splits option.splits)
show ?case
using 2(1)[OF ys_def(2) preds(1) 2(4,5,6,7,8,9,10)] preds(2)
by (auto simp: ys_def(1))
next
case (3 i m AD n xs)
show ?case
proof (cases "m n")
case None
obtain v zs where ys_def: "ys = v # zs"
using 3(4)
by (auto simp: None)
have n_ge_j: "j ≤ n"
using 3(9,10) None
by (metis domIff leI lessThan_iff)
show ?thesis
proof (cases v)
case (Inl x)
have zs_def: "zs ∈ ad_agr_close_rec i (m(n ↦ Inl x)) (AD - {x}) xs" "x ∈ AD"
using 3(4)
by (auto simp: None ys_def Inl)
have preds: "fo_nmlz_rec (Suc j) (id_map (Suc j)) X xs = xs" "X ∩ (AD - {x}) = {}"
"X ∩ (Y ∪ {x}) = {}" "(Y ∪ {x}) ∩ (AD - {x}) = {}" "dom (m(n ↦ Inl x)) = {..<Suc j}"
"ran (m(n ↦ Inl x)) ⊆ Inl ` (Y ∪ {x}) ∪ Inr ` {..<i}"
"i ≤ Suc j" "n = j"
using 3(5,6,7,8,10,11,12) n_ge_j zs_def(2)
by (auto simp: fun_upd_id_map ran_def dest: id_mapD split: option.splits)
have inj: "inj_on (m(n ↦ Inl x)) (dom (m(n ↦ Inl x)))"
using 3(8,9,10,11,12) preds(8) zs_def(2)
by (fastforce simp: inj_on_def dom_def ran_def)
have sets_unfold: "X ∪ (Y ∪ {x}) ∪ (AD - {x}) = X ∪ Y ∪ AD"
using zs_def(2)
by auto
note IH = 3(1)[OF None zs_def(2,1) preds(1,2,3,4) inj preds(5,6,7), unfolded sets_unfold]
have norm_ys: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) ys = ys"
using conjunct1[OF IH] zs_def(2)
by (auto simp: ys_def(1) Inl split: option.splits)
show ?thesis
using norm_ys conjunct2[OF IH] None zs_def(2) 3(6)
unfolding ys_def(1)
apply safe
subgoal for m'
apply (auto simp: Inl dom_def intro!: exI[of _ m'] split: if_splits)
apply (metis option.distinct(1))
apply (fastforce split: prod.splits sum.splits)
done
done
next
case (Inr k)
have zs_def: "zs ∈ ad_agr_close_rec (Suc i) (m(n ↦ Inr i)) AD xs" "i = k"
using 3(4)
by (auto simp: None ys_def Inr)
have preds: "fo_nmlz_rec (Suc n) (id_map (Suc n)) X xs = xs"
"dom (m(n ↦ Inr i)) = {..<Suc n}"
"ran (m(n ↦ Inr i)) ⊆ Inl ` Y ∪ Inr ` {..<Suc i}" "Suc i ≤ Suc n"
using 3(5,10,11,12) n_ge_j
by (auto simp: fun_upd_id_map ran_def dest: id_mapD split: option.splits)
have inj: "inj_on (m(n ↦ Inr i)) (dom (m(n ↦ Inr i)))"
using 3(9,11)
by (auto simp: inj_on_def dom_def ran_def)
note IH = 3(2)[OF None zs_def(1) preds(1) 3(6,7,8) inj preds(2,3,4)]
have norm_ys: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) ys = ys"
using conjunct1[OF IH] zs_def(2)
by (auto simp: ys_def Inr fun_upd_id_map dest: id_mapD split: option.splits)
show ?thesis
using norm_ys conjunct2[OF IH] None
unfolding ys_def(1) zs_def(2)
apply safe
subgoal for m'
apply (auto simp: Inr dom_def intro!: exI[of _ m'] split: if_splits)
apply (metis option.distinct(1))
apply (fastforce split: prod.splits sum.splits)
done
done
qed
next
case (Some v)
obtain zs where ys_def: "ys = v # zs" "zs ∈ ad_agr_close_rec i m AD xs"
using 3(4)
by (auto simp: Some)
have preds: "fo_nmlz_rec j (id_map j) X xs = xs" "n < j"
using 3(5,8,10) Some
by (auto simp: dom_def split: option.splits)
note IH = 3(3)[OF Some ys_def(2) preds(1) 3(6,7,8,9,10,11,12)]
have norm_ys: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) ys = ys"
using conjunct1[OF IH] 3(11) Some
by (auto simp: ys_def(1) ran_def id_map_def)
have "case v of Inl z ⇒ z ∉ X | Inr x ⇒ True"
using 3(7,11) Some
by (auto simp: ran_def split: sum.splits)
then show ?thesis
using norm_ys conjunct2[OF IH] Some
unfolding ys_def(1)
apply safe
subgoal for m'
by (auto intro!: exI[of _ m'] split: sum.splits)
done
qed
qed
lemma ad_agr_close_rec_complete:
fixes xs :: "('a + nat) list"
shows "fo_nmlz_rec j (id_map j) X xs = xs ⟹
X ∩ AD = {} ⟹ X ∩ Y = {} ⟹ Y ∩ AD = {} ⟹
inj_on m (dom m) ⟹ dom m = {..<j} ⟹ ran m = Inl ` Y ∪ Inr ` {..<i} ⟹ i ≤ j ⟹
(⋀n b. (Inr n, b) ∈ set (zip xs ys) ⟹ case m n of Some v ⇒ v = b | None ⇒ b ∉ ran m) ⟹
fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) ys = ys ⟹ ad_agr_list X xs ys ⟹
ys ∈ ad_agr_close_rec i m AD xs"
proof (induction j "id_map j :: 'a + nat ⇒ nat option" X xs arbitrary: m i ys AD Y
rule: fo_nmlz_rec.induct)
case (2 j X x xs)
have x_X: "x ∈ X" "fo_nmlz_rec j (id_map j) X xs = xs"
using 2(4)
by (auto split: if_splits option.splits)
obtain z zs where ys_def: "ys = Inl z # zs" "z = x"
using 2(14) x_X(1)
by (cases ys) (auto simp: ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps)
have norm_zs: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) zs = zs"
using 2(13) ys_def(2) x_X(1)
by (auto simp: ys_def(1))
have ad_agr: "ad_agr_list X xs zs"
using 2(14)
by (auto simp: ys_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
show ?case
using 2(1)[OF x_X 2(5,6,7,8,9,10,11) _ norm_zs ad_agr] 2(12)
by (auto simp: ys_def)
next
case (3 j X n xs)
obtain z zs where ys_def: "ys = z # zs"
using 3(13)
apply (cases ys)
apply (auto simp: ad_agr_list_def)
done
show ?case
proof (cases "j ≤ n")
case True
then have n_j: "n = j"
using 3(3)
by (auto split: option.splits dest: id_mapD)
have id_map: "id_map j (Inr n) = None" "(id_map j)(Inr n ↦ j) = id_map (Suc j)"
unfolding n_j fun_upd_id_map
by (auto simp: id_map_def)
have norm_xs: "fo_nmlz_rec (Suc j) (id_map (Suc j)) X xs = xs"
using 3(3)
by (auto simp: ys_def fun_upd_id_map id_map(1) split: option.splits)
have None: "m n = None"
using 3(8)
by (auto simp: dom_def n_j)
have z_out: "z ∉ Inl ` Y ∪ Inr ` {..<i}"
using 3(11) None
by (force simp: ys_def 3(9))
show ?thesis
proof (cases z)
case (Inl a)
have a_in: "a ∈ AD"
using 3(12,13) z_out
by (auto simp: ys_def Inl ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps
split: if_splits option.splits)
have norm_zs: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) zs = zs"
using 3(12) a_in
by (auto simp: ys_def Inl)
have preds: "X ∩ (AD - {a}) = {}" "X ∩ (Y ∪ {a}) = {}" "(Y ∪ {a}) ∩ (AD - {a}) = {}"
using 3(4,5,6) a_in
by auto
have inj: "inj_on (m(n := Some (Inl a))) (dom (m(n := Some (Inl a))))"
using 3(6,7,9) None a_in
by (auto simp: inj_on_def dom_def ran_def) blast+
have preds': "dom (m(n ↦ Inl a)) = {..<Suc j}"
"ran (m(n ↦ Inl a)) = Inl ` (Y ∪ {a}) ∪ Inr ` {..<i}" "i ≤ Suc j"
using 3(6,8,9,10) None less_Suc_eq a_in
apply (auto simp: n_j dom_def ran_def)
apply (smt Un_iff image_eqI mem_Collect_eq option.simps(3))
apply (smt 3(8) domIff image_subset_iff lessThan_iff mem_Collect_eq sup_ge2)
done
have a_unfold: "X ∪ (Y ∪ {a}) ∪ (AD - {a}) = X ∪ Y ∪ AD" "Y ∪ {a} ∪ (AD - {a}) = Y ∪ AD"
using a_in
by auto
have ad_agr: "ad_agr_list X xs zs"
using 3(13)
by (auto simp: ys_def Inl ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
have "zs ∈ ad_agr_close_rec i (m(n ↦ Inl a)) (AD - {a}) xs"
apply (rule 3(1)[OF id_map norm_xs preds inj preds' _ _ ad_agr])
using 3(11,13) norm_zs
unfolding 3(9) preds'(2) a_unfold
apply (auto simp: None Inl ys_def ad_agr_list_def sp_equiv_list_def pairwise_def
split: option.splits)
apply (metis Un_iff image_eqI option.simps(4))
apply (metis image_subset_iff lessThan_iff option.simps(4) sup_ge2)
apply fastforce
done
then show ?thesis
using a_in
by (auto simp: ys_def Inl None)
next
case (Inr b)
have i_b: "i = b"
using 3(12) z_out
by (auto simp: ys_def Inr split: option.splits dest: id_mapD)
have norm_zs: "fo_nmlz_rec (Suc i) (id_map (Suc i)) (X ∪ Y ∪ AD) zs = zs"
using 3(12)
by (auto simp: ys_def Inr i_b fun_upd_id_map split: option.splits dest: id_mapD)
have ad_agr: "ad_agr_list X xs zs"
using 3(13)
by (auto simp: ys_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
define m' where "m' ≡ m(n := Some (Inr i))"
have preds: "inj_on m' (dom m')" "dom m' = {..<Suc j}" "Suc i ≤ Suc j"
using 3(7,8,9,10)
by (auto simp: m'_def n_j inj_on_def dom_def ran_def image_iff)
(metis 3(8) domI lessThan_iff less_SucI)
have ran: "ran m' = Inl ` Y ∪ Inr ` {..<Suc i}"
using 3(9) None
by (auto simp: m'_def)
have "zs ∈ ad_agr_close_rec (Suc i) m' AD xs"
apply (rule 3(1)[OF id_map norm_xs 3(4,5,6) preds(1,2) ran preds(3) _ norm_zs ad_agr])
using 3(11,13)
unfolding 3(9) ys_def Inr i_b m'_def
unfolding ran[unfolded m'_def i_b]
apply (auto simp: ad_agr_list_def sp_equiv_list_def pairwise_def split: option.splits)
apply (metis Un_upper1 image_subset_iff option.simps(4))
apply (metis UnI1 image_eqI insert_iff lessThan_Suc lessThan_iff option.simps(4)
sp_equiv_pair.simps sum.inject(2) sup_commute)
apply fastforce
done
then show ?thesis
by (auto simp: ys_def Inr None m'_def i_b)
qed
next
case False
have id_map: "id_map j (Inr n) = Some n"
using False
by (auto simp: id_map_def)
have norm_xs: "fo_nmlz_rec j (id_map j) X xs = xs"
using 3(3)
by (auto simp: id_map)
have Some: "m n = Some z"
using False 3(11)[unfolded ys_def]
by (metis (mono_tags) 3(8) domD insert_iff leI lessThan_iff list.simps(15)
option.simps(5) zip_Cons_Cons)
have z_in: "z ∈ Inl ` Y ∪ Inr ` {..<i}"
using 3(9) Some
by (auto simp: ran_def)
have ad_agr: "ad_agr_list X xs zs"
using 3(13)
by (auto simp: ad_agr_list_def ys_def ad_equiv_list_def sp_equiv_list_def pairwise_def)
show ?thesis
proof (cases z)
case (Inl a)
have a_in: "a ∈ Y ∪ AD"
using 3(12,13)
by (auto simp: ys_def Inl ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps
split: if_splits option.splits)
have norm_zs: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) zs = zs"
using 3(12) a_in
by (auto simp: ys_def Inl)
show ?thesis
using 3(2)[OF id_map norm_xs 3(4,5,6,7,8,9,10) _ norm_zs ad_agr] 3(11) a_in
by (auto simp: ys_def Inl Some split: option.splits)
next
case (Inr b)
have b_lt: "b < i"
using z_in
by (auto simp: Inr)
have norm_zs: "fo_nmlz_rec i (id_map i) (X ∪ Y ∪ AD) zs = zs"
using 3(12) b_lt
by (auto simp: ys_def Inr split: option.splits)
show ?thesis
using 3(2)[OF id_map norm_xs 3(4,5,6,7,8,9,10) _ norm_zs ad_agr] 3(11)
by (auto simp: ys_def Inr Some)
qed
qed
qed (auto simp: ad_agr_list_def)
definition ad_agr_close :: "'a set ⇒ ('a + nat) list ⇒ ('a + nat) list set" where
"ad_agr_close AD xs = ad_agr_close_rec 0 Map.empty AD xs"
lemma ad_agr_close_sound:
assumes "ys ∈ ad_agr_close Y xs" "fo_nmlzd X xs" "X ∩ Y = {}"
shows "fo_nmlzd (X ∪ Y) ys ∧ ad_agr_list X xs ys"
using ad_agr_close_rec_sound[OF assms(1)[unfolded ad_agr_close_def]
fo_nmlz_idem[OF assms(2), unfolded fo_nmlz_def, folded id_map_empty] assms(3)
Int_empty_right Int_empty_left]
ad_agr_map[OF ad_agr_close_rec_length[OF assms(1)[unfolded ad_agr_close_def]], of _ X]
fo_nmlzd_code[unfolded fo_nmlz_def, folded id_map_empty, of "X ∪ Y" ys]
by (auto simp: fo_nmlz_def)
lemma ad_agr_close_complete:
assumes "X ∩ Y = {}" "fo_nmlzd X xs" "fo_nmlzd (X ∪ Y) ys" "ad_agr_list X xs ys"
shows "ys ∈ ad_agr_close Y xs"
using ad_agr_close_rec_complete[OF fo_nmlz_idem[OF assms(2),
unfolded fo_nmlz_def, folded id_map_empty] assms(1) Int_empty_right Int_empty_left _ _ _
order.refl _ _ assms(4), of Map.empty]
fo_nmlzd_code[unfolded fo_nmlz_def, folded id_map_empty, of "X ∪ Y" ys]
assms(3)
unfolding ad_agr_close_def
by (auto simp: fo_nmlz_def)
lemma ad_agr_close_empty: "fo_nmlzd X xs ⟹ ad_agr_close {} xs = {xs}"
using ad_agr_close_complete[where ?X=X and ?Y="{}" and ?xs=xs and ?ys=xs]
ad_agr_close_sound[where ?X=X and ?Y="{}" and ?xs=xs] ad_agr_list_refl ad_agr_list_fo_nmlzd
by fastforce
lemma ad_agr_close_set_correct:
assumes "AD' ⊆ AD" "sorted_distinct ns"
"⋀σ τ. ad_agr_sets (set ns) (set ns) AD' σ τ ⟹ σ ∈ R ⟷ τ ∈ R"
shows "⋃(ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_vals R ns) = fo_nmlz AD ` proj_vals R ns"
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ ⋃(ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_vals R ns)"
then obtain σ where σ_def: "vs ∈ ad_agr_close (AD - AD') (fo_nmlz AD' (map σ ns))" "σ ∈ R"
by (auto simp: proj_vals_def)
have vs: "fo_nmlzd AD vs" "ad_agr_list AD' (fo_nmlz AD' (map σ ns)) vs"
using ad_agr_close_sound[OF σ_def(1) fo_nmlz_sound] assms(1) Diff_partition
by fastforce+
obtain τ where τ_def: "vs = map τ ns"
using exists_map[of ns vs] assms(2) vs(2)
by (auto simp: ad_agr_list_def fo_nmlz_length)
show "vs ∈ fo_nmlz AD ` proj_vals R ns"
apply (subst fo_nmlz_idem[OF vs(1), symmetric])
using iffD1[OF assms(3) σ_def(2), OF iffD2[OF ad_agr_list_link ad_agr_list_trans[OF
fo_nmlz_ad_agr[of AD' "map σ ns"] vs(2), unfolded τ_def]]]
unfolding τ_def
by (auto simp: proj_vals_def)
next
fix vs
assume "vs ∈ fo_nmlz AD ` proj_vals R ns"
then obtain σ where σ_def: "vs = fo_nmlz AD (map σ ns)" "σ ∈ R"
by (auto simp: proj_vals_def)
define xs where "xs = fo_nmlz AD' vs"
have preds: "AD' ∩ (AD - AD') = {}" "fo_nmlzd AD' xs" "fo_nmlzd (AD' ∪ (AD - AD')) vs"
using assms(1) fo_nmlz_sound Diff_partition
by (fastforce simp: σ_def(1) xs_def)+
obtain τ where τ_def: "vs = map τ ns"
using exists_map[of "ns" vs] assms(2) σ_def(1)
by (auto simp: fo_nmlz_length)
have "vs ∈ ad_agr_close (AD - AD') xs"
using ad_agr_close_complete[OF preds] ad_agr_list_comm[OF fo_nmlz_ad_agr]
by (auto simp: xs_def)
then show "vs ∈ ⋃(ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_vals R ns)"
unfolding xs_def τ_def
using iffD1[OF assms(3) σ_def(2), OF ad_agr_sets_mono[OF assms(1) iffD2[OF ad_agr_list_link
fo_nmlz_ad_agr[of AD "map σ ns", folded σ_def(1), unfolded τ_def]]]]
by (auto simp: proj_vals_def)
qed
lemma ad_agr_close_correct:
assumes "AD' ⊆ AD"
"⋀σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD' σ τ ⟹
σ ∈ R ⟷ τ ∈ R"
shows "⋃(ad_agr_close (AD - AD') ` fo_nmlz AD' ` proj_fmla φ R) = fo_nmlz AD ` proj_fmla φ R"
using ad_agr_close_set_correct[OF _ sorted_distinct_fv_list, OF assms]
by (auto simp: proj_fmla_def)
definition "ad_agr_close_set AD X = (if Set.is_empty AD then X else ⋃(ad_agr_close AD ` X))"
lemma ad_agr_close_set_eq: "Ball X (fo_nmlzd AD') ⟹ ad_agr_close_set AD X = ⋃(ad_agr_close AD ` X)"
by (force simp: ad_agr_close_set_def Set.is_empty_def ad_agr_close_empty)
lemma Ball_fo_nmlzd: "Ball (fo_nmlz AD ` X) (fo_nmlzd AD)"
by (auto simp: fo_nmlz_sound)
lemmas ad_agr_close_set_nmlz_eq = ad_agr_close_set_eq[OF Ball_fo_nmlzd]
definition eval_pred :: "('a fo_term) list ⇒ 'a table ⇒ ('a, 'c) fo_t" where
"eval_pred ts X = (let AD = ⋃(set (map set_fo_term ts)) ∪ ⋃(set ` X) in
(AD, length (fv_fo_terms_list ts), eval_table ts (map Inl ` X)))"
definition eval_bool :: "bool ⇒ ('a, 'c) fo_t" where
"eval_bool b = (if b then ({}, 0, {[]}) else ({}, 0, {}))"
definition eval_eq :: "'a fo_term ⇒ 'a fo_term ⇒ ('a, nat) fo_t" where
"eval_eq t t' = (case t of Var n ⇒
(case t' of Var n' ⇒
if n = n' then ({}, 1, {[Inr 0]})
else ({}, 2, {[Inr 0, Inr 0]})
| Const c' ⇒ ({c'}, 1, {[Inl c']}))
| Const c ⇒
(case t' of Var n' ⇒ ({c}, 1, {[Inl c]})
| Const c' ⇒ if c = c' then ({c}, 0, {[]}) else ({c, c'}, 0, {})))"
fun eval_neg :: "nat list ⇒ ('a, nat) fo_t ⇒ ('a, nat) fo_t" where
"eval_neg ns (AD, _, X) = (AD, length ns, nall_tuples AD (length ns) - X)"
definition "eval_conj_tuple AD nsφ nsψ xs ys =
(let cxs = filter (λ(n, x). n ∉ set nsψ ∧ isl x) (zip nsφ xs);
nxs = map fst (filter (λ(n, x). n ∉ set nsψ ∧ ¬isl x) (zip nsφ xs));
cys = filter (λ(n, y). n ∉ set nsφ ∧ isl y) (zip nsψ ys);
nys = map fst (filter (λ(n, y). n ∉ set nsφ ∧ ¬isl y) (zip nsψ ys)) in
fo_nmlz AD ` ext_tuple {} (sort (nsφ @ map fst cys)) nys (map snd (merge (zip nsφ xs) cys)) ∩
fo_nmlz AD ` ext_tuple {} (sort (nsψ @ map fst cxs)) nxs (map snd (merge (zip nsψ ys) cxs)))"
definition "eval_conj_set AD nsφ Xφ nsψ Xψ = ⋃((λxs. ⋃(eval_conj_tuple AD nsφ nsψ xs ` Xψ)) ` Xφ)"
definition "idx_join AD ns nsφ Xφ nsψ Xψ =
(let idxφ' = cluster (Some ∘ (λxs. fo_nmlz AD (proj_tuple ns (zip nsφ xs)))) Xφ;
idxψ' = cluster (Some ∘ (λys. fo_nmlz AD (proj_tuple ns (zip nsψ ys)))) Xψ in
set_of_idx (mapping_join (λXφ'' Xψ''. eval_conj_set AD nsφ Xφ'' nsψ Xψ'') idxφ' idxψ'))"
fun eval_conj :: "nat list ⇒ ('a, nat) fo_t ⇒ nat list ⇒ ('a, nat) fo_t ⇒
('a, nat) fo_t" where
"eval_conj nsφ (ADφ, _, Xφ) nsψ (ADψ, _, Xψ) = (let AD = ADφ ∪ ADψ; ADΔφ = AD - ADφ; ADΔψ = AD - ADψ; ns = filter (λn. n ∈ set nsψ) nsφ in
(AD, card (set nsφ ∪ set nsψ), idx_join AD ns nsφ (ad_agr_close_set ADΔφ Xφ) nsψ (ad_agr_close_set ADΔψ Xψ)))"
fun eval_ajoin :: "nat list ⇒ ('a, nat) fo_t ⇒ nat list ⇒ ('a, nat) fo_t ⇒
('a, nat) fo_t" where
"eval_ajoin nsφ (ADφ, _, Xφ) nsψ (ADψ, _, Xψ) = (let AD = ADφ ∪ ADψ; ADΔφ = AD - ADφ; ADΔψ = AD - ADψ;
ns = filter (λn. n ∈ set nsψ) nsφ; nsφ' = filter (λn. n ∉ set nsφ) nsψ;
idxφ = cluster (Some ∘ (λxs. fo_nmlz ADψ (proj_tuple ns (zip nsφ xs)))) (ad_agr_close_set ADΔφ Xφ);
idxψ = cluster (Some ∘ (λys. fo_nmlz ADψ (proj_tuple ns (zip nsψ ys)))) Xψ in
(AD, card (set nsφ ∪ set nsψ), set_of_idx (Mapping.map_values (λxs X. case Mapping.lookup idxψ xs of Some Y ⇒
idx_join AD ns nsφ X nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {xs} - Y)) | _ ⇒ ext_tuple_set AD nsφ nsφ' X) idxφ)))"
fun eval_disj :: "nat list ⇒ ('a, nat) fo_t ⇒ nat list ⇒ ('a, nat) fo_t ⇒
('a, nat) fo_t" where
"eval_disj nsφ (ADφ, _, Xφ) nsψ (ADψ, _, Xψ) = (let AD = ADφ ∪ ADψ;
nsφ' = filter (λn. n ∉ set nsφ) nsψ;
nsψ' = filter (λn. n ∉ set nsψ) nsφ;
ADΔφ = AD - ADφ; ADΔψ = AD - ADψ in
(AD, card (set nsφ ∪ set nsψ),
ext_tuple_set AD nsφ nsφ' (ad_agr_close_set ADΔφ Xφ) ∪
ext_tuple_set AD nsψ nsψ' (ad_agr_close_set ADΔψ Xψ)))"
fun eval_exists :: "nat ⇒ nat list ⇒ ('a, nat) fo_t ⇒ ('a, nat) fo_t" where
"eval_exists i ns (AD, _, X) = (case pos i ns of Some j ⇒
(AD, length ns - 1, fo_nmlz AD ` rem_nth j ` X)
| None ⇒ (AD, length ns, X))"
fun eval_forall :: "nat ⇒ nat list ⇒ ('a, nat) fo_t ⇒ ('a, nat) fo_t" where
"eval_forall i ns (AD, _, X) = (case pos i ns of Some j ⇒
let n = card AD in
(AD, length ns - 1, Mapping.keys (Mapping.filter (λt Z. n + card (Inr -` set t) + 1 ≤ card Z)
(cluster (Some ∘ (λts. fo_nmlz AD (rem_nth j ts))) X)))
| None ⇒ (AD, length ns, X))"
lemma combine_map2: assumes "length ys = length xs" "length ys' = length xs'"
"distinct xs" "distinct xs'" "set xs ∩ set xs' = {}"
shows "∃f. ys = map f xs ∧ ys' = map f xs'"
proof -
obtain f g where fg_def: "ys = map f xs" "ys' = map g xs'"
using assms exists_map
by metis
show ?thesis
using assms
by (auto simp: fg_def intro!: exI[of _ "λx. if x ∈ set xs then f x else g x"])
qed
lemma combine_map3: assumes "length ys = length xs" "length ys' = length xs'" "length ys'' = length xs''"
"distinct xs" "distinct xs'" "distinct xs''" "set xs ∩ set xs' = {}" "set xs ∩ set xs'' = {}" "set xs' ∩ set xs'' = {}"
shows "∃f. ys = map f xs ∧ ys' = map f xs' ∧ ys'' = map f xs''"
proof -
obtain f g h where fgh_def: "ys = map f xs" "ys' = map g xs'" "ys'' = map h xs''"
using assms exists_map
by metis
show ?thesis
using assms
by (auto simp: fgh_def intro!: exI[of _ "λx. if x ∈ set xs then f x else if x ∈ set xs' then g x else h x"])
qed
lemma distinct_set_zip: "length nsx = length xs ⟹ distinct nsx ⟹
(a, b) ∈ set (zip nsx xs) ⟹ (a, ba) ∈ set (zip nsx xs) ⟹ b = ba"
by (induction nsx xs rule: list_induct2) (auto dest: set_zip_leftD)
lemma fo_nmlz_idem_isl:
assumes "⋀x. x ∈ set xs ⟹ (case x of Inl z ⇒ z ∈ X | _ ⇒ False)"
shows "fo_nmlz X xs = xs"
proof -
have F1: "Inl x ∈ set xs ⟹ x ∈ X" for x
using assms[of "Inl x"]
by auto
have F2: "List.map_filter (case_sum Map.empty Some) xs = []"
using assms
by (induction xs) (fastforce simp: List.map_filter_def split: sum.splits)+
show ?thesis
by (rule fo_nmlz_idem) (auto simp: fo_nmlzd_def nats_def F2 intro: F1)
qed
lemma set_zip_mapI: "x ∈ set xs ⟹ (f x, g x) ∈ set (zip (map f xs) (map g xs))"
by (induction xs) auto
lemma ad_agr_list_fo_nmlzd_isl:
assumes "ad_agr_list X (map f xs) (map g xs)" "fo_nmlzd X (map f xs)" "x ∈ set xs" "isl (f x)"
shows "f x = g x"
proof -
have AD: "ad_equiv_pair X (f x, g x)"
using assms(1) set_zip_mapI[OF assms(3)]
by (auto simp: ad_agr_list_def ad_equiv_list_def split: sum.splits)
then show ?thesis
using assms(2-)
by (auto simp: fo_nmlzd_def) (metis AD ad_equiv_pair.simps ad_equiv_pair_mono image_eqI sum.collapse(1) vimageI)
qed
lemma eval_conj_tuple_close_empty2:
assumes "fo_nmlzd X xs" "fo_nmlzd Y ys"
"length nsx = length xs" "length nsy = length ys"
"sorted_distinct nsx" "sorted_distinct nsy"
"sorted_distinct ns" "set ns ⊆ set nsx ∩ set nsy"
"fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsx xs)) ≠ fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsy ys)) ∨
(proj_tuple ns (zip nsx xs) ≠ proj_tuple ns (zip nsy ys) ∧
(∀x ∈ set (proj_tuple ns (zip nsx xs)). isl x) ∧ (∀y ∈ set (proj_tuple ns (zip nsy ys)). isl y))"
"xs' ∈ ad_agr_close ((X ∪ Y) - X) xs" "ys' ∈ ad_agr_close ((X ∪ Y) - Y) ys"
shows "eval_conj_tuple (X ∪ Y) nsx nsy xs' ys' = {}"
proof -
define cxs where "cxs = filter (λ(n, x). n ∉ set nsy ∧ isl x) (zip nsx xs')"
define nxs where "nxs = map fst (filter (λ(n, x). n ∉ set nsy ∧ ¬isl x) (zip nsx xs'))"
define cys where "cys = filter (λ(n, y). n ∉ set nsx ∧ isl y) (zip nsy ys')"
define nys where "nys = map fst (filter (λ(n, y). n ∉ set nsx ∧ ¬isl y) (zip nsy ys'))"
define both where "both = sorted_list_of_set (set nsx ∪ set nsy)"
have close: "fo_nmlzd (X ∪ Y) xs'" "ad_agr_list X xs xs'" "fo_nmlzd (X ∪ Y) ys'" "ad_agr_list Y ys ys'"
using ad_agr_close_sound[OF assms(10) assms(1)] ad_agr_close_sound[OF assms(11) assms(2)]
by (auto simp add: sup_left_commute)
have close': "length xs' = length xs" "length ys' = length ys"
using close
by (auto simp: ad_agr_list_length)
have len_sort: "length (sort (nsx @ map fst cys)) = length (map snd (merge (zip nsx xs') cys))"
"length (sort (nsy @ map fst cxs)) = length (map snd (merge (zip nsy ys') cxs))"
by (auto simp: merge_length assms(3,4) close')
{
fix zs
assume "zs ∈ fo_nmlz (X ∪ Y) ` (λfs. map snd (merge (zip (sort (nsx @ map fst cys)) (map snd (merge (zip nsx xs') cys))) (zip nys fs))) `
nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsx xs') cys)))) (length nys)"
"zs ∈ fo_nmlz (X ∪ Y) ` (λfs. map snd (merge (zip (sort (nsy @ map fst cxs)) (map snd (merge (zip nsy ys') cxs))) (zip nxs fs))) `
nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsy ys') cxs)))) (length nxs)"
then obtain zxs zys where nall: "zxs ∈ nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsx xs') cys)))) (length nys)"
"zs = fo_nmlz (X ∪ Y) (map snd (merge (zip (sort (nsx @ map fst cys)) (map snd (merge (zip nsx xs') cys))) (zip nys zxs)))"
"zys ∈ nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsy ys') cxs)))) (length nxs)"
"zs = fo_nmlz (X ∪ Y) (map snd (merge (zip (sort (nsy @ map fst cxs)) (map snd (merge (zip nsy ys') cxs))) (zip nxs zys)))"
by auto
have len_zs: "length zxs = length nys" "length zys = length nxs"
using nall(1,3)
by (auto dest: nall_tuples_rec_length)
have aux: "sorted_distinct (map fst cxs)" "sorted_distinct nxs" "sorted_distinct nsy"
"sorted_distinct (map fst cys)" "sorted_distinct nys" "sorted_distinct nsx"
"set (map fst cxs) ∩ set nsy = {}" "set (map fst cxs) ∩ set nxs = {}" "set nsy ∩ set nxs = {}"
"set (map fst cys) ∩ set nsx = {}" "set (map fst cys) ∩ set nys = {}" "set nsx ∩ set nys = {}"
using assms(3,4,5,6) close' distinct_set_zip
by (auto simp: cxs_def nxs_def cys_def nys_def sorted_filter distinct_map_fst_filter)
(smt (z3) distinct_set_zip)+
obtain xf where xf_def: "map snd cxs = map xf (map fst cxs)" "ys' = map xf nsy" "zys = map xf nxs"
using combine_map3[where ?ys="map snd cxs" and ?xs="map fst cxs" and ?ys'=ys' and ?xs'=nsy and ?ys''=zys and ?xs''=nxs] assms(4) aux close'
by (auto simp: len_zs)
obtain ysf where ysf_def: "ys = map ysf nsy"
using assms(4,6) exists_map
by auto
obtain xg where xg_def: "map snd cys = map xg (map fst cys)" "xs' = map xg nsx" "zxs = map xg nys"
using combine_map3[where ?ys="map snd cys" and ?xs="map fst cys" and ?ys'=xs' and ?xs'=nsx and ?ys''=zxs and ?xs''=nys] assms(3) aux close'
by (auto simp: len_zs)
obtain xsf where xsf_def: "xs = map xsf nsx"
using assms(3,5) exists_map
by auto
have set_cxs_nxs: "set (map fst cxs @ nxs) = set nsx - set nsy"
using assms(3)
unfolding cxs_def nxs_def close'[symmetric]
by (induction nsx xs' rule: list_induct2) auto
have set_cys_nys: "set (map fst cys @ nys) = set nsy - set nsx"
using assms(4)
unfolding cys_def nys_def close'[symmetric]
by (induction nsy ys' rule: list_induct2) auto
have sort_sort_both_xs: "sort (sort (nsy @ map fst cxs) @ nxs) = both"
apply (rule sorted_distinct_set_unique)
using assms(3,5,6) close' set_cxs_nxs
by (auto simp: both_def nxs_def cxs_def intro: distinct_map_fst_filter)
(metis (no_types, lifting) distinct_set_zip)
have sort_sort_both_ys: "sort (sort (nsx @ map fst cys) @ nys) = both"
apply (rule sorted_distinct_set_unique)
using assms(4,5,6) close' set_cys_nys
by (auto simp: both_def nys_def cys_def intro: distinct_map_fst_filter)
(metis (no_types, lifting) distinct_set_zip)
have "map snd (merge (zip nsy ys') cxs) = map xf (sort (nsy @ map fst cxs))"
using merge_map[where ?σ=xf and ?ns=nsy and ?ms="map fst cxs"] assms(6) aux
unfolding xf_def(1)[symmetric] xf_def(2)
by (auto simp: zip_map_fst_snd)
then have zs_xf: "zs = fo_nmlz (X ∪ Y) (map xf both)"
using merge_map[where σ=xf and ?ns="sort (nsy @ map fst cxs)" and ?ms=nxs] aux
by (fastforce simp: nall(4) xf_def(3) sort_sort_both_xs)
have "map snd (merge (zip nsx xs') cys) = map xg (sort (nsx @ map fst cys))"
using merge_map[where ?σ=xg and ?ns=nsx and ?ms="map fst cys"] assms(5) aux
unfolding xg_def(1)[symmetric] xg_def(2)
by (fastforce simp: zip_map_fst_snd)
then have zs_xg: "zs = fo_nmlz (X ∪ Y) (map xg both)"
using merge_map[where σ=xg and ?ns="sort (nsx @ map fst cys)" and ?ms=nys] aux
by (fastforce simp: nall(2) xg_def(3) sort_sort_both_ys)
have proj_map: "proj_tuple ns (zip nsx xs') = map xg ns" "proj_tuple ns (zip nsy ys') = map xf ns"
"proj_tuple ns (zip nsx xs) = map xsf ns" "proj_tuple ns (zip nsy ys) = map ysf ns"
unfolding xf_def(2) xg_def(2) xsf_def ysf_def
using assms(5,6,7,8) proj_tuple_map
by auto
have "ad_agr_list (X ∪ Y) (map xg both) (map xf both)"
using zs_xg zs_xf
by (fastforce dest: fo_nmlz_eqD)
then have "ad_agr_list (X ∪ Y) (proj_tuple ns (zip nsx xs')) (proj_tuple ns (zip nsy ys'))"
using assms(8)
unfolding proj_map
by (fastforce simp: both_def intro: ad_agr_list_subset[rotated])
then have fo_nmlz_Un: "fo_nmlz (X ∪ Y) (proj_tuple ns (zip nsx xs')) = fo_nmlz (X ∪ Y) (proj_tuple ns (zip nsy ys'))"
by (auto intro: fo_nmlz_eqI)
have "False"
using assms(9)
proof (rule disjE)
assume c: "fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsx xs)) ≠ fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsy ys))"
have fo_nmlz_Int: "fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsx xs')) = fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsy ys'))"
using fo_nmlz_Un
by (rule fo_nmlz_eqI[OF ad_agr_list_mono, rotated, OF fo_nmlz_eqD]) auto
have proj_xs: "fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsx xs)) = fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsx xs'))"
unfolding proj_map
apply (rule fo_nmlz_eqI)
apply (rule ad_agr_list_mono[OF Int_lower1])
apply (rule ad_agr_list_subset[OF _ close(2)[unfolded xsf_def xg_def(2)]])
using assms(8)
apply (auto)
done
have proj_ys: "fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsy ys)) = fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsy ys'))"
unfolding proj_map
apply (rule fo_nmlz_eqI)
apply (rule ad_agr_list_mono[OF Int_lower2])
apply (rule ad_agr_list_subset[OF _ close(4)[unfolded ysf_def xf_def(2)]])
using assms(8)
apply (auto)
done
show "False"
using c fo_nmlz_Int proj_xs proj_ys
by auto
next
assume c: "proj_tuple ns (zip nsx xs) ≠ proj_tuple ns (zip nsy ys) ∧
(∀x∈set (proj_tuple ns (zip nsx xs)). isl x) ∧ (∀y∈set (proj_tuple ns (zip nsy ys)). isl y)"
have "case x of Inl z ⇒ z ∈ X ∪ Y | Inr b ⇒ False" if "x ∈ set (proj_tuple ns (zip nsx xs'))" for x
using close(2) assms(1,8) c that ad_agr_list_fo_nmlzd_isl[where ?X=X and ?f=xsf and ?g=xg and ?xs=nsx]
unfolding proj_map
unfolding xsf_def xg_def(2)
apply (auto simp: fo_nmlzd_def split: sum.splits)
apply (metis image_eqI subsetD vimageI)
apply (metis subsetD sum.disc(2))
done
then have E1: "fo_nmlz (X ∪ Y) (proj_tuple ns (zip nsx xs')) = proj_tuple ns (zip nsx xs')"
by (rule fo_nmlz_idem_isl)
have "case y of Inl z ⇒ z ∈ X ∪ Y | Inr b ⇒ False" if "y ∈ set (proj_tuple ns (zip nsy ys'))" for y
using close(4) assms(2,8) c that ad_agr_list_fo_nmlzd_isl[where ?X=Y and ?f=ysf and ?g=xf and ?xs=nsy]
unfolding proj_map
unfolding ysf_def xf_def(2)
apply (auto simp: fo_nmlzd_def split: sum.splits)
apply (metis image_eqI subsetD vimageI)
apply (metis subsetD sum.disc(2))
done
then have E2: "fo_nmlz (X ∪ Y) (proj_tuple ns (zip nsy ys')) = proj_tuple ns (zip nsy ys')"
by (rule fo_nmlz_idem_isl)
have ad: "ad_agr_list X (map xsf ns) (map xg ns)"
using assms(8) close(2)[unfolded xsf_def xg_def(2)] ad_agr_list_subset
by blast
have "∀x∈set (proj_tuple ns (zip nsx xs)). isl x"
using c
by auto
then have E3: "proj_tuple ns (zip nsx xs) = proj_tuple ns (zip nsx xs')"
using assms(8)
unfolding proj_map
apply (induction ns)
using ad_agr_list_fo_nmlzd_isl[OF close(2)[unfolded xsf_def xg_def(2)] assms(1)[unfolded xsf_def]]
by auto
have "∀x∈set (proj_tuple ns (zip nsy ys)). isl x"
using c
by auto
then have E4: "proj_tuple ns (zip nsy ys) = proj_tuple ns (zip nsy ys')"
using assms(8)
unfolding proj_map
apply (induction ns)
using ad_agr_list_fo_nmlzd_isl[OF close(4)[unfolded ysf_def xf_def(2)] assms(2)[unfolded ysf_def]]
by auto
show "False"
using c fo_nmlz_Un
unfolding E1 E2 E3 E4
by auto
qed
}
then show ?thesis
by (auto simp: eval_conj_tuple_def Let_def cxs_def[symmetric] nxs_def[symmetric] cys_def[symmetric] nys_def[symmetric]
ext_tuple_eq[OF len_sort(1)] ext_tuple_eq[OF len_sort(2)])
qed
lemma eval_conj_tuple_close_empty:
assumes "fo_nmlzd X xs" "fo_nmlzd Y ys"
"length nsx = length xs" "length nsy = length ys"
"sorted_distinct nsx" "sorted_distinct nsy"
"ns = filter (λn. n ∈ set nsy) nsx"
"fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsx xs)) ≠ fo_nmlz (X ∩ Y) (proj_tuple ns (zip nsy ys))"
"xs' ∈ ad_agr_close ((X ∪ Y) - X) xs" "ys' ∈ ad_agr_close ((X ∪ Y) - Y) ys"
shows "eval_conj_tuple (X ∪ Y) nsx nsy xs' ys' = {}"
proof -
have aux: "sorted_distinct ns" "set ns ⊆ set nsx ∩ set nsy"
using assms(5) sorted_filter[of id]
by (auto simp: assms(7))
show ?thesis
using eval_conj_tuple_close_empty2[OF assms(1-6) aux] assms(8-)
by auto
qed
lemma eval_conj_tuple_empty2:
assumes "fo_nmlzd Z xs" "fo_nmlzd Z ys"
"length nsx = length xs" "length nsy = length ys"
"sorted_distinct nsx" "sorted_distinct nsy"
"sorted_distinct ns" "set ns ⊆ set nsx ∩ set nsy"
"fo_nmlz Z (proj_tuple ns (zip nsx xs)) ≠ fo_nmlz Z (proj_tuple ns (zip nsy ys)) ∨
(proj_tuple ns (zip nsx xs) ≠ proj_tuple ns (zip nsy ys) ∧
(∀x ∈ set (proj_tuple ns (zip nsx xs)). isl x) ∧ (∀y ∈ set (proj_tuple ns (zip nsy ys)). isl y))"
shows "eval_conj_tuple Z nsx nsy xs ys = {}"
using eval_conj_tuple_close_empty2[OF assms(1-8)] assms(9) ad_agr_close_empty assms(1-2)
by fastforce
lemma eval_conj_tuple_empty:
assumes "fo_nmlzd Z xs" "fo_nmlzd Z ys"
"length nsx = length xs" "length nsy = length ys"
"sorted_distinct nsx" "sorted_distinct nsy"
"ns = filter (λn. n ∈ set nsy) nsx"
"fo_nmlz Z (proj_tuple ns (zip nsx xs)) ≠ fo_nmlz Z (proj_tuple ns (zip nsy ys))"
shows "eval_conj_tuple Z nsx nsy xs ys = {}"
proof -
have aux: "sorted_distinct ns" "set ns ⊆ set nsx ∩ set nsy"
using assms(5) sorted_filter[of id]
by (auto simp: assms(7))
show ?thesis
using eval_conj_tuple_empty2[OF assms(1-6) aux] assms(8-)
by auto
qed
lemma nall_tuples_rec_filter:
assumes "xs ∈ nall_tuples_rec AD n (length xs)" "ys = filter (λx. ¬isl x) xs"
shows "ys ∈ nall_tuples_rec {} n (length ys)"
using assms
proof (induction xs arbitrary: n ys)
case (Cons x xs)
then show ?case
proof (cases x)
case (Inr b)
have b_le_i: "b ≤ n"
using Cons(2)
by (auto simp: Inr)
obtain zs where ys_def: "ys = Inr b # zs" "zs = filter (λx. ¬ isl x) xs"
using Cons(3)
by (auto simp: Inr)
show ?thesis
proof (cases "b < n")
case True
then show ?thesis
using Cons(1)[OF _ ys_def(2), of n] Cons(2)
by (auto simp: Inr ys_def(1))
next
case False
then show ?thesis
using Cons(1)[OF _ ys_def(2), of "Suc n"] Cons(2)
by (auto simp: Inr ys_def(1))
qed
qed auto
qed auto
lemma nall_tuples_rec_filter_rev:
assumes "ys ∈ nall_tuples_rec {} n (length ys)" "ys = filter (λx. ¬isl x) xs"
"Inl -` set xs ⊆ AD"
shows "xs ∈ nall_tuples_rec AD n (length xs)"
using assms
proof (induction xs arbitrary: n ys)
case (Cons x xs)
show ?case
proof (cases x)
case (Inl a)
have a_AD: "a ∈ AD"
using Cons(4)
by (auto simp: Inl)
show ?thesis
using Cons(1)[OF Cons(2)] Cons(3,4) a_AD
by (auto simp: Inl)
next
case (Inr b)
obtain zs where ys_def: "ys = Inr b # zs" "zs = filter (λx. ¬ isl x) xs"
using Cons(3)
by (auto simp: Inr)
show ?thesis
using Cons(1)[OF _ ys_def(2)] Cons(2,4)
by (fastforce simp: ys_def(1) Inr)
qed
qed auto
lemma eval_conj_set_aux:
fixes AD :: "'a set"
assumes nsφ'_def: "nsφ' = filter (λn. n ∉ set nsφ) nsψ"
and nsψ'_def: "nsψ' = filter (λn. n ∉ set nsψ) nsφ"
and Xφ_def: "Xφ = fo_nmlz AD ` proj_vals Rφ nsφ"
and Xψ_def: "Xψ = fo_nmlz AD ` proj_vals Rψ nsψ"
and distinct: "sorted_distinct nsφ" "sorted_distinct nsψ"
and cxs_def: "cxs = filter (λ(n, x). n ∉ set nsψ ∧ isl x) (zip nsφ xs)"
and nxs_def: "nxs = map fst (filter (λ(n, x). n ∉ set nsψ ∧ ¬isl x) (zip nsφ xs))"
and cys_def: "cys = filter (λ(n, y). n ∉ set nsφ ∧ isl y) (zip nsψ ys)"
and nys_def: "nys = map fst (filter (λ(n, y). n ∉ set nsφ ∧ ¬isl y) (zip nsψ ys))"
and xs_ys_def: "xs ∈ Xφ" "ys ∈ Xψ"
and σxs_def: "xs = map σxs nsφ" "fsφ = map σxs nsφ'"
and σys_def: "ys = map σys nsψ" "fsψ = map σys nsψ'"
and fsφ_def: "fsφ ∈ nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
and fsψ_def: "fsψ ∈ nall_tuples_rec AD (card (Inr -` set ys)) (length nsψ')"
and ad_agr: "ad_agr_list AD (map σys (sort (nsψ @ nsψ'))) (map σxs (sort (nsφ @ nsφ')))"
shows
"map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))" and
"map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))" and
"map σxs nys ∈
nall_tuples_rec {} (card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
proof -
have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
using xs_ys_def
by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
have len_fsφ: "length fsφ = length nsφ'"
using σxs_def(2)
by auto
have set_nsφ': "set nsφ' = set (map fst cys) ∪ set nys"
using len_xs_ys(2)
by (auto simp: nsφ'_def cys_def nys_def dest: set_zip_leftD)
(metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
prod.sel(1) split_conv)
have "⋀x. Inl x ∈ set xs ∪ set fsφ ⟹ x ∈ AD" "⋀y. Inl y ∈ set ys ∪ set fsψ ⟹ y ∈ AD"
using xs_ys_def fo_nmlz_set[of AD] nall_tuples_rec_Inl[OF fsφ_def]
nall_tuples_rec_Inl[OF fsψ_def]
by (auto simp: Xφ_def Xψ_def)
then have Inl_xs_ys:
"⋀n. n ∈ set nsφ ∪ set nsψ ⟹ isl (σxs n) ⟷ (∃x. σxs n = Inl x ∧ x ∈ AD)"
"⋀n. n ∈ set nsφ ∪ set nsψ ⟹ isl (σys n) ⟷ (∃y. σys n = Inl y ∧ y ∈ AD)"
unfolding σxs_def σys_def nsφ'_def nsψ'_def
by (auto simp: isl_def) (smt imageI mem_Collect_eq)+
have sort_sort: "sort (nsφ @ nsφ') = sort (nsψ @ nsψ')"
apply (rule sorted_distinct_set_unique)
using distinct
by (auto simp: nsφ'_def nsψ'_def)
have isl_iff: "⋀n. n ∈ set nsφ' ∪ set nsψ' ⟹ isl (σxs n) ∨ isl (σys n) ⟹ σxs n = σys n"
using ad_agr Inl_xs_ys
unfolding sort_sort[symmetric] ad_agr_list_link[symmetric]
unfolding nsφ'_def nsψ'_def
apply (auto simp: ad_agr_sets_def)
unfolding ad_equiv_pair.simps
apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
apply (metis (no_types, lifting) UnI1 image_eqI)+
done
have "⋀n. n ∈ set (map fst cys) ⟹ isl (σxs n)"
"⋀n. n ∈ set (map fst cxs) ⟹ isl (σys n)"
using isl_iff
by (auto simp: cys_def nsφ'_def σys_def(1) cxs_def nsψ'_def σxs_def(1) set_zip)
(metis nth_mem)+
then have Inr_sort: "Inr -` set (map σxs (sort (nsφ @ map fst cys))) = Inr -` set xs"
unfolding σxs_def(1) σys_def(1)
by (auto simp: zip_map_fst_snd dest: set_zip_leftD)
(metis fst_conv image_iff sum.disc(2))+
have map_nys: "map σxs nys = filter (λx. ¬isl x) fsφ"
using isl_iff[unfolded nsφ'_def]
unfolding nys_def σys_def(1) σxs_def(2) nsφ'_def filter_map
by (induction nsψ) force+
have map_nys_in_nall: "map σxs nys ∈ nall_tuples_rec {} (card (Inr -` set xs)) (length nys)"
using nall_tuples_rec_filter[OF fsφ_def[folded len_fsφ] map_nys]
by auto
have map_cys: "map snd cys = map σxs (map fst cys)"
using isl_iff
by (auto simp: cys_def set_zip nsφ'_def σys_def(1)) (metis nth_mem)
show merge_xs_cys: "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
apply (subst zip_map_fst_snd[of cys, symmetric])
unfolding σxs_def(1) map_cys
apply (rule merge_map)
using distinct
by (auto simp: cys_def σys_def sorted_filter distinct_map_filter map_fst_zip_take)
have merge_nys_prems: "sorted_distinct (sort (nsφ @ map fst cys))" "sorted_distinct nys"
"set (sort (nsφ @ map fst cys)) ∩ set nys = {}"
using distinct len_xs_ys(2)
by (auto simp: cys_def nys_def distinct_map_filter sorted_filter)
(metis eq_key_imp_eq_value map_fst_zip)
have map_snd_merge_nys: "map σxs (sort (sort (nsφ @ map fst cys) @ nys)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))"
by (rule merge_map[OF merge_nys_prems, symmetric])
have sort_sort_nys: "sort (sort (nsφ @ map fst cys) @ nys) = sort (nsφ @ nsφ')"
apply (rule sorted_distinct_set_unique)
using distinct merge_nys_prems set_nsφ'
by (auto simp: cys_def nys_def nsφ'_def dest: set_zip_leftD)
have map_merge_fsφ: "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) = map σxs (sort (nsφ @ nsφ'))"
unfolding σxs_def
apply (rule merge_map)
using distinct sorted_filter[of id]
by (auto simp: nsφ'_def)
show "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))"
unfolding map_merge_fsφ map_snd_merge_nys[unfolded sort_sort_nys]
by auto
show "map σxs nys ∈ nall_tuples_rec {}
(card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
using map_nys_in_nall
unfolding Inr_sort[symmetric]
by auto
qed
lemma eval_conj_set_aux':
fixes AD :: "'a set"
assumes nsφ'_def: "nsφ' = filter (λn. n ∉ set nsφ) nsψ"
and nsψ'_def: "nsψ' = filter (λn. n ∉ set nsψ) nsφ"
and Xφ_def: "Xφ = fo_nmlz AD ` proj_vals Rφ nsφ"
and Xψ_def: "Xψ = fo_nmlz AD ` proj_vals Rψ nsψ"
and distinct: "sorted_distinct nsφ" "sorted_distinct nsψ"
and cxs_def: "cxs = filter (λ(n, x). n ∉ set nsψ ∧ isl x) (zip nsφ xs)"
and nxs_def: "nxs = map fst (filter (λ(n, x). n ∉ set nsψ ∧ ¬isl x) (zip nsφ xs))"
and cys_def: "cys = filter (λ(n, y). n ∉ set nsφ ∧ isl y) (zip nsψ ys)"
and nys_def: "nys = map fst (filter (λ(n, y). n ∉ set nsφ ∧ ¬isl y) (zip nsψ ys))"
and xs_ys_def: "xs ∈ Xφ" "ys ∈ Xψ"
and σxs_def: "xs = map σxs nsφ" "map snd cys = map σxs (map fst cys)"
"ysψ = map σxs nys"
and σys_def: "ys = map σys nsψ" "map snd cxs = map σys (map fst cxs)"
"xsφ = map σys nxs"
and fsφ_def: "fsφ = map σxs nsφ'"
and fsψ_def: "fsψ = map σys nsψ'"
and ysψ_def: "map σxs nys ∈ nall_tuples_rec {}
(card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
and Inl_set_AD: "Inl -` (set (map snd cxs) ∪ set xsφ) ⊆ AD"
"Inl -` (set (map snd cys) ∪ set ysψ) ⊆ AD"
and ad_agr: "ad_agr_list AD (map σys (sort (nsψ @ nsψ'))) (map σxs (sort (nsφ @ nsφ')))"
shows
"map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))" and
"map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
"fsφ ∈ nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
proof -
have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
using xs_ys_def
by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
have len_fsφ: "length fsφ = length nsφ'"
by (auto simp: fsφ_def)
have set_ns: "set nsφ' = set (map fst cys) ∪ set nys"
"set nsψ' = set (map fst cxs) ∪ set nxs"
using len_xs_ys
by (auto simp: nsφ'_def cys_def nys_def nsψ'_def cxs_def nxs_def dest: set_zip_leftD)
(metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
prod.sel(1) split_conv)+
then have set_σ_ns: "σxs ` set nsψ' ∪ σxs ` set nsφ' ⊆ set xs ∪ set (map snd cys) ∪ set ysψ"
"σys ` set nsφ' ∪ σys ` set nsψ' ⊆ set ys ∪ set (map snd cxs) ∪ set xsφ"
by (auto simp: σxs_def σys_def nsφ'_def nsψ'_def)
have Inl_sub_AD: "⋀x. Inl x ∈ set xs ∪ set (map snd cys) ∪ set ysψ ⟹ x ∈ AD"
"⋀y. Inl y ∈ set ys ∪ set (map snd cxs) ∪ set xsφ ⟹ y ∈ AD"
using xs_ys_def fo_nmlz_set[of AD] Inl_set_AD
by (auto simp: Xφ_def Xψ_def) (metis in_set_zipE set_map subset_eq vimageI zip_map_fst_snd)+
then have Inl_xs_ys:
"⋀n. n ∈ set nsφ' ∪ set nsψ' ⟹ isl (σxs n) ⟷ (∃x. σxs n = Inl x ∧ x ∈ AD)"
"⋀n. n ∈ set nsφ' ∪ set nsψ' ⟹ isl (σys n) ⟷ (∃y. σys n = Inl y ∧ y ∈ AD)"
using set_σ_ns
by (auto simp: isl_def rev_image_eqI)
have sort_sort: "sort (nsφ @ nsφ') = sort (nsψ @ nsψ')"
apply (rule sorted_distinct_set_unique)
using distinct
by (auto simp: nsφ'_def nsψ'_def)
have isl_iff: "⋀n. n ∈ set nsφ' ∪ set nsψ' ⟹ isl (σxs n) ∨ isl (σys n) ⟹ σxs n = σys n"
using ad_agr Inl_xs_ys
unfolding sort_sort[symmetric] ad_agr_list_link[symmetric]
unfolding nsφ'_def nsψ'_def
apply (auto simp: ad_agr_sets_def)
unfolding ad_equiv_pair.simps
apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
apply (metis (no_types, lifting) UnI2 image_eqI mem_Collect_eq)
apply (metis (no_types, lifting) UnI1 image_eqI)+
done
have "⋀n. n ∈ set (map fst cys) ⟹ isl (σxs n)"
"⋀n. n ∈ set (map fst cxs) ⟹ isl (σys n)"
using isl_iff
by (auto simp: cys_def nsφ'_def σys_def(1) cxs_def nsψ'_def σxs_def(1) set_zip)
(metis nth_mem)+
then have Inr_sort: "Inr -` set (map σxs (sort (nsφ @ map fst cys))) = Inr -` set xs"
unfolding σxs_def(1) σys_def(1)
by (auto simp: zip_map_fst_snd dest: set_zip_leftD)
(metis fst_conv image_iff sum.disc(2))+
have map_nys: "map σxs nys = filter (λx. ¬isl x) fsφ"
using isl_iff[unfolded nsφ'_def]
unfolding nys_def σys_def(1) fsφ_def nsφ'_def
by (induction nsψ) force+
have map_cys: "map snd cys = map σxs (map fst cys)"
using isl_iff
by (auto simp: cys_def set_zip nsφ'_def σys_def(1)) (metis nth_mem)
show merge_xs_cys: "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
apply (subst zip_map_fst_snd[of cys, symmetric])
unfolding σxs_def(1) map_cys
apply (rule merge_map)
using distinct
by (auto simp: cys_def σys_def sorted_filter distinct_map_filter map_fst_zip_take)
have merge_nys_prems: "sorted_distinct (sort (nsφ @ map fst cys))" "sorted_distinct nys"
"set (sort (nsφ @ map fst cys)) ∩ set nys = {}"
using distinct len_xs_ys(2)
by (auto simp: cys_def nys_def distinct_map_filter sorted_filter)
(metis eq_key_imp_eq_value map_fst_zip)
have map_snd_merge_nys: "map σxs (sort (sort (nsφ @ map fst cys) @ nys)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))"
by (rule merge_map[OF merge_nys_prems, symmetric])
have sort_sort_nys: "sort (sort (nsφ @ map fst cys) @ nys) = sort (nsφ @ nsφ')"
apply (rule sorted_distinct_set_unique)
using distinct merge_nys_prems set_ns
by (auto simp: cys_def nys_def nsφ'_def dest: set_zip_leftD)
have map_merge_fsφ: "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) = map σxs (sort (nsφ @ nsφ'))"
unfolding σxs_def fsφ_def
apply (rule merge_map)
using distinct sorted_filter[of id]
by (auto simp: nsφ'_def)
show "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))"
unfolding map_merge_fsφ map_snd_merge_nys[unfolded sort_sort_nys]
by auto
have "Inl -` set fsφ ⊆ AD"
using Inl_sub_AD(1) set_σ_ns
by (force simp: fsφ_def)
then show "fsφ ∈ nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
unfolding len_fsφ[symmetric]
using nall_tuples_rec_filter_rev[OF _ map_nys] ysψ_def[unfolded Inr_sort]
by auto
qed
lemma eval_conj_set_correct:
assumes nsφ'_def: "nsφ' = filter (λn. n ∉ set nsφ) nsψ"
and nsψ'_def: "nsψ' = filter (λn. n ∉ set nsψ) nsφ"
and Xφ_def: "Xφ = fo_nmlz AD ` proj_vals Rφ nsφ"
and Xψ_def: "Xψ = fo_nmlz AD ` proj_vals Rψ nsψ"
and distinct: "sorted_distinct nsφ" "sorted_distinct nsψ"
shows "eval_conj_set AD nsφ Xφ nsψ Xψ = ext_tuple_set AD nsφ nsφ' Xφ ∩ ext_tuple_set AD nsψ nsψ' Xψ"
proof -
have aux: "ext_tuple_set AD nsφ nsφ' Xφ = fo_nmlz AD ` ⋃(ext_tuple AD nsφ nsφ' ` Xφ)"
"ext_tuple_set AD nsψ nsψ' Xψ = fo_nmlz AD ` ⋃(ext_tuple AD nsψ nsψ' ` Xψ)"
by (auto simp: ext_tuple_set_def ext_tuple_def Xφ_def Xψ_def image_iff fo_nmlz_idem[OF fo_nmlz_sound])
show ?thesis
unfolding aux
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ fo_nmlz AD ` ⋃(ext_tuple AD nsφ nsφ' ` Xφ) ∩
fo_nmlz AD ` ⋃(ext_tuple AD nsψ nsψ' ` Xψ)"
then obtain xs ys where xs_ys_def: "xs ∈ Xφ" "vs ∈ fo_nmlz AD ` ext_tuple AD nsφ nsφ' xs"
"ys ∈ Xψ" "vs ∈ fo_nmlz AD ` ext_tuple AD nsψ nsψ' ys"
by auto
have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
using xs_ys_def(1,3)
by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
obtain fsφ where fsφ_def: "vs = fo_nmlz AD (map snd (merge (zip nsφ xs) (zip nsφ' fsφ)))"
"fsφ ∈ nall_tuples_rec AD (card (Inr -` set xs)) (length nsφ')"
using xs_ys_def(1,2)
by (auto simp: Xφ_def proj_vals_def ext_tuple_def split: if_splits)
(metis fo_nmlz_map length_map map_snd_zip)
obtain fsψ where fsψ_def: "vs = fo_nmlz AD (map snd (merge (zip nsψ ys) (zip nsψ' fsψ)))"
"fsψ ∈ nall_tuples_rec AD (card (Inr -` set ys)) (length nsψ')"
using xs_ys_def(3,4)
by (auto simp: Xψ_def proj_vals_def ext_tuple_def split: if_splits)
(metis fo_nmlz_map length_map map_snd_zip)
note len_fsφ = nall_tuples_rec_length[OF fsφ_def(2)]
note len_fsψ = nall_tuples_rec_length[OF fsψ_def(2)]
obtain σxs where σxs_def: "xs = map σxs nsφ" "fsφ = map σxs nsφ'"
using exists_map[of "nsφ @ nsφ'" "xs @ fsφ"] len_xs_ys(1) len_fsφ distinct
by (auto simp: nsφ'_def)
obtain σys where σys_def: "ys = map σys nsψ" "fsψ = map σys nsψ'"
using exists_map[of "nsψ @ nsψ'" "ys @ fsψ"] len_xs_ys(2) len_fsψ distinct
by (auto simp: nsψ'_def)
have map_merge_fsφ: "map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) = map σxs (sort (nsφ @ nsφ'))"
unfolding σxs_def
apply (rule merge_map)
using distinct sorted_filter[of id]
by (auto simp: nsφ'_def)
have map_merge_fsψ: "map snd (merge (zip nsψ ys) (zip nsψ' fsψ)) = map σys (sort (nsψ @ nsψ'))"
unfolding σys_def
apply (rule merge_map)
using distinct sorted_filter[of id]
by (auto simp: nsψ'_def)
define cxs where "cxs = filter (λ(n, x). n ∉ set nsψ ∧ isl x) (zip nsφ xs)"
define nxs where "nxs = map fst (filter (λ(n, x). n ∉ set nsψ ∧ ¬isl x) (zip nsφ xs))"
define cys where "cys = filter (λ(n, y). n ∉ set nsφ ∧ isl y) (zip nsψ ys)"
define nys where "nys = map fst (filter (λ(n, y). n ∉ set nsφ ∧ ¬isl y) (zip nsψ ys))"
note ad_agr1 = fo_nmlz_eqD[OF trans[OF fsφ_def(1)[symmetric] fsψ_def(1)],
unfolded map_merge_fsφ map_merge_fsψ]
note ad_agr2 = ad_agr_list_comm[OF ad_agr1]
obtain σxs where aux1:
"map snd (merge (zip nsφ xs) (zip nsφ' fsφ)) =
map snd (merge (zip (sort (nsφ @ map fst cys)) (map σxs (sort (nsφ @ map fst cys))))
(zip nys (map σxs nys)))"
"map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
"map σxs nys ∈ nall_tuples_rec {}
(card (Inr -` set (map σxs (sort (nsφ @ map fst cys))))) (length nys)"
using eval_conj_set_aux[OF nsφ'_def nsψ'_def Xφ_def Xψ_def distinct cxs_def nxs_def
cys_def nys_def xs_ys_def(1,3) σxs_def σys_def fsφ_def(2) fsψ_def(2) ad_agr2]
by blast
obtain σys where aux2:
"map snd (merge (zip nsψ ys) (zip nsψ' fsψ)) =
map snd (merge (zip (sort (nsψ @ map fst cxs)) (map σys (sort (nsψ @ map fst cxs))))
(zip nxs (map σys nxs)))"
"map snd (merge (zip nsψ ys) cxs) = map σys (sort (nsψ @ map fst cxs))"
"map σys nxs ∈ nall_tuples_rec {}
(card (Inr -` set (map σys (sort (nsψ @ map fst cxs))))) (length nxs)"
using eval_conj_set_aux[OF nsψ'_def nsφ'_def Xψ_def Xφ_def distinct(2,1) cys_def nys_def
cxs_def nxs_def xs_ys_def(3,1) σys_def σxs_def fsψ_def(2) fsφ_def(2) ad_agr1]
by blast
have vs_ext_nys: "vs ∈ fo_nmlz AD ` ext_tuple {} (sort (nsφ @ map fst cys)) nys
(map snd (merge (zip nsφ xs) cys))"
using aux1(3)
unfolding fsφ_def(1) aux1(1)
by (simp add: ext_tuple_eq[OF length_map[symmetric]] aux1(2))
have vs_ext_nxs: "vs ∈ fo_nmlz AD ` ext_tuple {} (sort (nsψ @ map fst cxs)) nxs
(map snd (merge (zip nsψ ys) cxs))"
using aux2(3)
unfolding fsψ_def(1) aux2(1)
by (simp add: ext_tuple_eq[OF length_map[symmetric]] aux2(2))
show "vs ∈ eval_conj_set AD nsφ Xφ nsψ Xψ"
using vs_ext_nys vs_ext_nxs xs_ys_def(1,3)
by (auto simp: eval_conj_set_def eval_conj_tuple_def nys_def cys_def nxs_def cxs_def Let_def)
next
fix vs
assume "vs ∈ eval_conj_set AD nsφ Xφ nsψ Xψ"
then obtain xs ys cxs nxs cys nys where
cxs_def: "cxs = filter (λ(n, x). n ∉ set nsψ ∧ isl x) (zip nsφ xs)" and
nxs_def: "nxs = map fst (filter (λ(n, x). n ∉ set nsψ ∧ ¬isl x) (zip nsφ xs))" and
cys_def: "cys = filter (λ(n, y). n ∉ set nsφ ∧ isl y) (zip nsψ ys)" and
nys_def: "nys = map fst (filter (λ(n, y). n ∉ set nsφ ∧ ¬isl y) (zip nsψ ys))" and
xs_def: "xs ∈ Xφ" "vs ∈ fo_nmlz AD ` ext_tuple {} (sort (nsφ @ map fst cys)) nys
(map snd (merge (zip nsφ xs) cys))" and
ys_def: "ys ∈ Xψ" "vs ∈ fo_nmlz AD ` ext_tuple {} (sort (nsψ @ map fst cxs)) nxs
(map snd (merge (zip nsψ ys) cxs))"
by (auto simp: eval_conj_set_def eval_conj_tuple_def Let_def) (metis (no_types, lifting) image_eqI)
have len_xs_ys: "length xs = length nsφ" "length ys = length nsψ"
using xs_def(1) ys_def(1)
by (auto simp: Xφ_def Xψ_def proj_vals_def fo_nmlz_length)
have len_merge_cys: "length (map snd (merge (zip nsφ xs) cys)) =
length (sort (nsφ @ map fst cys))"
using merge_length[of "zip nsφ xs" cys] len_xs_ys
by auto
obtain ysψ where ysψ_def: "vs = fo_nmlz AD (map snd (merge (zip (sort (nsφ @ map fst cys))
(map snd (merge (zip nsφ xs) cys))) (zip nys ysψ)))"
"ysψ ∈ nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsφ xs) cys))))
(length nys)"
using xs_def(2)
unfolding ext_tuple_eq[OF len_merge_cys[symmetric]]
by auto
have distinct_nys: "distinct (nsφ @ map fst cys @ nys)"
using distinct len_xs_ys
by (auto simp: cys_def nys_def sorted_filter distinct_map_filter)
(metis eq_key_imp_eq_value map_fst_zip)
obtain σxs where σxs_def: "xs = map σxs nsφ" "map snd cys = map σxs (map fst cys)"
"ysψ = map σxs nys"
using exists_map[OF _ distinct_nys, of "xs @ map snd cys @ ysψ"] len_xs_ys(1)
nall_tuples_rec_length[OF ysψ_def(2)]
by (auto simp: nsφ'_def)
have len_merge_cxs: "length (map snd (merge (zip nsψ ys) cxs)) =
length (sort (nsψ @ map fst cxs))"
using merge_length[of "zip nsψ ys"] len_xs_ys
by auto
obtain xsφ where xsφ_def: "vs = fo_nmlz AD (map snd (merge (zip (sort (nsψ @ map fst cxs))
(map snd (merge (zip nsψ ys) cxs))) (zip nxs xsφ)))"
"xsφ ∈ nall_tuples_rec {} (card (Inr -` set (map snd (merge (zip nsψ ys) cxs))))
(length nxs)"
using ys_def(2)
unfolding ext_tuple_eq[OF len_merge_cxs[symmetric]]
by auto
have distinct_nxs: "distinct (nsψ @ map fst cxs @ nxs)"
using distinct len_xs_ys(1)
by (auto simp: cxs_def nxs_def sorted_filter distinct_map_filter)
(metis eq_key_imp_eq_value map_fst_zip)
obtain σys where σys_def: "ys = map σys nsψ" "map snd cxs = map σys (map fst cxs)"
"xsφ = map σys nxs"
using exists_map[OF _ distinct_nxs, of "ys @ map snd cxs @ xsφ"] len_xs_ys(2)
nall_tuples_rec_length[OF xsφ_def(2)]
by (auto simp: nsψ'_def)
have sd_cs_ns: "sorted_distinct (map fst cxs)" "sorted_distinct nxs"
"sorted_distinct (map fst cys)" "sorted_distinct nys"
"sorted_distinct (sort (nsψ @ map fst cxs))"
"sorted_distinct (sort (nsφ @ map fst cys))"
using distinct len_xs_ys
by (auto simp: cxs_def nxs_def cys_def nys_def sorted_filter distinct_map_filter)
have set_cs_ns_disj: "set (map fst cxs) ∩ set nxs = {}" "set (map fst cys) ∩ set nys = {}"
"set (sort (nsφ @ map fst cys)) ∩ set nys = {}"
"set (sort (nsψ @ map fst cxs)) ∩ set nxs = {}"
using distinct nth_eq_iff_index_eq
by (auto simp: cxs_def nxs_def cys_def nys_def set_zip) blast+
have merge_sort_cxs: "map snd (merge (zip nsψ ys) cxs) = map σys (sort (nsψ @ map fst cxs))"
unfolding σys_def(1)
apply (subst zip_map_fst_snd[of cxs, symmetric])
unfolding σys_def(2)
apply (rule merge_map)
using distinct(2) sd_cs_ns
by (auto simp: cxs_def)
have merge_sort_cys: "map snd (merge (zip nsφ xs) cys) = map σxs (sort (nsφ @ map fst cys))"
unfolding σxs_def(1)
apply (subst zip_map_fst_snd[of cys, symmetric])
unfolding σxs_def(2)
apply (rule merge_map)
using distinct(1) sd_cs_ns
by (auto simp: cys_def)
have set_nsφ': "set nsφ' = set (map fst cys) ∪ set nys"
using len_xs_ys(2)
by (auto simp: nsφ'_def cys_def nys_def dest: set_zip_leftD)
(metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
prod.sel(1) split_conv)
have sort_sort_nys: "sort (sort (nsφ @ map fst cys) @ nys) = sort (nsφ @ nsφ')"
apply (rule sorted_distinct_set_unique)
using distinct sd_cs_ns set_cs_ns_disj set_nsφ'
by (auto simp: cys_def nys_def nsφ'_def dest: set_zip_leftD)
have set_nsψ': "set nsψ' = set (map fst cxs) ∪ set nxs"
using len_xs_ys(1)
by (auto simp: nsψ'_def cxs_def nxs_def dest: set_zip_leftD)
(metis (no_types, lifting) image_eqI in_set_impl_in_set_zip1 mem_Collect_eq
prod.sel(1) split_conv)
have sort_sort_nxs: "sort (sort (nsψ @ map fst cxs) @ nxs) = sort (nsψ @ nsψ')"
apply (rule sorted_distinct_set_unique)
using distinct sd_cs_ns set_cs_ns_disj set_nsψ'
by (auto simp: cxs_def nxs_def nsψ'_def dest: set_zip_leftD)
have ad_agr1: "ad_agr_list AD (map σys (sort (nsψ @ nsψ'))) (map σxs (sort (nsφ @ nsφ')))"
using fo_nmlz_eqD[OF trans[OF xsφ_def(1)[symmetric] ysψ_def(1)]]
unfolding σxs_def(3) σys_def(3) merge_sort_cxs merge_sort_cys
unfolding merge_map[OF sd_cs_ns(5) sd_cs_ns(2) set_cs_ns_disj(4)]
unfolding merge_map[OF sd_cs_ns(6) sd_cs_ns(4) set_cs_ns_disj(3)]
unfolding sort_sort_nxs sort_sort_nys .
note ad_agr2 = ad_agr_list_comm[OF ad_agr1]
have Inl_set_AD: "Inl -` (set (map snd cxs) ∪ set xsφ) ⊆ AD"
"Inl -` (set (map snd cys) ∪ set ysψ) ⊆ AD"
using xs_def(1) nall_tuples_rec_Inl[OF xsφ_def(2)] ys_def(1)
nall_tuples_rec_Inl[OF ysψ_def(2)] fo_nmlz_set[of AD]
by (fastforce simp: cxs_def Xφ_def cys_def Xψ_def dest!: set_zip_rightD)+
note aux1 = eval_conj_set_aux'[OF nsφ'_def nsψ'_def Xφ_def Xψ_def distinct cxs_def nxs_def
cys_def nys_def xs_def(1) ys_def(1) σxs_def σys_def refl refl
ysψ_def(2)[unfolded σxs_def(3) merge_sort_cys] Inl_set_AD ad_agr1]
note aux2 = eval_conj_set_aux'[OF nsψ'_def nsφ'_def Xψ_def Xφ_def distinct(2,1) cys_def nys_def
cxs_def nxs_def ys_def(1) xs_def(1) σys_def σxs_def refl refl
xsφ_def(2)[unfolded σys_def(3) merge_sort_cxs] Inl_set_AD(2,1) ad_agr2]
show "vs ∈ fo_nmlz AD ` ⋃(ext_tuple AD nsφ nsφ' ` Xφ) ∩
fo_nmlz AD ` ⋃(ext_tuple AD nsψ nsψ' ` Xψ)"
using xs_def(1) ys_def(1) ysψ_def(1) xsφ_def(1) aux1(3) aux2(3)
ext_tuple_eq[OF len_xs_ys(1)[symmetric], of AD nsφ']
ext_tuple_eq[OF len_xs_ys(2)[symmetric], of AD nsψ']
unfolding aux1(2) aux2(2) σys_def(3) σxs_def(3) aux1(1)[symmetric] aux2(1)[symmetric]
by blast
qed
qed
lemma esat_exists_not_fv: "n ∉ fv_fo_fmla φ ⟹ X ≠ {} ⟹
esat (Exists n φ) I σ X ⟷ esat φ I σ X"
proof (rule iffI)
assume assms: "n ∉ fv_fo_fmla φ" "esat (Exists n φ) I σ X"
then obtain x where "esat φ I (σ(n := x)) X"
by auto
with assms(1) show "esat φ I σ X"
using esat_fv_cong[of φ σ "σ(n := x)"] by fastforce
next
assume assms: "n ∉ fv_fo_fmla φ" "X ≠ {}" "esat φ I σ X"
from assms(2) obtain x where x_def: "x ∈ X"
by auto
with assms(1,3) have "esat φ I (σ(n := x)) X"
using esat_fv_cong[of φ σ "σ(n := x)"] by fastforce
with x_def show "esat (Exists n φ) I σ X"
by auto
qed
lemma esat_forall_not_fv: "n ∉ fv_fo_fmla φ ⟹ X ≠ {} ⟹
esat (Forall n φ) I σ X ⟷ esat φ I σ X"
using esat_exists_not_fv[of n "Neg φ" X I σ]
by auto
lemma proj_sat_vals: "proj_sat φ I =
proj_vals {σ. sat φ I σ} (fv_fo_fmla_list φ)"
by (auto simp: proj_sat_def proj_vals_def)
lemma fv_fo_fmla_list_Pred: "remdups_adj (sort (fv_fo_terms_list ts)) = fv_fo_terms_list ts"
unfolding fv_fo_terms_list_def
by (simp add: distinct_remdups_adj_sort remdups_adj_distinct sorted_sort_id)
lemma ad_agr_list_fv_list': "⋃(set (map set_fo_term ts)) ⊆ X ⟹
ad_agr_list X (map σ (fv_fo_terms_list ts)) (map τ (fv_fo_terms_list ts)) ⟹
ad_agr_list X (σ ⊙e ts) (τ ⊙e ts)"
proof (induction ts)
case (Cons t ts)
have IH: "ad_agr_list X (σ ⊙e ts) (τ ⊙e ts)"
using Cons
by (auto simp: ad_agr_list_def ad_equiv_list_link[symmetric] fv_fo_terms_set_list
fv_fo_terms_set_def sp_equiv_list_link sp_equiv_def pairwise_def) blast+
have ad_equiv: "⋀i. i ∈ fv_fo_term_set t ∪ ⋃(fv_fo_term_set ` set ts) ⟹
ad_equiv_pair X (σ i, τ i)"
using Cons(3)
by (auto simp: ad_agr_list_def ad_equiv_list_link[symmetric] fv_fo_terms_set_list
fv_fo_terms_set_def)
have sp_equiv: "⋀i j. i ∈ fv_fo_term_set t ∪ ⋃(fv_fo_term_set ` set ts) ⟹
j ∈ fv_fo_term_set t ∪ ⋃(fv_fo_term_set ` set ts) ⟹ sp_equiv_pair (σ i, τ i) (σ j, τ j)"
using Cons(3)
by (auto simp: ad_agr_list_def sp_equiv_list_link fv_fo_terms_set_list
fv_fo_terms_set_def sp_equiv_def pairwise_def)
show ?case
proof (cases t)
case (Const c)
show ?thesis
using IH Cons(2)
apply (auto simp: ad_agr_list_def eval_eterms_def ad_equiv_list_def Const
sp_equiv_list_def pairwise_def set_zip)
unfolding ad_equiv_pair.simps
apply (metis nth_map rev_image_eqI)+
done
next
case (Var n)
note t_def = Var
have ad: "ad_equiv_pair X (σ n, τ n)"
using ad_equiv
by (auto simp: Var)
have "⋀y. y ∈ set (zip (map ((⋅e) σ) ts) (map ((⋅e) τ) ts)) ⟹ y ≠ (σ n, τ n) ⟹
sp_equiv_pair (σ n, τ n) y ∧ sp_equiv_pair y (σ n, τ n)"
proof -
fix y
assume "y ∈ set (zip (map ((⋅e) σ) ts) (map ((⋅e) τ) ts))"
then obtain t' where y_def: "t' ∈ set ts" "y = (σ ⋅e t', τ ⋅e t')"
using nth_mem
by (auto simp: set_zip) blast
show "sp_equiv_pair (σ n, τ n) y ∧ sp_equiv_pair y (σ n, τ n)"
proof (cases t')
case (Const c')
have c'_X: "c' ∈ X"
using Cons(2) y_def(1)
by (auto simp: Const) (meson SUP_le_iff fo_term.set_intros subsetD)
then show ?thesis
using ad_equiv[of n] y_def(1)
unfolding y_def
apply (auto simp: Const t_def)
unfolding ad_equiv_pair.simps
apply fastforce+
apply force
apply (metis rev_image_eqI)
done
next
case (Var n')
show ?thesis
using sp_equiv[of n n'] y_def(1)
unfolding y_def
by (fastforce simp: t_def Var)
qed
qed
then show ?thesis
using IH Cons(3)
by (auto simp: ad_agr_list_def eval_eterms_def ad_equiv_list_def Var ad sp_equiv_list_def
pairwise_insert)
qed
qed (auto simp: eval_eterms_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def)
lemma ext_tuple_ad_agr_close:
assumes Sφ_def: "Sφ ≡ {σ. esat φ I σ UNIV}"
and AD_sub: "act_edom φ I ⊆ ADφ" "ADφ ⊆ AD"
and Xφ_def: "Xφ = fo_nmlz ADφ ` proj_vals Sφ (fv_fo_fmla_list φ)"
and nsφ'_def: "nsφ' = filter (λn. n ∉ fv_fo_fmla φ) nsψ"
and sd_nsψ: "sorted_distinct nsψ"
and fv_Un: "fv_fo_fmla ψ = fv_fo_fmla φ ∪ set nsψ"
shows "ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' (ad_agr_close_set (AD - ADφ) Xφ) =
fo_nmlz AD ` proj_vals Sφ (fv_fo_fmla_list ψ)"
"ad_agr_close_set (AD - ADφ) Xφ = fo_nmlz AD ` proj_vals Sφ (fv_fo_fmla_list φ)"
proof -
have ad_agr_φ:
"⋀σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) ADφ σ τ ⟹
σ ∈ Sφ ⟷ τ ∈ Sφ"
using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono AD_sub
unfolding Sφ_def
by blast
show ad_close_alt: "ad_agr_close_set (AD - ADφ) Xφ = fo_nmlz AD ` proj_vals Sφ (fv_fo_fmla_list φ)"
using ad_agr_close_correct[OF AD_sub(2) ad_agr_φ] AD_sub(2)
unfolding Xφ_def Sφ_def[symmetric] proj_fmla_def
by (auto simp: ad_agr_close_set_def Set.is_empty_def)
have fv_φ: "set (fv_fo_fmla_list φ) ⊆ set (fv_fo_fmla_list ψ)"
using fv_Un
by (auto simp: fv_fo_fmla_list_set)
have sd_nsφ': "sorted_distinct nsφ'"
using sd_nsψ sorted_filter[of id]
by (auto simp: nsφ'_def)
show "ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' (ad_agr_close_set (AD - ADφ) Xφ) =
fo_nmlz AD ` proj_vals Sφ (fv_fo_fmla_list ψ)"
apply (rule ext_tuple_correct)
using sorted_distinct_fv_list ad_close_alt ad_agr_φ ad_agr_sets_mono[OF AD_sub(2)]
fv_Un sd_nsφ'
by (fastforce simp: nsφ'_def fv_fo_fmla_list_set)+
qed
lemma proj_ext_tuple:
assumes Sφ_def: "Sφ ≡ {σ. esat φ I σ UNIV}"
and AD_sub: "act_edom φ I ⊆ AD"
and Xφ_def: "Xφ = fo_nmlz AD ` proj_vals Sφ (fv_fo_fmla_list φ)"
and nsφ'_def: "nsφ' = filter (λn. n ∉ fv_fo_fmla φ) nsψ"
and sd_nsψ: "sorted_distinct nsψ"
and fv_Un: "fv_fo_fmla ψ = fv_fo_fmla φ ∪ set nsψ"
and Z_props: "⋀xs. xs ∈ Z ⟹ fo_nmlz AD xs = xs ∧ length xs = length (fv_fo_fmla_list ψ)"
shows "Z ∩ ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' Xφ =
{xs ∈ Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs)) ∈ Xφ}"
"Z - ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' Xφ =
{xs ∈ Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs)) ∉ Xφ}"
proof -
have ad_agr_φ:
"⋀σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD σ τ ⟹
σ ∈ Sφ ⟷ τ ∈ Sφ"
using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono AD_sub
unfolding Sφ_def
by blast
have sd_nsφ': "sorted_distinct nsφ'"
using sd_nsψ sorted_filter[of id]
by (auto simp: nsφ'_def)
have disj: "set (fv_fo_fmla_list φ) ∩ set nsφ' = {}"
by (auto simp: nsφ'_def fv_fo_fmla_list_set)
have Un: "set (fv_fo_fmla_list φ) ∪ set nsφ' = set (fv_fo_fmla_list ψ)"
using fv_Un
by (auto simp: nsφ'_def fv_fo_fmla_list_set)
note proj = proj_tuple_correct[OF sorted_distinct_fv_list sd_nsφ' sorted_distinct_fv_list
disj Un Xφ_def ad_agr_φ, simplified]
have "fo_nmlz AD ` Xφ = Xφ"
using fo_nmlz_idem[OF fo_nmlz_sound]
by (auto simp: Xφ_def image_iff)
then have aux: "ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' Xφ = fo_nmlz AD ` ⋃(ext_tuple AD (fv_fo_fmla_list φ) nsφ' ` Xφ)"
by (auto simp: ext_tuple_set_def ext_tuple_def)
show "Z ∩ ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' Xφ =
{xs ∈ Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs)) ∈ Xφ}"
using Z_props proj
by (auto simp: aux)
show "Z - ext_tuple_set AD (fv_fo_fmla_list φ) nsφ' Xφ =
{xs ∈ Z. fo_nmlz AD (proj_tuple (fv_fo_fmla_list φ) (zip (fv_fo_fmla_list ψ) xs)) ∉ Xφ}"
using Z_props proj
by (auto simp: aux)
qed
lemma fo_nmlz_proj_sub: "fo_nmlz AD ` proj_fmla φ R ⊆ nall_tuples AD (nfv φ)"
by (auto simp: proj_fmla_map fo_nmlz_length fo_nmlz_sound nfv_def
intro: nall_tuplesI)
lemma fin_ad_agr_list_iff:
fixes AD :: "('a :: infinite) set"
assumes "finite AD" "⋀vs. vs ∈ Z ⟹ length vs = n"
"Z = {ts. ∃ts' ∈ X. ad_agr_list AD (map Inl ts) ts'}"
shows "finite Z ⟷ ⋃(set ` Z) ⊆ AD"
proof (rule iffI, rule ccontr)
assume fin: "finite Z"
assume "¬⋃(set ` Z) ⊆ AD"
then obtain σ i vs where σ_def: "map σ [0..<n] ∈ Z" "i < n" "σ i ∉ AD" "vs ∈ X"
"ad_agr_list AD (map (Inl ∘ σ) [0..<n]) vs"
using assms(2)
by (auto simp: assms(3) in_set_conv_nth) (metis map_map map_nth)
define Y where "Y ≡ AD ∪ σ ` {0..<n}"
have inf_UNIV_Y: "infinite (UNIV - Y)"
using assms(1)
by (auto simp: Y_def infinite_UNIV)
have "⋀y. y ∉ Y ⟹ map ((λz. if z = σ i then y else z) ∘ σ) [0..<n] ∈ Z"
using σ_def(3)
by (auto simp: assms(3) intro!: bexI[OF _ σ_def(4)] ad_agr_list_trans[OF _ σ_def(5)])
(auto simp: ad_agr_list_def ad_equiv_list_def set_zip Y_def ad_equiv_pair.simps
sp_equiv_list_def pairwise_def split: if_splits)
then have "(λx'. map ((λz. if z = σ i then x' else z) ∘ σ) [0..<n]) `
(UNIV - Y) ⊆ Z"
by auto
moreover have "inj (λx'. map ((λz. if z = σ i then x' else z) ∘ σ) [0..<n])"
using σ_def(2)
by (auto simp: inj_def)
ultimately show "False"
using inf_UNIV_Y fin
by (meson inj_on_diff inj_on_finite)
next
assume "⋃(set ` Z) ⊆ AD"
then have "Z ⊆ all_tuples AD n"
using assms(2)
by (auto intro: all_tuplesI)
then show "finite Z"
using all_tuples_finite[OF assms(1)] finite_subset
by auto
qed
lemma proj_out_list:
fixes AD :: "('a :: infinite) set"
and σ :: "nat ⇒ 'a + nat"
and ns :: "nat list"
assumes "finite AD"
shows "∃τ. ad_agr_list AD (map σ ns) (map (Inl ∘ τ) ns) ∧
(∀j x. j ∈ set ns ⟶ σ j = Inl x ⟶ τ j = x)"
proof -
have fin: "finite (AD ∪ Inl -` set (map σ ns))"
using assms(1) finite_Inl[OF finite_set]
by blast
obtain f where f_def: "inj (f :: nat ⇒ 'a)"
"range f ⊆ UNIV - (AD ∪ Inl -` set (map σ ns))"
using arb_countable_map[OF fin]
by auto
define τ where "τ = case_sum id f ∘ σ"
have f_out: "⋀i x. i < length ns ⟹ σ (ns ! i) = Inl (f x) ⟹ False"
using f_def(2)
by (auto simp: vimage_def)
(metis (no_types, lifting) DiffE UNIV_I UnCI imageI image_subset_iff mem_Collect_eq nth_mem)
have "(a, b) ∈ set (zip (map σ ns) (map (Inl ∘ τ) ns)) ⟹ ad_equiv_pair AD (a, b)" for a b
using f_def(2)
by (auto simp: set_zip τ_def ad_equiv_pair.simps split: sum.splits)+
moreover have "sp_equiv_list (map σ ns) (map (Inl ∘ τ) ns)"
using f_def(1) f_out
by (auto simp: sp_equiv_list_def pairwise_def set_zip τ_def inj_def split: sum.splits)+
ultimately have "ad_agr_list AD (map σ ns) (map (Inl ∘ τ) ns)"
by (auto simp: ad_agr_list_def ad_equiv_list_def)
then show ?thesis
by (auto simp: τ_def intro!: exI[of _ τ])
qed
lemma proj_out:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
and J :: "(('a, nat) fo_t, 'b) fo_intp"
assumes "wf_fo_intp φ I" "esat φ I σ UNIV"
shows "∃τ. esat φ I (Inl ∘ τ) UNIV ∧ (∀i x. i ∈ fv_fo_fmla φ ∧ σ i = Inl x ⟶ τ i = x) ∧
ad_agr_list (act_edom φ I) (map σ (fv_fo_fmla_list φ)) (map (Inl ∘ τ) (fv_fo_fmla_list φ))"
using proj_out_list[OF finite_act_edom[OF assms(1)], of σ "fv_fo_fmla_list φ"]
esat_UNIV_ad_agr_list[OF _ subset_refl] assms(2)
unfolding fv_fo_fmla_list_set
by fastforce
lemma proj_fmla_esat_sat:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
and J :: "(('a, nat) fo_t, 'b) fo_intp"
assumes wf: "wf_fo_intp φ I"
shows "proj_fmla φ {σ. esat φ I σ UNIV} ∩ map Inl ` UNIV =
map Inl ` proj_fmla φ {σ. sat φ I σ}"
unfolding sat_esat_conv[OF wf]
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ proj_fmla φ {σ. esat φ I σ UNIV} ∩ map Inl ` UNIV"
then obtain σ where σ_def: "vs = map σ (fv_fo_fmla_list φ)" "esat φ I σ UNIV"
"set vs ⊆ range Inl"
by (auto simp: proj_fmla_map) (metis image_subset_iff list.set_map range_eqI)
obtain τ where τ_def: "esat φ I (Inl ∘ τ) UNIV"
"⋀i x. i ∈ fv_fo_fmla φ ⟹ σ i = Inl x ⟹ τ i = x"
using proj_out[OF assms σ_def(2)]
by fastforce
have "vs = map (Inl ∘ τ) (fv_fo_fmla_list φ)"
using σ_def(1,3) τ_def(2)
by (auto simp: fv_fo_fmla_list_set)
then show "vs ∈ map Inl ` proj_fmla φ {σ. esat φ I (Inl ∘ σ) UNIV}"
using τ_def(1)
by (force simp: proj_fmla_map)
qed (auto simp: proj_fmla_map)
lemma norm_proj_fmla_esat_sat:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes "wf_fo_intp φ I"
shows "fo_nmlz (act_edom φ I) ` proj_fmla φ {σ. esat φ I σ UNIV} =
fo_nmlz (act_edom φ I) ` map Inl ` proj_fmla φ {σ. sat φ I σ}"
proof -
have "fo_nmlz (act_edom φ I) (map σ (fv_fo_fmla_list φ)) = fo_nmlz (act_edom φ I) x"
"x ∈ (λτ. map τ (fv_fo_fmla_list φ)) ` {σ. esat φ I σ UNIV} ∩ range (map Inl)"
if "esat φ I σ UNIV" "esat φ I (Inl ∘ τ) UNIV" "x = map (Inl ∘ τ) (fv_fo_fmla_list φ)"
"ad_agr_list (act_edom φ I) (map σ (fv_fo_fmla_list φ)) (map (Inl ∘ τ) (fv_fo_fmla_list φ))"
for σ τ x
using that
by (auto intro!: fo_nmlz_eqI) (metis map_map range_eqI)
then show ?thesis
unfolding proj_fmla_esat_sat[OF assms, symmetric]
using proj_out[OF assms]
by (fastforce simp: image_iff proj_fmla_map)
qed
lemma proj_sat_fmla: "proj_sat φ I = proj_fmla φ {σ. sat φ I σ}"
by (auto simp: proj_sat_def proj_fmla_map)
fun fo_wf :: "('a, 'b) fo_fmla ⇒ ('b × nat ⇒ 'a list set) ⇒ ('a, nat) fo_t ⇒ bool" where
"fo_wf φ I (AD, n, X) ⟷ finite AD ∧ finite X ∧ n = nfv φ ∧
wf_fo_intp φ I ∧ AD = act_edom φ I ∧ fo_rep (AD, n, X) = proj_sat φ I ∧
Inl -` ⋃(set ` X) ⊆ AD ∧ (∀vs ∈ X. fo_nmlzd AD vs ∧ length vs = n)"
fun fo_fin :: "('a, nat) fo_t ⇒ bool" where
"fo_fin (AD, n, X) ⟷ (∀x ∈ ⋃(set ` X). isl x)"
lemma fo_rep_fin:
assumes "fo_wf φ I (AD, n, X)" "fo_fin (AD, n, X)"
shows "fo_rep (AD, n, X) = map projl ` X"
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ fo_rep (AD, n, X)"
then obtain xs where xs_def: "xs ∈ X" "ad_agr_list AD (map Inl vs) xs"
by auto
obtain zs where zs_def: "xs = map Inl zs"
using xs_def(1) assms
by auto (meson ex_map_conv isl_def)
have "set zs ⊆ AD"
using assms(1) xs_def(1) zs_def
by (force simp: vimage_def)
then have vs_zs: "vs = zs"
using xs_def(2)
unfolding zs_def
by (fastforce simp: ad_agr_list_def ad_equiv_list_def set_zip ad_equiv_pair.simps
intro!: nth_equalityI)
show "vs ∈ map projl ` X"
using xs_def(1) zs_def
by (auto simp: image_iff comp_def vs_zs intro!: bexI[of _ "map Inl zs"])
next
fix vs
assume "vs ∈ map projl ` X"
then obtain xs where xs_def: "xs ∈ X" "vs = map projl xs"
by auto
have xs_map_Inl: "xs = map Inl vs"
using assms xs_def
by (auto simp: map_idI)
show "vs ∈ fo_rep (AD, n, X)"
using xs_def(1)
by (auto simp: xs_map_Inl intro!: bexI[of _ xs] ad_agr_list_refl)
qed
definition eval_abs :: "('a, 'b) fo_fmla ⇒ ('a table, 'b) fo_intp ⇒ ('a, nat) fo_t" where
"eval_abs φ I = (act_edom φ I, nfv φ, fo_nmlz (act_edom φ I) ` proj_fmla φ {σ. esat φ I σ UNIV})"
lemma map_projl_Inl: "map projl (map Inl xs) = xs"
by (metis (mono_tags, lifting) length_map nth_equalityI nth_map sum.sel(1))
lemma fo_rep_eval_abs:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes "wf_fo_intp φ I"
shows "fo_rep (eval_abs φ I) = proj_sat φ I"
proof -
obtain AD n X where AD_X_def: "eval_abs φ I = (AD, n, X)" "AD = act_edom φ I"
"n = nfv φ" "X = fo_nmlz (act_edom φ I) ` proj_fmla φ {σ. esat φ I σ UNIV}"
by (cases "eval_abs φ I") (auto simp: eval_abs_def)
have AD_sub: "act_edom φ I ⊆ AD"
by (auto simp: AD_X_def)
have X_def: "X = fo_nmlz AD ` map Inl ` proj_fmla φ {σ. sat φ I σ}"
using AD_X_def norm_proj_fmla_esat_sat[OF assms]
by auto
have "{ts. ∃ts' ∈ X. ad_agr_list AD (map Inl ts) ts'} = proj_fmla φ {σ. sat φ I σ}"
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ {ts. ∃ts' ∈ X. ad_agr_list AD (map Inl ts) ts'}"
then obtain vs' where vs'_def: "vs' ∈ proj_fmla φ {σ. sat φ I σ}"
"ad_agr_list AD (map Inl vs) (fo_nmlz AD (map Inl vs'))"
using X_def
by auto
have "length vs = length (fv_fo_fmla_list φ)"
using vs'_def
by (auto simp: proj_fmla_map ad_agr_list_def fo_nmlz_length)
then obtain σ where σ_def: "vs = map σ (fv_fo_fmla_list φ)"
using exists_map[of "fv_fo_fmla_list φ" vs] sorted_distinct_fv_list
by fastforce
obtain τ where τ_def: "fo_nmlz AD (map Inl vs') = map τ (fv_fo_fmla_list φ)"
using vs'_def fo_nmlz_map
by (fastforce simp: proj_fmla_map)
have ad_agr: "ad_agr_list AD (map (Inl ∘ σ) (fv_fo_fmla_list φ)) (map τ (fv_fo_fmla_list φ))"
by (metis σ_def τ_def map_map vs'_def(2))
obtain τ' where τ'_def: "map Inl vs' = map (Inl ∘ τ') (fv_fo_fmla_list φ)"
"sat φ I τ'"
using vs'_def(1)
by (fastforce simp: proj_fmla_map)
have ad_agr': "ad_agr_list AD (map τ (fv_fo_fmla_list φ))
(map (Inl ∘ τ') (fv_fo_fmla_list φ))"
by (rule ad_agr_list_comm) (metis fo_nmlz_ad_agr τ'_def(1) τ_def map_map map_projl_Inl)
have esat: "esat φ I τ UNIV"
using esat_UNIV_ad_agr_list[OF ad_agr' AD_sub, folded sat_esat_conv[OF assms]] τ'_def(2)
by auto
show "vs ∈ proj_fmla φ {σ. sat φ I σ}"
using esat_UNIV_ad_agr_list[OF ad_agr AD_sub, folded sat_esat_conv[OF assms]] esat
unfolding σ_def
by (auto simp: proj_fmla_map)
next
fix vs
assume "vs ∈ proj_fmla φ {σ. sat φ I σ}"
then have vs_X: "fo_nmlz AD (map Inl vs) ∈ X"
using X_def
by auto
then show "vs ∈ {ts. ∃ts' ∈ X. ad_agr_list AD (map Inl ts) ts'}"
using fo_nmlz_ad_agr
by auto
qed
then show ?thesis
by (auto simp: AD_X_def proj_sat_fmla)
qed
lemma fo_wf_eval_abs:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes "wf_fo_intp φ I"
shows "fo_wf φ I (eval_abs φ I)"
using fo_nmlz_set[of "act_edom φ I"] finite_act_edom[OF assms(1)]
finite_subset[OF fo_nmlz_proj_sub, OF nall_tuples_finite]
fo_rep_eval_abs[OF assms] assms
by (auto simp: eval_abs_def fo_nmlz_sound fo_nmlz_length nfv_def proj_sat_def proj_fmla_map) blast
lemma fo_fin:
fixes t :: "('a :: infinite, nat) fo_t"
assumes "fo_wf φ I t"
shows "fo_fin t = finite (fo_rep t)"
proof -
obtain AD n X where t_def: "t = (AD, n, X)"
using assms
by (cases t) auto
have fin: "finite AD" "finite X"
using assms
by (auto simp: t_def)
have len_in_X: "⋀vs. vs ∈ X ⟹ length vs = n"
using assms
by (auto simp: t_def)
have Inl_X_AD: "⋀x. Inl x ∈ ⋃(set ` X) ⟹ x ∈ AD"
using assms
by (fastforce simp: t_def)
define Z where "Z = {ts. ∃ts' ∈ X. ad_agr_list AD (map Inl ts) ts'}"
have fin_Z_iff: "finite Z = (⋃(set ` Z) ⊆ AD)"
using assms fin_ad_agr_list_iff[OF fin(1) _ Z_def, of n]
by (auto simp: Z_def t_def ad_agr_list_def)
moreover have "(⋃(set ` Z) ⊆ AD) ⟷ (∀x ∈ ⋃(set ` X). isl x)"
proof (rule iffI, rule ccontr)
fix x
assume Z_sub_AD: "⋃(set ` Z) ⊆ AD"
assume "¬(∀x ∈ ⋃(set ` X). isl x)"
then obtain vs i m where vs_def: "vs ∈ X" "i < n" "vs ! i = Inr m"
using len_in_X
by (auto simp: in_set_conv_nth) (metis sum.collapse(2))
obtain σ where σ_def: "vs = map σ [0..<n]"
using exists_map[of "[0..<n]" vs] len_in_X[OF vs_def(1)]
by auto
obtain τ where τ_def: "ad_agr_list AD vs (map Inl (map τ [0..<n]))"
using proj_out_list[OF fin(1), of σ "[0..<n]"]
by (auto simp: σ_def)
have map_τ_in_Z: "map τ [0..<n] ∈ Z"
using vs_def(1) ad_agr_list_comm[OF τ_def]
by (auto simp: Z_def)
moreover have "τ i ∉ AD"
using τ_def vs_def(2,3)
apply (auto simp: ad_agr_list_def ad_equiv_list_def set_zip comp_def σ_def)
unfolding ad_equiv_pair.simps
by (metis (no_types, lifting) Inl_Inr_False diff_zero image_iff length_upt nth_map nth_upt
plus_nat.add_0)
ultimately show "False"
using vs_def(2) Z_sub_AD
by fastforce
next
assume "∀x ∈ ⋃(set ` X). isl x"
then show "⋃(set ` Z) ⊆ AD"
using Inl_X_AD
apply (auto simp: Z_def ad_agr_list_def ad_equiv_list_def set_zip in_set_conv_nth)
unfolding ad_equiv_pair.simps
by (metis image_eqI isl_def nth_map nth_mem)
qed
ultimately show ?thesis
by (auto simp: t_def Z_def[symmetric])
qed
lemma eval_pred:
fixes I :: "'b × nat ⇒ 'a :: infinite list set"
assumes "finite (I (r, length ts))"
shows "fo_wf (Pred r ts) I (eval_pred ts (I (r, length ts)))"
proof -
define φ where "φ = Pred r ts"
have nfv_len: "nfv φ = length (fv_fo_terms_list ts)"
by (auto simp: φ_def nfv_def fv_fo_fmla_list_def fv_fo_fmla_list_Pred)
have vimage_unfold: "Inl -` (⋃x∈I (r, length ts). Inl ` set x) = ⋃(set ` I (r, length ts))"
by auto
have "eval_table ts (map Inl ` I (r, length ts)) ⊆ nall_tuples (act_edom φ I) (nfv φ)"
by (auto simp: φ_def proj_vals_def eval_table nfv_len[unfolded φ_def]
fo_nmlz_length fo_nmlz_sound eval_eterms_def fv_fo_terms_set_list fv_fo_terms_set_def
vimage_unfold intro!: nall_tuplesI fo_nmlzd_all_AD dest!: fv_fo_term_setD)
(smt UN_I Un_iff eval_eterm.simps(2) imageE image_eqI list.set_map)
then have eval: "eval_pred ts (I (r, length ts)) = eval_abs φ I"
by (force simp: eval_abs_def φ_def proj_fmla_def eval_pred_def eval_table fv_fo_fmla_list_def
fv_fo_fmla_list_Pred nall_tuples_set fo_nmlz_idem nfv_len[unfolded φ_def])
have fin: "wf_fo_intp (Pred r ts) I"
using assms
by auto
show ?thesis
using fo_wf_eval_abs[OF fin]
by (auto simp: eval φ_def)
qed
lemma ad_agr_list_eval: "⋃(set (map set_fo_term ts)) ⊆ AD ⟹ ad_agr_list AD (σ ⊙e ts) zs ⟹
∃τ. zs = τ ⊙e ts"
proof (induction ts arbitrary: zs)
case (Cons t ts)
obtain w ws where zs_split: "zs = w # ws"
using Cons(3)
by (cases zs) (auto simp: ad_agr_list_def eval_eterms_def)
obtain τ where τ_def: "ws = τ ⊙e ts"
using Cons
by (fastforce simp: zs_split ad_agr_list_def ad_equiv_list_def sp_equiv_list_def pairwise_def
eval_eterms_def)
show ?case
proof (cases t)
case (Const c)
then show ?thesis
using Cons(3)[unfolded zs_split] Cons(2)
unfolding Const
apply (auto simp: zs_split eval_eterms_def τ_def ad_agr_list_def ad_equiv_list_def)
unfolding ad_equiv_pair.simps
by blast
next
case (Var n)
show ?thesis
proof (cases "n ∈ fv_fo_terms_set ts")
case True
obtain i where i_def: "i < length ts" "ts ! i = Var n"
using True
by (auto simp: fv_fo_terms_set_def in_set_conv_nth dest!: fv_fo_term_setD)
have "w = τ n"
using Cons(3)[unfolded zs_split τ_def] i_def
using pairwiseD[of sp_equiv_pair _ "(σ n, w)" "(σ ⋅e (ts ! i), τ ⋅e (ts ! i))"]
by (force simp: Var eval_eterms_def ad_agr_list_def sp_equiv_list_def set_zip)
then show ?thesis
by (auto simp: Var zs_split eval_eterms_def τ_def)
next
case False
then have "ws = (τ(n := w)) ⊙e ts"
using eval_eterms_cong[of ts τ "τ(n := w)"] τ_def
by fastforce
then show ?thesis
by (auto simp: zs_split eval_eterms_def Var fun_upd_def intro: exI[of _ "τ(n := w)"])
qed
qed
qed (auto simp: ad_agr_list_def eval_eterms_def)
lemma sp_equiv_list_fv_list:
assumes "sp_equiv_list (σ ⊙e ts) (τ ⊙e ts)"
shows "sp_equiv_list (map σ (fv_fo_terms_list ts)) (map τ (fv_fo_terms_list ts))"
proof -
have "sp_equiv_list (σ ⊙e (map Var (fv_fo_terms_list ts)))
(τ ⊙e (map Var (fv_fo_terms_list ts)))"
unfolding eval_eterms_def
by (rule sp_equiv_list_subset[OF _ assms[unfolded eval_eterms_def]])
(auto simp: fv_fo_terms_set_list dest: fv_fo_terms_setD)
then show ?thesis
by (auto simp: eval_eterms_def comp_def)
qed
lemma ad_agr_list_fv_list: "ad_agr_list X (σ ⊙e ts) (τ ⊙e ts) ⟹
ad_agr_list X (map σ (fv_fo_terms_list ts)) (map τ (fv_fo_terms_list ts))"
using sp_equiv_list_fv_list
by (auto simp: eval_eterms_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def set_zip)
(metis (no_types, opaque_lifting) eval_eterm.simps(2) fv_fo_terms_setD fv_fo_terms_set_list
in_set_conv_nth nth_map)
lemma eval_bool: "fo_wf (Bool b) I (eval_bool b)"
by (auto simp: eval_bool_def fo_nmlzd_def nats_def Let_def List.map_filter_simps
proj_sat_def fv_fo_fmla_list_def ad_agr_list_def ad_equiv_list_def sp_equiv_list_def nfv_def)
lemma eval_eq: fixes I :: "'b × nat ⇒ 'a :: infinite list set"
shows "fo_wf (Eqa t t') I (eval_eq t t')"
proof -
define φ :: "('a, 'b) fo_fmla" where "φ = Eqa t t'"
obtain AD n X where AD_X_def: "eval_eq t t' = (AD, n, X)"
by (cases "eval_eq t t'") auto
have AD_def: "AD = act_edom φ I"
using AD_X_def
by (auto simp: eval_eq_def φ_def split: fo_term.splits if_splits)
have n_def: "n = nfv φ"
using AD_X_def
by (cases t; cases t')
(auto simp: φ_def fv_fo_fmla_list_def eval_eq_def nfv_def split: if_splits)
have fo_nmlz_empty_x_x: "fo_nmlz {} [x, x] = [Inr 0, Inr 0]" for x :: "'a + nat"
by (cases x) (auto simp: fo_nmlz_def)
have Inr_0_in_fo_nmlz_empty: "[Inr 0, Inr 0] ∈ fo_nmlz {} ` (λx. [x n', x n']) ` {σ :: nat ⇒ 'a + nat. σ n = σ n'}" for n n'
by (auto simp: image_def fo_nmlz_empty_x_x intro!: exI[of _ "[Inr 0, Inr 0]"])
have X_def: "X = fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
proof (rule set_eqI, rule iffI)
fix vs
assume assm: "vs ∈ X"
define pes where "pes = proj_fmla φ {σ. esat φ I σ UNIV}"
have "⋀c c'. t = Const c ∧ t' = Const c' ⟹
fo_nmlz AD ` pes = (if c = c' then {[]} else {})"
by (auto simp: φ_def pes_def proj_fmla_map fo_nmlz_def fv_fo_fmla_list_def)
moreover have "⋀c n. (t = Const c ∧ t' = Var n) ∨ (t' = Const c ∧ t = Var n) ⟹
fo_nmlz AD ` pes = {[Inl c]}"
by (auto simp: φ_def AD_def pes_def proj_fmla_map fo_nmlz_Cons fv_fo_fmla_list_def image_def
split: sum.splits) (auto simp: fo_nmlz_def)
moreover have "⋀n. t = Var n ⟹ t' = Var n ⟹ fo_nmlz AD ` pes = {[Inr 0]}"
by (auto simp: φ_def AD_def pes_def proj_fmla_map fo_nmlz_Cons fv_fo_fmla_list_def image_def
split: sum.splits)
moreover have "⋀n n'. t = Var n ⟹ t' = Var n' ⟹ n ≠ n' ⟹
fo_nmlz AD ` pes = {[Inr 0, Inr 0]}"
using Inr_0_in_fo_nmlz_empty
by (auto simp: φ_def AD_def pes_def proj_fmla_map fo_nmlz_Cons fv_fo_fmla_list_def fo_nmlz_empty_x_x
split: sum.splits)
ultimately show "vs ∈ fo_nmlz AD ` pes"
using assm AD_X_def
by (cases t; cases t') (auto simp: eval_eq_def split: if_splits)
next
fix vs
assume assm: "vs ∈ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
"esat (Eqa t t') I σ UNIV"
using assm
by (auto simp: φ_def fv_fo_fmla_list_def proj_fmla_map)
show "vs ∈ X"
using σ_def AD_X_def
by (cases t; cases t')
(auto simp: φ_def eval_eq_def fv_fo_fmla_list_def fo_nmlz_Cons fo_nmlz_Cons_Cons
split: sum.splits)
qed
have eval: "eval_eq t t' = eval_abs φ I"
using X_def[unfolded AD_def]
by (auto simp: eval_abs_def AD_X_def AD_def n_def)
have fin: "wf_fo_intp φ I"
by (auto simp: φ_def)
show ?thesis
using fo_wf_eval_abs[OF fin]
by (auto simp: eval φ_def)
qed
lemma fv_fo_terms_list_Var: "fv_fo_terms_list_rec (map Var ns) = ns"
by (induction ns) auto
lemma eval_eterms_map_Var: "σ ⊙e map Var ns = map σ ns"
by (auto simp: eval_eterms_def)
lemma fo_wf_eval_table:
fixes AD :: "'a set"
assumes "fo_wf φ I (AD, n, X)"
shows "X = fo_nmlz AD ` eval_table (map Var [0..<n]) X"
proof -
have AD_sup: "Inl -` ⋃(set ` X) ⊆ AD"
using assms
by fastforce
have fvs: "fv_fo_terms_list (map Var [0..<n]) = [0..<n]"
by (auto simp: fv_fo_terms_list_def fv_fo_terms_list_Var remdups_adj_distinct)
have "⋀vs. vs ∈ X ⟹ length vs = n"
using assms
by auto
then have X_map: "⋀vs. vs ∈ X ⟹ ∃σ. vs = map σ [0..<n]"
using exists_map[of "[0..<n]"]
by auto
then have proj_vals_X: "proj_vals {σ. σ ⊙e map Var [0..<n] ∈ X} [0..<n] = X"
by (auto simp: eval_eterms_map_Var proj_vals_def)
then show "X = fo_nmlz AD ` eval_table (map Var [0..<n]) X"
unfolding eval_table fvs proj_vals_X
using assms fo_nmlz_idem image_iff
by fastforce
qed
lemma fo_rep_norm:
fixes AD :: "('a :: infinite) set"
assumes "fo_wf φ I (AD, n, X)"
shows "X = fo_nmlz AD ` map Inl ` fo_rep (AD, n, X)"
proof (rule set_eqI, rule iffI)
fix vs
assume vs_in: "vs ∈ X"
have fin_AD: "finite AD"
using assms(1)
by auto
have len_vs: "length vs = n"
using vs_in assms(1)
by auto
obtain τ where τ_def: "ad_agr_list AD vs (map Inl (map τ [0..<n]))"
using proj_out_list[OF fin_AD, of "(!) vs" "[0..<length vs]", unfolded map_nth]
by (auto simp: len_vs)
have map_τ_in: "map τ [0..<n] ∈ fo_rep (AD, n, X)"
using vs_in ad_agr_list_comm[OF τ_def]
by auto
have "vs = fo_nmlz AD (map Inl (map τ [0..<n]))"
using fo_nmlz_eqI[OF τ_def] fo_nmlz_idem vs_in assms(1)
by fastforce
then show "vs ∈ fo_nmlz AD ` map Inl ` fo_rep (AD, n, X)"
using map_τ_in
by blast
next
fix vs
assume "vs ∈ fo_nmlz AD ` map Inl ` fo_rep (AD, n, X)"
then obtain xs xs' where vs_def: "xs' ∈ X" "ad_agr_list AD (map Inl xs) xs'"
"vs = fo_nmlz AD (map Inl xs)"
by auto
then have "vs = fo_nmlz AD xs'"
using fo_nmlz_eqI[OF vs_def(2)]
by auto
then have "vs = xs'"
using vs_def(1) assms(1) fo_nmlz_idem
by fastforce
then show "vs ∈ X"
using vs_def(1)
by auto
qed
lemma fo_wf_X:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I (AD, n, X)"
shows "X = fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
proof -
have fin: "wf_fo_intp φ I"
using wf
by auto
have AD_def: "AD = act_edom φ I"
using wf
by auto
have fo_wf: "fo_wf φ I (AD, n, X)"
using wf
by auto
have fo_rep: "fo_rep (AD, n, X) = proj_fmla φ {σ. sat φ I σ}"
using wf
by (auto simp: proj_sat_def proj_fmla_map)
show ?thesis
using fo_rep_norm[OF fo_wf] norm_proj_fmla_esat_sat[OF fin]
unfolding fo_rep AD_def[symmetric]
by auto
qed
lemma eval_neg:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I t"
shows "fo_wf (Neg φ) I (eval_neg (fv_fo_fmla_list φ) t)"
proof -
obtain AD n X where t_def: "t = (AD, n, X)"
by (cases t) auto
have eval_neg: "eval_neg (fv_fo_fmla_list φ) t = (AD, nfv φ, nall_tuples AD (nfv φ) - X)"
by (auto simp: t_def nfv_def)
have fv_unfold: "fv_fo_fmla_list (Neg φ) = fv_fo_fmla_list φ"
by (auto simp: fv_fo_fmla_list_def)
then have nfv_unfold: "nfv (Neg φ) = nfv φ"
by (auto simp: nfv_def)
have AD_def: "AD = act_edom (Neg φ) I"
using wf
by (auto simp: t_def)
note X_def = fo_wf_X[OF wf[unfolded t_def]]
have esat_iff: "⋀vs. vs ∈ nall_tuples AD (nfv φ) ⟹
vs ∈ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV} ⟷
vs ∉ fo_nmlz AD ` proj_fmla φ {σ. esat (Neg φ) I σ UNIV}"
proof (rule iffI; rule ccontr)
fix vs
assume "vs ∈ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
then obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
"esat φ I σ UNIV"
by (auto simp: proj_fmla_map)
assume "¬vs ∉ fo_nmlz AD ` proj_fmla φ {σ. esat (Neg φ) I σ UNIV}"
then obtain σ' where σ'_def: "vs = fo_nmlz AD (map σ' (fv_fo_fmla_list φ))"
"esat (Neg φ) I σ' UNIV"
by (auto simp: proj_fmla_map)
have "esat φ I σ UNIV = esat φ I σ' UNIV"
using esat_UNIV_cong[OF ad_agr_sets_restrict[OF iffD2[OF ad_agr_list_link],
OF fo_nmlz_eqD[OF trans[OF σ_def(1)[symmetric] σ'_def(1)]]]]
by (auto simp: AD_def)
then show "False"
using σ_def(2) σ'_def(2) by simp
next
fix vs
assume assms: "vs ∉ fo_nmlz AD ` proj_fmla φ {σ. esat (Neg φ) I σ UNIV}"
"vs ∉ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
assume "vs ∈ nall_tuples AD (nfv φ)"
then have l_vs: "length vs = length (fv_fo_fmla_list φ)" "fo_nmlzd AD vs"
by (auto simp: nfv_def dest: nall_tuplesD)
obtain σ where "vs = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
using l_vs sorted_distinct_fv_list exists_fo_nmlzd by metis
with assms show "False"
by (auto simp: proj_fmla_map)
qed
moreover have "⋀R. fo_nmlz AD ` proj_fmla φ R ⊆ nall_tuples AD (nfv φ)"
by (auto simp: proj_fmla_map nfv_def nall_tuplesI fo_nmlz_length fo_nmlz_sound)
ultimately have eval: "eval_neg (fv_fo_fmla_list φ) t = eval_abs (Neg φ) I"
unfolding eval_neg eval_abs_def AD_def[symmetric]
by (auto simp: X_def proj_fmla_def fv_unfold nfv_unfold image_subset_iff)
have wf_neg: "wf_fo_intp (Neg φ) I"
using wf
by (auto simp: t_def)
show ?thesis
using fo_wf_eval_abs[OF wf_neg]
by (auto simp: eval)
qed
definition "cross_with f t t' = ⋃((λxs. ⋃(f xs ` t')) ` t)"
lemma mapping_join_cross_with:
assumes "⋀x x'. x ∈ t ⟹ x' ∈ t' ⟹ h x ≠ h' x' ⟹ f x x' = {}"
shows "set_of_idx (mapping_join (cross_with f) (cluster (Some ∘ h) t) (cluster (Some ∘ h') t')) = cross_with f t t'"
proof -
have sub: "cross_with f {y ∈ t. h y = h x} {y ∈ t'. h' y = h x} ⊆ cross_with f t t'" for t t' x
by (auto simp: cross_with_def)
have "∃a. a ∈ h ` t ∧ a ∈ h' ` t' ∧ z ∈ cross_with f {y ∈ t. h y = a} {y ∈ t'. h' y = a}" if z: "z ∈ cross_with f t t'" for z
proof -
obtain xs ys where wit: "xs ∈ t" "ys ∈ t'" "z ∈ f xs ys"
using z
by (auto simp: cross_with_def)
have h: "h xs = h' ys"
using assms(1)[OF wit(1-2)] wit(3)
by auto
have hys: "h' ys ∈ h ` t"
using wit(1)
by (auto simp: h[symmetric])
show ?thesis
apply (rule exI[of _ "h xs"])
using wit hys h
by (auto simp: cross_with_def)
qed
then show ?thesis
using sub
apply (transfer fixing: f h h')
apply (auto simp: ran_def)
apply fastforce+
done
qed
lemma fo_nmlzd_mono_sub: "X ⊆ X' ⟹ fo_nmlzd X xs ⟹ fo_nmlzd X' xs"
by (meson fo_nmlzd_def order_trans)
lemma idx_join:
assumes Xφ_props: "⋀vs. vs ∈ Xφ ⟹ fo_nmlzd AD vs ∧ length vs = length nsφ"
assumes Xψ_props: "⋀vs. vs ∈ Xψ ⟹ fo_nmlzd AD vs ∧ length vs = length nsψ"
assumes sd_ns: "sorted_distinct nsφ" "sorted_distinct nsψ"
assumes ns_def: "ns = filter (λn. n ∈ set nsψ) nsφ"
shows "idx_join AD ns nsφ Xφ nsψ Xψ = eval_conj_set AD nsφ Xφ nsψ Xψ"
proof -
have ect_empty: "x ∈ Xφ ⟹ x' ∈ Xψ ⟹ fo_nmlz AD (proj_tuple ns (zip nsφ x)) ≠ fo_nmlz AD (proj_tuple ns (zip nsψ x')) ⟹
eval_conj_tuple AD nsφ nsψ x x' = {}"
if "Xφ' ⊆ Xφ" "Xψ' ⊆ Xψ" for Xφ' Xψ' and x x'
apply (rule eval_conj_tuple_empty[where ?ns="filter (λn. n ∈ set nsψ) nsφ"])
using Xφ_props Xψ_props that sd_ns
by (auto simp: ns_def ad_agr_close_set_def split: if_splits)
have cross_eval_conj_tuple: "(λXφ''. eval_conj_set AD nsφ Xφ'' nsψ) = cross_with (eval_conj_tuple AD nsφ nsψ)" for AD :: "'a set" and nsφ nsψ
by (rule ext)+ (auto simp: eval_conj_set_def cross_with_def)
have "idx_join AD ns nsφ Xφ nsψ Xψ = cross_with (eval_conj_tuple AD nsφ nsψ) Xφ Xψ"
unfolding idx_join_def Let_def cross_eval_conj_tuple
by (rule mapping_join_cross_with[OF ect_empty]) auto
moreover have "… = eval_conj_set AD nsφ Xφ nsψ Xψ"
by (auto simp: cross_with_def eval_conj_set_def)
finally show ?thesis .
qed
lemma proj_fmla_conj_sub:
assumes AD_sub: "act_edom ψ I ⊆ AD"
shows "fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat φ I σ UNIV} ∩
fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat ψ I σ UNIV} ⊆
fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat (Conj φ ψ) I σ UNIV}"
proof (rule subsetI)
fix vs
assume "vs ∈ fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat φ I σ UNIV} ∩
fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat ψ I σ UNIV}"
then obtain σ σ' where σ_def:
"σ ∈ {σ. esat φ I σ UNIV}" "vs = fo_nmlz AD (map σ (fv_fo_fmla_list (Conj φ ψ)))"
"σ' ∈ {σ. esat ψ I σ UNIV}" "vs = fo_nmlz AD (map σ' (fv_fo_fmla_list (Conj φ ψ)))"
unfolding proj_fmla_map
by blast
have ad_sub: "act_edom ψ I ⊆ AD"
using assms(1)
by auto
have ad_agr: "ad_agr_list AD (map σ (fv_fo_fmla_list ψ)) (map σ' (fv_fo_fmla_list ψ))"
by (rule ad_agr_list_subset[OF _ fo_nmlz_eqD[OF trans[OF σ_def(2)[symmetric] σ_def(4)]]])
(auto simp: fv_fo_fmla_list_set)
have "σ ∈ {σ. esat ψ I σ UNIV}"
using esat_UNIV_cong[OF ad_agr_sets_restrict[OF iffD2[OF ad_agr_list_link]],
OF ad_agr ad_sub] σ_def(3)
by blast
then show "vs ∈ fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat (Conj φ ψ) I σ UNIV}"
using σ_def(1,2)
by (auto simp: proj_fmla_map)
qed
lemma eval_conj:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I tφ" "fo_wf ψ I tψ"
shows "fo_wf (Conj φ ψ) I (eval_conj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ)"
proof -
obtain ADφ nφ Xφ ADψ nψ Xψ where ts_def:
"tφ = (ADφ, nφ, Xφ)" "tψ = (ADψ, nψ, Xψ)"
"ADφ = act_edom φ I" "ADψ = act_edom ψ I"
using assms
by (cases tφ, cases tψ) auto
have AD_sub: "act_edom φ I ⊆ ADφ" "act_edom ψ I ⊆ ADψ"
by (auto simp: ts_def(3,4))
obtain AD n X where AD_X_def:
"eval_conj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ = (AD, n, X)"
by (cases "eval_conj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ") auto
have AD_def: "AD = act_edom (Conj φ ψ) I" "act_edom (Conj φ ψ) I ⊆ AD"
"ADφ ⊆ AD" "ADψ ⊆ AD" "AD = ADφ ∪ ADψ"
using AD_X_def
by (auto simp: ts_def Let_def)
have n_def: "n = nfv (Conj φ ψ)"
using AD_X_def
by (auto simp: ts_def Let_def nfv_card fv_fo_fmla_list_set)
define Sφ where "Sφ ≡ {σ. esat φ I σ UNIV}"
define Sψ where "Sψ ≡ {σ. esat ψ I σ UNIV}"
define ADΔφ where "ADΔφ = AD - ADφ"
define ADΔψ where "ADΔψ = AD - ADψ"
define nsφ where "nsφ = fv_fo_fmla_list φ"
define nsψ where "nsψ = fv_fo_fmla_list ψ"
define ns where "ns = filter (λn. n ∈ fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
define nsφ' where "nsφ' = filter (λn. n ∉ fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
define nsψ' where "nsψ' = filter (λn. n ∉ fv_fo_fmla ψ) (fv_fo_fmla_list φ)"
note Xφ_def = fo_wf_X[OF wf(1)[unfolded ts_def(1)], unfolded proj_fmla_def, folded Sφ_def]
note Xψ_def = fo_wf_X[OF wf(2)[unfolded ts_def(2)], unfolded proj_fmla_def, folded Sψ_def]
have sd_ns: "sorted_distinct nsφ" "sorted_distinct nsψ"
by (auto simp: nsφ_def nsψ_def sorted_distinct_fv_list)
have ad_agr_Xφ: "ad_agr_close_set ADΔφ Xφ = fo_nmlz AD ` proj_vals Sφ nsφ"
unfolding Xφ_def ad_agr_close_set_nmlz_eq nsφ_def[symmetric] ADΔφ_def
apply (rule ad_agr_close_set_correct[OF AD_def(3) sd_ns(1)])
using AD_sub(1) esat_UNIV_ad_agr_list
by (fastforce simp: ad_agr_list_link Sφ_def nsφ_def)
have ad_agr_Xψ: "ad_agr_close_set ADΔψ Xψ = fo_nmlz AD ` proj_vals Sψ nsψ"
unfolding Xψ_def ad_agr_close_set_nmlz_eq nsψ_def[symmetric] ADΔψ_def
apply (rule ad_agr_close_set_correct[OF AD_def(4) sd_ns(2)])
using AD_sub(2) esat_UNIV_ad_agr_list
by (fastforce simp: ad_agr_list_link Sψ_def nsψ_def)
have idx_join_eval_conj: "idx_join AD (filter (λn. n ∈ set nsψ) nsφ) nsφ (ad_agr_close_set ADΔφ Xφ) nsψ (ad_agr_close_set ADΔψ Xψ) =
eval_conj_set AD nsφ (ad_agr_close_set ADΔφ Xφ) nsψ (ad_agr_close_set ADΔψ Xψ)"
apply (rule idx_join[OF _ _ sd_ns])
unfolding ad_agr_Xφ ad_agr_Xψ
by (auto simp: fo_nmlz_sound fo_nmlz_length proj_vals_def)
have fv_sub: "fv_fo_fmla (Conj φ ψ) = fv_fo_fmla φ ∪ set (fv_fo_fmla_list ψ)"
"fv_fo_fmla (Conj φ ψ) = fv_fo_fmla ψ ∪ set (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_set)
note res_left_alt = ext_tuple_ad_agr_close[OF Sφ_def AD_sub(1) AD_def(3)
Xφ_def(1)[folded Sφ_def] nsφ'_def sorted_distinct_fv_list fv_sub(1)]
note res_right_alt = ext_tuple_ad_agr_close[OF Sψ_def AD_sub(2) AD_def(4)
Xψ_def(1)[folded Sψ_def] nsψ'_def sorted_distinct_fv_list fv_sub(2)]
note eval_conj_set = eval_conj_set_correct[OF nsφ'_def[folded fv_fo_fmla_list_set]
nsψ'_def[folded fv_fo_fmla_list_set] res_left_alt(2) res_right_alt(2)
sorted_distinct_fv_list sorted_distinct_fv_list]
have "X = fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat φ I σ UNIV} ∩
fo_nmlz AD ` proj_fmla (Conj φ ψ) {σ. esat ψ I σ UNIV}"
using AD_X_def
apply (simp add: ts_def(1,2) Let_def ts_def(3,4)[symmetric] AD_def(5)[symmetric] idx_join_eval_conj[unfolded nsφ_def nsψ_def ADΔφ_def ADΔψ_def])
unfolding eval_conj_set proj_fmla_def
unfolding res_left_alt(1) res_right_alt(1) Sφ_def Sψ_def
by auto
then have eval: "eval_conj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ =
eval_abs (Conj φ ψ) I"
using proj_fmla_conj_sub[OF AD_def(4)[unfolded ts_def(4)], of φ]
unfolding AD_X_def AD_def(1)[symmetric] n_def eval_abs_def
by (auto simp: proj_fmla_map)
have wf_conj: "wf_fo_intp (Conj φ ψ) I"
using wf
by (auto simp: ts_def)
show ?thesis
using fo_wf_eval_abs[OF wf_conj]
by (auto simp: eval)
qed
lemma map_values_cluster: "(⋀w z Z. Z ⊆ X ⟹ z ∈ Z ⟹ w ∈ f (h z) {z} ⟹ w ∈ f (h z) Z) ⟹
(⋀w z Z. Z ⊆ X ⟹ z ∈ Z ⟹ w ∈ f (h z) Z ⟹ (∃z'∈Z. w ∈ f (h z) {z'})) ⟹
set_of_idx (Mapping.map_values f (cluster (Some ∘ h) X)) = ⋃((λx. f (h x) {x}) ` X)"
apply transfer
apply (auto simp: ran_def)
apply (smt (verit, del_insts) mem_Collect_eq subset_eq)
apply (smt (z3) imageI mem_Collect_eq subset_iff)
done
lemma fo_nmlz_twice:
assumes "sorted_distinct ns" "sorted_distinct ns'" "set ns ⊆ set ns'"
shows "fo_nmlz AD (proj_tuple ns (zip ns' (fo_nmlz AD (map σ ns')))) = fo_nmlz AD (map σ ns)"
proof -
obtain σ' where σ': "fo_nmlz AD (map σ ns') = map σ' ns'"
using exists_map[where ?ys="fo_nmlz AD (map σ ns')" and ?xs=ns'] assms
by (auto simp: fo_nmlz_length)
have proj: "proj_tuple ns (zip ns' (map σ' ns')) = map σ' ns"
by (rule proj_tuple_map[OF assms])
show ?thesis
unfolding σ' proj
apply (rule fo_nmlz_eqI)
using σ'
by (metis ad_agr_list_comm ad_agr_list_subset assms(3) fo_nmlz_ad_agr)
qed
lemma map_values_cong:
assumes "⋀x y. Mapping.lookup t x = Some y ⟹ f x y = f' x y"
shows "Mapping.map_values f t = Mapping.map_values f' t"
proof -
have "map_option (f x) (Mapping.lookup t x) = map_option (f' x) (Mapping.lookup t x)" for x
using assms
by (cases "Mapping.lookup t x") auto
then show ?thesis
by (auto simp: lookup_map_values intro!: mapping_eqI)
qed
lemma ad_agr_close_set_length: "z ∈ ad_agr_close_set AD X ⟹ (⋀x. x ∈ X ⟹ length x = n) ⟹ length z = n"
by (auto simp: ad_agr_close_set_def ad_agr_close_def split: if_splits dest: ad_agr_close_rec_length)
lemma ad_agr_close_set_sound: "z ∈ ad_agr_close_set (AD - AD') X ⟹ (⋀x. x ∈ X ⟹ fo_nmlzd AD' x) ⟹ AD' ⊆ AD ⟹ fo_nmlzd AD z"
using ad_agr_close_sound[where ?X=AD' and ?Y="AD - AD'"]
by (auto simp: ad_agr_close_set_def Set.is_empty_def split: if_splits) (metis Diff_partition Un_Diff_cancel)
lemma ext_tuple_set_length: "z ∈ ext_tuple_set AD ns ns' X ⟹ (⋀x. x ∈ X ⟹ length x = length ns) ⟹ length z = length ns + length ns'"
by (auto simp: ext_tuple_set_def ext_tuple_def fo_nmlz_length merge_length dest: nall_tuples_rec_length split: if_splits)
lemma eval_ajoin:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I tφ" "fo_wf ψ I tψ"
shows "fo_wf (Conj φ (Neg ψ)) I
(eval_ajoin (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ)"
proof -
obtain ADφ nφ Xφ ADψ nψ Xψ where ts_def:
"tφ = (ADφ, nφ, Xφ)" "tψ = (ADψ, nψ, Xψ)"
"ADφ = act_edom φ I" "ADψ = act_edom ψ I"
using assms
by (cases tφ, cases tψ) auto
have AD_sub: "act_edom φ I ⊆ ADφ" "act_edom ψ I ⊆ ADψ"
by (auto simp: ts_def(3,4))
obtain AD n X where AD_X_def:
"eval_ajoin (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ = (AD, n, X)"
by (cases "eval_ajoin (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ") auto
have AD_def: "AD = act_edom (Conj φ (Neg ψ)) I"
"act_edom (Conj φ (Neg ψ)) I ⊆ AD" "ADφ ⊆ AD" "ADψ ⊆ AD" "AD = ADφ ∪ ADψ"
using AD_X_def
by (auto simp: ts_def Let_def)
have n_def: "n = nfv (Conj φ (Neg ψ))"
using AD_X_def
by (auto simp: ts_def Let_def nfv_card fv_fo_fmla_list_set)
define Sφ where "Sφ ≡ {σ. esat φ I σ UNIV}"
define Sψ where "Sψ ≡ {σ. esat ψ I σ UNIV}"
define both where "both = remdups_adj (sort (fv_fo_fmla_list φ @ fv_fo_fmla_list ψ))"
define nsφ' where "nsφ' = filter (λn. n ∉ fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
define nsψ' where "nsψ' = filter (λn. n ∉ fv_fo_fmla ψ) (fv_fo_fmla_list φ)"
define ADΔφ where "ADΔφ = AD - ADφ"
define ADΔψ where "ADΔψ = AD - ADψ"
define nsφ where "nsφ = fv_fo_fmla_list φ"
define nsψ where "nsψ = fv_fo_fmla_list ψ"
define ns where "ns = filter (λn. n ∈ set nsψ) nsφ"
define Xφ' where "Xφ' = ext_tuple_set AD nsφ nsφ' (ad_agr_close_set ADΔφ Xφ)"
define idxφ where "idxφ = cluster (Some ∘ (λxs. fo_nmlz ADψ (proj_tuple ns (zip nsφ xs)))) (ad_agr_close_set ADΔφ Xφ)"
define idxψ where "idxψ = cluster (Some ∘ (λys. fo_nmlz ADψ (proj_tuple ns (zip nsψ ys)))) Xψ"
define res where "res = Mapping.map_values (λxs X. case Mapping.lookup idxψ xs of
Some Y ⇒ eval_conj_set AD nsφ X nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {xs} - Y))
| _ ⇒ ext_tuple_set AD nsφ nsφ' X) idxφ"
note Xφ_def = fo_wf_X[OF wf(1)[unfolded ts_def(1)], unfolded proj_fmla_def, folded Sφ_def]
note Xψ_def = fo_wf_X[OF wf(2)[unfolded ts_def(2)], unfolded proj_fmla_def, folded Sψ_def]
have fv_sub: "fv_fo_fmla (Conj φ (Neg ψ)) = fv_fo_fmla ψ ∪ set (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_set)
have fv_sort: "fv_fo_fmla_list (Conj φ (Neg ψ)) = both"
unfolding both_def
apply (rule sorted_distinct_set_unique)
using sorted_distinct_fv_list
by (auto simp: fv_fo_fmla_list_def distinct_remdups_adj_sort)
have AD_disj: "ADφ ∩ ADΔφ = {}" "ADψ ∩ ADΔψ = {}"
by (auto simp: ADΔφ_def ADΔψ_def)
have AD_delta: "AD = ADφ ∪ ADΔφ" "AD = ADψ ∪ ADΔψ"
by (auto simp: ADΔφ_def ADΔψ_def AD_def ts_def)
have fo_nmlzd_X: "Ball Xφ (fo_nmlzd ADφ)" "Ball Xψ (fo_nmlzd ADψ)"
using wf
by (auto simp: ts_def)
have Ball_ad_agr: "Ball (ad_agr_close_set ADΔφ Xφ) (fo_nmlzd AD)"
using ad_agr_close_sound[where ?X="ADφ" and ?Y="ADΔφ"] fo_nmlzd_X(1)
by (auto simp: ad_agr_close_set_eq[OF fo_nmlzd_X(1)] AD_disj AD_delta)
have ad_agr_φ:
"⋀σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) ADφ σ τ ⟹ σ ∈ Sφ ⟷ τ ∈ Sφ"
"⋀σ τ. ad_agr_sets (set (fv_fo_fmla_list φ)) (set (fv_fo_fmla_list φ)) AD σ τ ⟹ σ ∈ Sφ ⟷ τ ∈ Sφ"
using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono AD_sub(1) subset_trans[OF AD_sub(1) AD_def(3)]
unfolding Sφ_def
by blast+
have ad_agr_Sφ: "τ' ∈ Sφ ⟹ ad_agr_list ADφ (map τ' nsφ) (map τ'' nsφ) ⟹ τ'' ∈ Sφ" for τ' τ''
using ad_agr_φ
by (auto simp: ad_agr_list_link nsφ_def)
have ad_agr_ψ:
"⋀σ τ. ad_agr_sets (set (fv_fo_fmla_list ψ)) (set (fv_fo_fmla_list ψ)) ADψ σ τ ⟹ σ ∈ Sψ ⟷ τ ∈ Sψ"
using esat_UNIV_cong[OF ad_agr_sets_restrict, OF _ subset_refl] ad_agr_sets_mono[OF AD_sub(2)]
unfolding Sψ_def
by blast+
have ad_agr_Sψ: "τ' ∈ Sψ ⟹ ad_agr_list ADψ (map τ' nsψ) (map τ'' nsψ) ⟹ τ'' ∈ Sψ" for τ' τ''
using ad_agr_ψ
by (auto simp: ad_agr_list_link nsψ_def)
have aux: "sorted_distinct nsφ" "sorted_distinct nsφ'" "sorted_distinct both" "set nsφ ∩ set nsφ' = {}" "set nsφ ∪ set nsφ' = set both"
by (auto simp: nsφ_def nsφ'_def fv_sort[symmetric] fv_fo_fmla_list_set sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
have aux2: "nsφ' = filter (λn. n ∉ set nsφ) nsφ'" "nsφ = filter (λn. n ∉ set nsφ') nsφ"
by (auto simp: nsφ_def nsφ'_def nsψ_def nsψ'_def fv_fo_fmla_list_set)
have aux3: "set nsφ' ∩ set ns = {}" "set nsφ' ∪ set ns = set nsψ"
by (auto simp: nsφ_def nsφ'_def nsψ_def ns_def fv_fo_fmla_list_set)
have aux4: "set ns ∩ set nsφ' = {}" "set ns ∪ set nsφ' = set nsψ"
by (auto simp: nsφ_def nsφ'_def nsψ_def ns_def fv_fo_fmla_list_set)
have aux5: "nsφ' = filter (λn. n ∉ set nsφ) nsψ" "nsψ' = filter (λn. n ∉ set nsψ) nsφ"
by (auto simp: nsφ_def nsφ'_def nsψ_def nsψ'_def fv_fo_fmla_list_set)
have aux6: "set nsψ ∩ set nsψ' = {}" "set nsψ ∪ set nsψ' = set both"
by (auto simp: nsφ_def nsφ'_def nsψ_def nsψ'_def both_def fv_fo_fmla_list_set)
have ns_sd: "sorted_distinct ns" "sorted_distinct nsφ" "sorted_distinct nsψ" "set ns ⊆ set nsφ" "set ns ⊆ set nsψ" "set ns ⊆ set both" "set nsφ' ⊆ set nsψ" "set nsψ ⊆ set both"
by (auto simp: ns_def nsφ_def nsφ'_def nsψ_def both_def sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
have ns_sd': "sorted_distinct nsψ'"
by (auto simp: nsψ'_def sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
have ns: "ns = filter (λn. n ∈ fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
by (rule sorted_distinct_set_unique)
(auto simp: ns_def nsφ_def nsψ_def fv_fo_fmla_list_set sorted_distinct_fv_list intro: sorted_filter[where ?f=id, simplified])
have len_nsψ: "length ns + length nsφ' = length nsψ"
using sum_length_filter_compl[where ?P="λn. n ∈ fv_fo_fmla φ" and ?xs="fv_fo_fmla_list ψ"]
by (auto simp: ns nsφ_def nsφ'_def nsψ_def fv_fo_fmla_list_set)
have res_eq: "res = Mapping.map_values (λxs X. case Mapping.lookup idxψ xs of
Some Y ⇒ idx_join AD ns nsφ X nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {xs} - Y))
| _ ⇒ ext_tuple_set AD nsφ nsφ' X) idxφ"
proof -
have ad_agr_Xφ: "ad_agr_close_set ADΔφ Xφ = fo_nmlz AD ` proj_vals Sφ nsφ"
unfolding Xφ_def ad_agr_close_set_nmlz_eq nsφ_def[symmetric]
apply (rule ad_agr_close_set_correct[OF AD_def(3) aux(1), folded ADΔφ_def])
using ad_agr_Sφ ad_agr_list_comm
by (fastforce simp: ad_agr_list_link)
have idx_eval: "idx_join AD ns nsφ y nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2)) =
eval_conj_set AD nsφ y nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2))"
if lup: "Mapping.lookup idxφ x = Some y" "Mapping.lookup idxψ x = Some x2" for x y x2
proof -
have "vs ∈ y ⟹ fo_nmlzd AD vs ∧ length vs = length nsφ" for vs
using lup(1)
by (auto simp: idxφ_def lookup_cluster' ad_agr_Xφ fo_nmlz_sound fo_nmlz_length proj_vals_def split: if_splits)
moreover have "vs ∈ ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2) ⟹ fo_nmlzd AD vs" for vs
apply (rule ad_agr_close_set_sound[OF _ _ AD_def(4), folded ADΔψ_def, where ?X="ext_tuple_set ADψ ns nsφ' {x} - x2"])
using lup(1)
by (auto simp: idxφ_def lookup_cluster' ext_tuple_set_def fo_nmlz_sound split: if_splits)
moreover have "vs ∈ ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {x} - x2) ⟹ length vs = length nsψ" for vs
apply (erule ad_agr_close_set_length)
apply (rule ext_tuple_set_length[where ?AD=ADψ and ?ns=ns and ?ns'=nsφ' and ?X="{x}", unfolded len_nsψ])
using lup(1) ns_sd(1,2,4)
by (auto simp: idxφ_def lookup_cluster' fo_nmlz_length ad_agr_Xφ proj_vals_def intro!: proj_tuple_length split: if_splits)
ultimately show ?thesis
by (auto intro!: idx_join[OF _ _ ns_sd(2-3) ns_def])
qed
show ?thesis
unfolding res_def
by (rule map_values_cong) (auto simp: idx_eval split: option.splits)
qed
have eval_conj: "eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)) =
ext_tuple_set AD nsφ nsφ' {x} ∩ ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
if x_ns: "proj_tuple ns (zip nsφ x) = map σ' ns"
and x_proj_singleton: "{x} = fo_nmlz AD ` proj_vals {σ} nsφ"
and Some: "Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) = Some Y"
for x Y σ σ'
proof -
have "Y = {ys ∈ fo_nmlz ADψ ` proj_vals Sψ nsψ. fo_nmlz ADψ (proj_tuple ns (zip nsψ ys)) = fo_nmlz ADψ (map σ' ns)}"
using Some
apply (auto simp: Xψ_def idxψ_def nsψ_def x_ns lookup_cluster' split: if_splits)
done
moreover have "… = fo_nmlz ADψ ` proj_vals {σ ∈ Sψ. fo_nmlz ADψ (map σ ns) = fo_nmlz ADψ (map σ' ns)} nsψ"
by (auto simp: proj_vals_def fo_nmlz_twice[OF ns_sd(1,3,5)])+
moreover have "… = fo_nmlz ADψ ` proj_vals {σ ∈ Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
by (auto simp: fo_nmlz_eq)
ultimately have Y_def: "Y = fo_nmlz ADψ ` proj_vals {σ ∈ Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
by auto
have R_def: "{fo_nmlz ADψ (map σ' ns)} = fo_nmlz ADψ ` proj_vals {σ. ad_agr_list ADψ (map σ ns) (map σ' ns)} ns"
using ad_agr_list_refl
by (auto simp: proj_vals_def intro: fo_nmlz_eqI)
have "ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} = fo_nmlz ADψ ` proj_vals {σ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
apply (rule ext_tuple_correct[OF ns_sd(1) aux(2) ns_sd(3) aux4 R_def])
using ad_agr_list_trans ad_agr_list_comm
apply (auto simp: ad_agr_list_link)
by fast
then have "ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} - Y = fo_nmlz ADψ ` proj_vals {σ ∈ -Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
apply (auto simp: Y_def proj_vals_def fo_nmlz_eq)
using ad_agr_Sψ ad_agr_list_comm
by blast+
moreover have "ad_agr_close_set ADΔψ (fo_nmlz ADψ ` proj_vals {σ ∈ -Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) =
fo_nmlz AD ` proj_vals {σ ∈ -Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
unfolding ad_agr_close_set_eq[OF Ball_fo_nmlzd]
apply (rule ad_agr_close_set_correct[OF AD_def(4) ns_sd(3), folded ADΔψ_def])
apply (auto simp: ad_agr_list_link)
using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(5)] ad_agr_list_trans
by blast+
ultimately have comp_proj: "ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} - Y) =
fo_nmlz AD ` proj_vals {σ ∈ -Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ"
by simp
have "ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) = fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
apply (rule ext_tuple_correct[OF ns_sd(3) ns_sd'(1) aux(3) aux6 refl])
apply (auto simp: ad_agr_list_link)
using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(5)] ad_agr_list_trans ad_agr_list_mono[OF AD_def(4)]
by fast+
show "eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)) =
ext_tuple_set AD nsφ nsφ' {x} ∩ ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
unfolding x_ns comp_proj
using eval_conj_set_correct[OF aux5 x_proj_singleton refl aux(1) ns_sd(3)]
by auto
qed
have "X = set_of_idx res"
using AD_X_def
unfolding eval_ajoin.simps ts_def(1,2) Let_def AD_def(5)[symmetric] fv_fo_fmla_list_set
nsφ'_def[symmetric] fv_sort[symmetric] proj_fmla_def Sφ_def[symmetric] Sψ_def[symmetric]
ADΔφ_def[symmetric] ADΔψ_def[symmetric]
nsφ_def[symmetric] nsφ'_def[symmetric, folded fv_fo_fmla_list_set[of φ, folded nsφ_def] nsψ_def] nsψ_def[symmetric] ns_def[symmetric]
Xφ'_def[symmetric] idxφ_def[symmetric] idxψ_def[symmetric] res_eq[symmetric]
by auto
moreover have "… = (⋃x∈ad_agr_close_set ADΔφ Xφ.
case Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) of None ⇒ ext_tuple_set AD nsφ nsφ' {x}
| Some Y ⇒ eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)))"
unfolding res_def[unfolded idxφ_def]
apply (rule map_values_cluster)
apply (auto simp: eval_conj_set_def split: option.splits)
apply (auto simp: ext_tuple_set_def split: if_splits)
done
moreover have "… = fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat φ I σ UNIV} -
fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat ψ I σ UNIV}"
unfolding Sφ_def[symmetric] Sψ_def[symmetric] proj_fmla_def fv_sort
proof (rule set_eqI, rule iffI)
fix t
assume "t ∈ (⋃x∈ad_agr_close_set ADΔφ Xφ. case Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) of
None ⇒ ext_tuple_set AD nsφ nsφ' {x}
| Some Y ⇒ eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)))"
then obtain x where x: "x ∈ ad_agr_close_set ADΔφ Xφ"
"Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) = None ⟹ t ∈ ext_tuple_set AD nsφ nsφ' {x}"
"⋀Y. Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) = Some Y ⟹
t ∈ eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y))"
by (fastforce split: option.splits)
obtain σ where val: "σ ∈ Sφ" "x = fo_nmlz AD (map σ nsφ)"
using ad_agr_close_correct[OF AD_def(3) ad_agr_φ(1), folded ADΔφ_def] Xφ_def[folded proj_fmla_def] ad_agr_close_set_eq[OF fo_nmlzd_X(1)] x(1)
apply (auto simp: proj_fmla_def proj_vals_def nsφ_def)
apply fast
done
obtain σ' where σ': "x = map σ' nsφ"
using exists_map[where ?ys=x and ?xs=nsφ] aux(1)
by (auto simp: val(2) fo_nmlz_length)
have x_proj_singleton: "{x} = fo_nmlz AD ` proj_vals {σ} nsφ"
by (auto simp: val(2) proj_vals_def)
have x_ns: "proj_tuple ns (zip nsφ x) = map σ' ns"
unfolding σ'
by (rule proj_tuple_map[OF ns_sd(1-2,4)])
have ad_agr_σ_σ': "ad_agr_list AD (map σ nsφ) (map σ' nsφ)"
using σ'
by (auto simp: val(2)) (metis fo_nmlz_ad_agr)
have x_proj_ad_agr: "{x} = fo_nmlz AD ` proj_vals {σ. ad_agr_list AD (map σ nsφ) (map σ' nsφ)} nsφ"
using ad_agr_σ_σ' ad_agr_list_comm ad_agr_list_trans
by (auto simp: val(2) proj_vals_def fo_nmlz_eq) blast
have "t ∈ fo_nmlz AD ` ⋃ (ext_tuple AD nsφ nsφ' ` {x}) ⟹ fo_nmlz AD (proj_tuple nsφ (zip both t)) ∈ {x}"
apply (rule ext_tuple_sound(1)[OF aux x_proj_ad_agr])
apply (auto simp: ad_agr_list_link)
using ad_agr_list_comm ad_agr_list_trans
by blast+
then have x_proj: "t ∈ ext_tuple_set AD nsφ nsφ' {x} ⟹ x = fo_nmlz AD (proj_tuple nsφ (zip both t))"
using ext_tuple_set_eq[where ?AD=AD] Ball_ad_agr x(1)
by (auto simp: val(2) proj_vals_def)
have x_Sφ: "t ∈ ext_tuple_set AD nsφ nsφ' {x} ⟹ t ∈ fo_nmlz AD ` proj_vals Sφ both"
using ext_tuple_correct[OF aux refl ad_agr_φ(2)[folded nsφ_def]] ext_tuple_set_mono[of "{x}" "fo_nmlz AD ` proj_vals Sφ nsφ"] val(1)
by (fastforce simp: val(2) proj_vals_def)
show "t ∈ fo_nmlz AD ` proj_vals Sφ both - fo_nmlz AD ` proj_vals Sψ both"
proof (cases "Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x)))")
case None
have "False" if t_in_Sψ: "t ∈ fo_nmlz AD ` proj_vals Sψ both"
proof -
obtain τ where τ: "τ ∈ Sψ" "t = fo_nmlz AD (map τ both)"
using t_in_Sψ
by (auto simp: proj_vals_def)
obtain τ' where t_τ': "t = map τ' both"
using aux(3) exists_map[where ?ys=t and ?xs=both]
by (auto simp: τ(2) fo_nmlz_length)
obtain τ'' where τ'': "fo_nmlz ADψ (map τ nsψ) = map τ'' nsψ"
using ns_sd exists_map[where ?ys="fo_nmlz ADψ (map τ nsψ)" and xs=nsψ]
by (auto simp: fo_nmlz_length)
have proj_τ'': "proj_tuple ns (zip nsψ (map τ'' nsψ)) = map τ'' ns"
apply (rule proj_tuple_map)
using ns_sd
by auto
have "proj_tuple nsφ (zip both t) = map τ' nsφ"
unfolding t_τ'
apply (rule proj_tuple_map)
using aux
by auto
then have x_τ': "x = fo_nmlz AD (map τ' nsφ)"
by (auto simp: x_proj[OF x(2)[OF None]])
obtain τ''' where τ''': "x = map τ''' nsφ"
using aux exists_map[where ?ys=x and ?xs=nsφ]
by (auto simp: x_τ' fo_nmlz_length)
have ad_τ_τ': "ad_agr_list AD (map τ both) (map τ' both)"
using t_τ'
by (auto simp: τ) (metis fo_nmlz_ad_agr)
have ad_τ_τ'': "ad_agr_list ADψ (map τ nsψ) (map τ'' nsψ)"
using τ''
by (metis fo_nmlz_ad_agr)
have ad_τ'_τ''': "ad_agr_list AD (map τ' nsφ) (map τ''' nsφ)"
using τ'''
by (auto simp: x_τ') (metis fo_nmlz_ad_agr)
have proj_τ''': "proj_tuple ns (zip nsφ (map τ''' nsφ)) = map τ''' ns"
apply (rule proj_tuple_map)
using aux ns_sd
by auto
have "fo_nmlz ADψ (proj_tuple ns (zip nsφ x)) = fo_nmlz ADψ (proj_tuple ns (zip nsψ (fo_nmlz ADψ (map τ nsψ))))"
unfolding τ'' proj_τ'' τ''' proj_τ'''
apply (rule fo_nmlz_eqI)
using ad_agr_list_trans ad_agr_list_subset ns_sd(4-6) ad_agr_list_mono[OF AD_def(4)] ad_agr_list_comm[OF ad_τ'_τ'''] ad_agr_list_comm[OF ad_τ_τ'] ad_τ_τ''
by metis
then show ?thesis
using None τ(1)
by (auto simp: idxψ_def lookup_cluster' Xψ_def nsψ_def[symmetric] proj_vals_def split: if_splits)
qed
then show ?thesis
using x_Sφ[OF x(2)[OF None]]
by auto
next
case (Some Y)
have t_in: "t ∈ ext_tuple_set AD nsφ nsφ' {x}" "t ∈ ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
using x(3)[OF Some] eval_conj[OF x_ns x_proj_singleton Some]
by auto
have "ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) = fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
apply (rule ext_tuple_correct[OF ns_sd(3) ns_sd'(1) aux(3) aux6 refl])
apply (auto simp: ad_agr_list_link)
using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(5)] ad_agr_list_trans ad_agr_list_mono[OF AD_def(4)]
by fast+
then have t_both: "t ∈ fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
using t_in(2)
by auto
{
assume "t ∈ fo_nmlz AD ` proj_vals Sψ both"
then obtain τ where τ: "τ ∈ Sψ" "t = fo_nmlz AD (map τ both)"
by (auto simp: proj_vals_def)
obtain τ' where τ': "τ' ∉ Sψ" "t = fo_nmlz AD (map τ' both)"
using t_both
by (auto simp: proj_vals_def)
have "False"
using τ τ'
apply (auto simp: fo_nmlz_eq)
using ad_agr_Sψ ad_agr_list_comm ad_agr_list_subset[OF ns_sd(8)] ad_agr_list_mono[OF AD_def(4)]
by blast
}
then show ?thesis
using x_Sφ[OF t_in(1)]
by auto
qed
next
fix t
assume t_in_asm: "t ∈ fo_nmlz AD ` proj_vals Sφ both - fo_nmlz AD ` proj_vals Sψ both"
then obtain σ where val: "σ ∈ Sφ" "t = fo_nmlz AD (map σ both)"
by (auto simp: proj_vals_def)
define x where "x = fo_nmlz AD (map σ nsφ)"
obtain σ' where σ': "x = map σ' nsφ"
using exists_map[where ?ys=x and ?xs=nsφ] aux(1)
by (auto simp: x_def fo_nmlz_length)
have x_proj_singleton: "{x} = fo_nmlz AD ` proj_vals {σ} nsφ"
by (auto simp: x_def proj_vals_def)
have x_in_ad_agr_close: "x ∈ ad_agr_close_set ADΔφ Xφ"
using ad_agr_close_correct[OF AD_def(3) ad_agr_φ(1), folded ADΔφ_def] val(1)
unfolding ad_agr_close_set_eq[OF fo_nmlzd_X(1)] x_def
unfolding Xφ_def[folded proj_fmla_def] proj_fmla_map
by (fastforce simp: x_def nsφ_def)
have ad_agr_σ_σ': "ad_agr_list AD (map σ nsφ) (map σ' nsφ)"
using σ'
by (auto simp: x_def) (metis fo_nmlz_ad_agr)
have x_proj_ad_agr: "{x} = fo_nmlz AD ` proj_vals {σ. ad_agr_list AD (map σ nsφ) (map σ' nsφ)} nsφ"
using ad_agr_σ_σ' ad_agr_list_comm ad_agr_list_trans
by (auto simp: x_def proj_vals_def fo_nmlz_eq) blast+
have x_ns: "proj_tuple ns (zip nsφ x) = map σ' ns"
unfolding σ'
by (rule proj_tuple_map[OF ns_sd(1-2,4)])
have "ext_tuple_set AD nsφ nsφ' {x} = fo_nmlz AD ` proj_vals {σ. ad_agr_list AD (map σ nsφ) (map σ' nsφ)} both"
apply (rule ext_tuple_correct[OF aux x_proj_ad_agr])
using ad_agr_list_comm ad_agr_list_trans
by (auto simp: ad_agr_list_link) blast+
then have t_in_ext_x: "t ∈ ext_tuple_set AD nsφ nsφ' {x}"
using ad_agr_σ_σ'
by (auto simp: val(2) proj_vals_def)
{
fix Y
assume Some: "Mapping.lookup idxψ (fo_nmlz ADψ (map σ' ns)) = Some Y"
have tmp: "proj_tuple ns (zip nsφ x) = map σ' ns"
unfolding σ'
by (rule proj_tuple_map[OF ns_sd(1) aux(1) ns_sd(4)])
have unfold: "ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ) =
fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} both"
apply (rule ext_tuple_correct[OF ns_sd(3) ns_sd'(1) aux(3) aux6 refl])
apply (auto simp: ad_agr_list_link)
using ad_agr_Sψ ad_agr_list_mono[OF AD_def(4)] ad_agr_list_comm ad_agr_list_trans ad_agr_list_subset[OF ns_sd(5)]
by blast+
have "σ ∉ Sψ"
using t_in_asm
by (auto simp: val(2) proj_vals_def)
moreover have "ad_agr_list ADψ (map σ ns) (map σ' ns)"
using ad_agr_σ_σ' ad_agr_list_mono[OF AD_def(4)] ad_agr_list_subset[OF ns_sd(4)]
by blast
ultimately have "t ∈ ext_tuple_set AD nsψ nsψ' (fo_nmlz AD ` proj_vals {σ ∈ - Sψ. ad_agr_list ADψ (map σ ns) (map σ' ns)} nsψ)"
unfolding unfold val(2)
by (auto simp: proj_vals_def)
then have "t ∈ eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (map σ' ns)} - Y))"
using eval_conj[OF tmp x_proj_singleton Some[folded x_ns]] t_in_ext_x
by (auto simp: x_ns)
}
then show "t ∈ (⋃x∈ad_agr_close_set ADΔφ Xφ. case Mapping.lookup idxψ (fo_nmlz ADψ (proj_tuple ns (zip nsφ x))) of
None ⇒ ext_tuple_set AD nsφ nsφ' {x}
| Some Y ⇒ eval_conj_set AD nsφ {x} nsψ (ad_agr_close_set ADΔψ (ext_tuple_set ADψ ns nsφ' {fo_nmlz ADψ (proj_tuple ns (zip nsφ x))} - Y)))"
using t_in_ext_x
by (intro UN_I[OF x_in_ad_agr_close]) (auto simp: x_ns split: option.splits)
qed
ultimately have X_def: "X = fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat φ I σ UNIV} -
fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat ψ I σ UNIV}"
by simp
have AD_Neg_sub: "act_edom (Neg ψ) I ⊆ AD"
by (auto simp: AD_def(1))
have "X = fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat φ I σ UNIV} ∩
fo_nmlz AD ` proj_fmla (Conj φ (Neg ψ)) {σ. esat (Neg ψ) I σ UNIV}"
unfolding X_def
by (auto simp: proj_fmla_map dest!: fo_nmlz_eqD)
(metis AD_def(4) ad_agr_list_subset esat_UNIV_ad_agr_list fv_fo_fmla_list_set fv_sub
sup_ge1 ts_def(4))
then have eval: "eval_ajoin (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ =
eval_abs (Conj φ (Neg ψ)) I"
using proj_fmla_conj_sub[OF AD_Neg_sub, of φ]
unfolding AD_X_def AD_def(1)[symmetric] n_def eval_abs_def
by (auto simp: proj_fmla_map)
have wf_conj_neg: "wf_fo_intp (Conj φ (Neg ψ)) I"
using wf
by (auto simp: ts_def)
show ?thesis
using fo_wf_eval_abs[OF wf_conj_neg]
by (auto simp: eval)
qed
lemma eval_disj:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I tφ" "fo_wf ψ I tψ"
shows "fo_wf (Disj φ ψ) I
(eval_disj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ)"
proof -
obtain ADφ nφ Xφ ADψ nψ Xψ where ts_def:
"tφ = (ADφ, nφ, Xφ)" "tψ = (ADψ, nψ, Xψ)"
"ADφ = act_edom φ I" "ADψ = act_edom ψ I"
using assms
by (cases tφ, cases tψ) auto
have AD_sub: "act_edom φ I ⊆ ADφ" "act_edom ψ I ⊆ ADψ"
by (auto simp: ts_def(3,4))
obtain AD n X where AD_X_def:
"eval_disj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ = (AD, n, X)"
by (cases "eval_disj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ") auto
have AD_def: "AD = act_edom (Disj φ ψ) I" "act_edom (Disj φ ψ) I ⊆ AD"
"ADφ ⊆ AD" "ADψ ⊆ AD" "AD = ADφ ∪ ADψ"
using AD_X_def
by (auto simp: ts_def Let_def)
have n_def: "n = nfv (Disj φ ψ)"
using AD_X_def
by (auto simp: ts_def Let_def nfv_card fv_fo_fmla_list_set)
define Sφ where "Sφ ≡ {σ. esat φ I σ UNIV}"
define Sψ where "Sψ ≡ {σ. esat ψ I σ UNIV}"
define nsφ' where "nsφ' = filter (λn. n ∉ fv_fo_fmla φ) (fv_fo_fmla_list ψ)"
define nsψ' where "nsψ' = filter (λn. n ∉ fv_fo_fmla ψ) (fv_fo_fmla_list φ)"
note Xφ_def = fo_wf_X[OF wf(1)[unfolded ts_def(1)], unfolded proj_fmla_def, folded Sφ_def]
note Xψ_def = fo_wf_X[OF wf(2)[unfolded ts_def(2)], unfolded proj_fmla_def, folded Sψ_def]
have fv_sub: "fv_fo_fmla (Disj φ ψ) = fv_fo_fmla φ ∪ set (fv_fo_fmla_list ψ)"
"fv_fo_fmla (Disj φ ψ) = fv_fo_fmla ψ ∪ set (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_set)
note res_left_alt = ext_tuple_ad_agr_close[OF Sφ_def AD_sub(1) AD_def(3)
Xφ_def(1)[folded Sφ_def] nsφ'_def sorted_distinct_fv_list fv_sub(1)]
note res_right_alt = ext_tuple_ad_agr_close[OF Sψ_def AD_sub(2) AD_def(4)
Xψ_def(1)[folded Sψ_def] nsψ'_def sorted_distinct_fv_list fv_sub(2)]
have "X = fo_nmlz AD ` proj_fmla (Disj φ ψ) {σ. esat φ I σ UNIV} ∪
fo_nmlz AD ` proj_fmla (Disj φ ψ) {σ. esat ψ I σ UNIV}"
using AD_X_def
apply (simp add: ts_def(1,2) Let_def AD_def(5)[symmetric])
unfolding fv_fo_fmla_list_set proj_fmla_def nsφ'_def[symmetric] nsψ'_def[symmetric]
Sφ_def[symmetric] Sψ_def[symmetric]
using res_left_alt(1) res_right_alt(1)
by auto
then have eval: "eval_disj (fv_fo_fmla_list φ) tφ (fv_fo_fmla_list ψ) tψ =
eval_abs (Disj φ ψ) I"
unfolding AD_X_def AD_def(1)[symmetric] n_def eval_abs_def
by (auto simp: proj_fmla_map)
have wf_disj: "wf_fo_intp (Disj φ ψ) I"
using wf
by (auto simp: ts_def)
show ?thesis
using fo_wf_eval_abs[OF wf_disj]
by (auto simp: eval)
qed
lemma fv_ex_all:
assumes "pos i (fv_fo_fmla_list φ) = None"
shows "fv_fo_fmla_list (Exists i φ) = fv_fo_fmla_list φ"
"fv_fo_fmla_list (Forall i φ) = fv_fo_fmla_list φ"
using pos_complete[of i "fv_fo_fmla_list φ"] fv_fo_fmla_list_eq[of "Exists i φ" φ]
fv_fo_fmla_list_eq[of "Forall i φ" φ] assms
by (auto simp: fv_fo_fmla_list_set)
lemma nfv_ex_all:
assumes Some: "pos i (fv_fo_fmla_list φ) = Some j"
shows "nfv φ = Suc (nfv (Exists i φ))" "nfv φ = Suc (nfv (Forall i φ))"
proof -
have "i ∈ fv_fo_fmla φ" "j < nfv φ" "i ∈ set (fv_fo_fmla_list φ)"
using fv_fo_fmla_list_set pos_set[of i "fv_fo_fmla_list φ"]
pos_length[of i "fv_fo_fmla_list φ"] Some
by (fastforce simp: nfv_def)+
then show "nfv φ = Suc (nfv (Exists i φ))" "nfv φ = Suc (nfv (Forall i φ))"
using nfv_card[of φ] nfv_card[of "Exists i φ"] nfv_card[of "Forall i φ"]
by (auto simp: finite_fv_fo_fmla)
qed
lemma fv_fo_fmla_list_exists: "fv_fo_fmla_list (Exists n φ) = filter ((≠) n) (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_def)
(metis (mono_tags, lifting) distinct_filter distinct_remdups_adj_sort
distinct_remdups_id filter_set filter_sort remdups_adj_set sorted_list_of_set_sort_remdups
sorted_remdups_adj sorted_sort sorted_sort_id)
lemma eval_exists:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I t"
shows "fo_wf (Exists i φ) I (eval_exists i (fv_fo_fmla_list φ) t)"
proof -
obtain AD n X where t_def: "t = (AD, n, X)"
"AD = act_edom φ I" "AD = act_edom (Exists i φ) I"
using assms
by (cases t) auto
note X_def = fo_wf_X[OF wf[unfolded t_def], folded t_def(2)]
have eval: "eval_exists i (fv_fo_fmla_list φ) t = eval_abs (Exists i φ) I"
proof (cases "pos i (fv_fo_fmla_list φ)")
case None
note fv_eq = fv_ex_all[OF None]
have "X = fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat φ I σ UNIV}"
unfolding X_def
by (auto simp: proj_fmla_def fv_eq)
also have "… = fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
using esat_exists_not_fv[of i φ UNIV I] pos_complete[OF None]
by (simp add: fv_fo_fmla_list_set)
finally show ?thesis
by (auto simp: t_def None eval_abs_def fv_eq nfv_def)
next
case (Some j)
have "fo_nmlz AD ` rem_nth j ` X =
fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ fo_nmlz AD ` rem_nth j ` X"
then obtain ws where ws_def: "ws ∈ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
"vs = fo_nmlz AD (rem_nth j ws)"
unfolding X_def
by auto
then obtain σ where σ_def: "esat φ I σ UNIV"
"ws = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
by (auto simp: proj_fmla_map)
obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
using fo_nmlz_map σ_def(2)
by blast
have esat_τ: "esat (Exists i φ) I τ UNIV"
using esat_UNIV_ad_agr_list[OF fo_nmlz_ad_agr[of AD "map σ (fv_fo_fmla_list φ)",
folded σ_def(2), unfolded τ_def]] σ_def(1)
by (auto simp: t_def intro!: exI[of _ "τ i"])
have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Exists i φ))"
using rem_nth_sound[of "fv_fo_fmla_list φ" i j τ] sorted_distinct_fv_list Some
unfolding fv_fo_fmla_list_exists τ_def
by auto
have "vs ∈ fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
using ws_def(2) esat_τ
unfolding rem_nth_ws
by (auto simp: proj_fmla_map)
then show "vs ∈ fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
by auto
next
fix vs
assume assm: "vs ∈ fo_nmlz AD ` proj_fmla (Exists i φ) {σ. esat (Exists i φ) I σ UNIV}"
from assm obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list (Exists i φ)))"
"esat (Exists i φ) I σ UNIV"
by (auto simp: proj_fmla_map)
then obtain x where x_def: "esat φ I (σ(i := x)) UNIV"
by auto
define ws where "ws ≡ fo_nmlz AD (map (σ(i := x)) (fv_fo_fmla_list φ))"
then have "length ws = nfv φ"
using nfv_def fo_nmlz_length by (metis length_map)
then have ws_in: "ws ∈ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
using x_def ws_def
by (auto simp: fo_nmlz_sound proj_fmla_map)
obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
using fo_nmlz_map ws_def
by blast
have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Exists i φ))"
using rem_nth_sound[of "fv_fo_fmla_list φ" i j] sorted_distinct_fv_list Some
unfolding fv_fo_fmla_list_exists τ_def
by auto
have "set (fv_fo_fmla_list (Exists i φ)) ⊆ set (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_exists)
then have ad_agr: "ad_agr_list AD (map (σ(i := x)) (fv_fo_fmla_list (Exists i φ)))
(map τ (fv_fo_fmla_list (Exists i φ)))"
by (rule ad_agr_list_subset)
(rule fo_nmlz_ad_agr[of AD "map (σ(i := x)) (fv_fo_fmla_list φ)", folded ws_def,
unfolded τ_def])
have map_fv_cong: "map (σ(i := x)) (fv_fo_fmla_list (Exists i φ)) =
map σ (fv_fo_fmla_list (Exists i φ))"
by (auto simp: fv_fo_fmla_list_exists)
have vs_rem_nth: "vs = fo_nmlz AD (rem_nth j ws)"
unfolding σ_def(1) rem_nth_ws
apply (rule fo_nmlz_eqI)
using ad_agr[unfolded map_fv_cong] .
show "vs ∈ fo_nmlz AD ` rem_nth j ` X"
using Some ws_in
unfolding vs_rem_nth X_def
by auto
qed
then show ?thesis
using nfv_ex_all[OF Some]
by (auto simp: t_def Some eval_abs_def nfv_def)
qed
have wf_ex: "wf_fo_intp (Exists i φ) I"
using wf
by (auto simp: t_def)
show ?thesis
using fo_wf_eval_abs[OF wf_ex]
by (auto simp: eval)
qed
lemma fv_fo_fmla_list_forall: "fv_fo_fmla_list (Forall n φ) = filter ((≠) n) (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_def)
(metis (mono_tags, lifting) distinct_filter distinct_remdups_adj_sort
distinct_remdups_id filter_set filter_sort remdups_adj_set sorted_list_of_set_sort_remdups
sorted_remdups_adj sorted_sort sorted_sort_id)
lemma pairwise_take_drop:
assumes "pairwise P (set (zip xs ys))" "length xs = length ys"
shows "pairwise P (set (zip (take i xs @ drop (Suc i) xs) (take i ys @ drop (Suc i) ys)))"
by (rule pairwise_subset[OF assms(1)]) (auto simp: set_zip assms(2))
lemma fo_nmlz_set_card:
"fo_nmlz AD xs = xs ⟹ set xs = set xs ∩ Inl ` AD ∪ Inr ` {..<card (Inr -` set xs)}"
by (metis fo_nmlz_sound fo_nmlzd_set card_Inr_vimage_le_length min.absorb2)
lemma ad_agr_list_take_drop: "ad_agr_list AD xs ys ⟹
ad_agr_list AD (take i xs @ drop (Suc i) xs) (take i ys @ drop (Suc i) ys)"
apply (auto simp: ad_agr_list_def ad_equiv_list_def sp_equiv_list_def)
apply (metis take_zip in_set_takeD)
apply (metis drop_zip in_set_dropD)
using pairwise_take_drop
by fastforce
lemma fo_nmlz_rem_nth_add_nth:
assumes "fo_nmlz AD zs = zs" "i ≤ length zs"
shows "fo_nmlz AD (rem_nth i (fo_nmlz AD (add_nth i z zs))) = zs"
proof -
have ad_agr: "ad_agr_list AD (add_nth i z zs) (fo_nmlz AD (add_nth i z zs))"
using fo_nmlz_ad_agr
by auto
have i_lt_add: "i < length (add_nth i z zs)" "i < length (fo_nmlz AD (add_nth i z zs))"
using add_nth_length assms(2)
by (fastforce simp: fo_nmlz_length)+
show ?thesis
using ad_agr_list_take_drop[OF ad_agr, of i, folded rem_nth_take_drop[OF i_lt_add(1)]
rem_nth_take_drop[OF i_lt_add(2)], unfolded rem_nth_add_nth[OF assms(2)]]
apply (subst eq_commute)
apply (subst assms(1)[symmetric])
apply (auto intro: fo_nmlz_eqI)
done
qed
lemma ad_agr_list_add:
assumes "ad_agr_list AD xs ys" "i ≤ length xs"
shows "∃z' ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set ys))} ∪ set ys.
ad_agr_list AD (take i xs @ z # drop i xs) (take i ys @ z' # drop i ys)"
proof -
define n where "n = length xs"
have len_ys: "n = length ys"
using assms(1)
by (auto simp: ad_agr_list_def n_def)
obtain σ where σ_def: "xs = map σ [0..<n]"
unfolding n_def
by (metis map_nth)
obtain τ where τ_def: "ys = map τ [0..<n]"
unfolding len_ys
by (metis map_nth)
have i_le_n: "i ≤ n"
using assms(2)
by (auto simp: n_def)
have set_n: "set [0..<n] = {..n} - {n}" "set ([0..<i] @ n # [i..<n]) = {..n}"
using i_le_n
by auto
have ad_agr: "ad_agr_sets ({..n} - {n}) ({..n} - {n}) AD σ τ"
using iffD2[OF ad_agr_list_link, OF assms(1)[unfolded σ_def τ_def]]
unfolding set_n .
have set_ys: "τ ` ({..n} - {n}) = set ys"
by (auto simp: τ_def)
obtain z' where z'_def: "z' ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set ys))} ∪ set ys"
"ad_agr_sets {..n} {..n} AD (σ(n := z)) (τ(n := z'))"
using extend_τ[OF ad_agr subset_refl,
of "Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set ys))} ∪ set ys" z]
by (auto simp: set_ys)
have map_take: "map (σ(n := z)) ([0..<i] @ n # [i..<n]) = take i xs @ z # drop i xs"
"map (τ(n := z')) ([0..<i] @ n # [i..<n]) = take i ys @ z' # drop i ys"
using i_le_n
by (auto simp: σ_def τ_def take_map drop_map)
show ?thesis
using iffD1[OF ad_agr_list_link, OF z'_def(2)[unfolded set_n[symmetric]]] z'_def(1)
unfolding map_take
by auto
qed
lemma add_nth_restrict:
assumes "fo_nmlz AD zs = zs" "i ≤ length zs"
shows "∃z' ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}.
fo_nmlz AD (add_nth i z zs) = fo_nmlz AD (add_nth i z' zs)"
proof -
have "set zs ⊆ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}"
using fo_nmlz_set_card[OF assms(1)]
by auto
then obtain z' where z'_def:
"z' ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}"
"ad_agr_list AD (take i zs @ z # drop i zs) (take i zs @ z' # drop i zs)"
using ad_agr_list_add[OF ad_agr_list_refl assms(2), of AD z]
by auto blast
then show ?thesis
unfolding add_nth_take_drop[OF assms(2)]
by (auto intro: fo_nmlz_eqI)
qed
lemma fo_nmlz_add_rem:
assumes "i ≤ length zs"
shows "∃z'. fo_nmlz AD (add_nth i z zs) = fo_nmlz AD (add_nth i z' (fo_nmlz AD zs))"
proof -
have ad_agr: "ad_agr_list AD zs (fo_nmlz AD zs)"
using fo_nmlz_ad_agr
by auto
have i_le_fo_nmlz: "i ≤ length (fo_nmlz AD zs)"
using assms(1)
by (auto simp: fo_nmlz_length)
obtain x where x_def: "ad_agr_list AD (add_nth i z zs) (add_nth i x (fo_nmlz AD zs))"
using ad_agr_list_add[OF ad_agr assms(1)]
by (auto simp: add_nth_take_drop[OF assms(1)] add_nth_take_drop[OF i_le_fo_nmlz])
then show ?thesis
using fo_nmlz_eqI
by auto
qed
lemma fo_nmlz_add_rem':
assumes "i ≤ length zs"
shows "∃z'. fo_nmlz AD (add_nth i z (fo_nmlz AD zs)) = fo_nmlz AD (add_nth i z' zs)"
proof -
have ad_agr: "ad_agr_list AD (fo_nmlz AD zs) zs"
using ad_agr_list_comm[OF fo_nmlz_ad_agr]
by auto
have i_le_fo_nmlz: "i ≤ length (fo_nmlz AD zs)"
using assms(1)
by (auto simp: fo_nmlz_length)
obtain x where x_def: "ad_agr_list AD (add_nth i z (fo_nmlz AD zs)) (add_nth i x zs)"
using ad_agr_list_add[OF ad_agr i_le_fo_nmlz]
by (auto simp: add_nth_take_drop[OF assms(1)] add_nth_take_drop[OF i_le_fo_nmlz])
then show ?thesis
using fo_nmlz_eqI
by auto
qed
lemma fo_nmlz_add_nth_rem_nth:
assumes "fo_nmlz AD xs = xs" "i < length xs"
shows "∃z. fo_nmlz AD (add_nth i z (fo_nmlz AD (rem_nth i xs))) = xs"
using rem_nth_length[OF assms(2)] fo_nmlz_add_rem[of i "rem_nth i xs" AD "xs ! i",
unfolded assms(1) add_nth_rem_nth_self[OF assms(2)]] assms(2)
by (subst eq_commute) auto
lemma sp_equiv_list_almost_same: "sp_equiv_list (xs @ v # ys) (xs @ w # ys) ⟹
v ∈ set xs ∪ set ys ∨ w ∈ set xs ∪ set ys ⟹ v = w"
by (auto simp: sp_equiv_list_def pairwise_def) (metis UnCI sp_equiv_pair.simps zip_same)+
lemma ad_agr_list_add_nth:
assumes "i ≤ length zs" "ad_agr_list AD (add_nth i v zs) (add_nth i w zs)" "v ≠ w"
shows "{v, w} ∩ (Inl ` AD ∪ set zs) = {}"
using assms(2)[unfolded add_nth_take_drop[OF assms(1)]] assms(1,3) sp_equiv_list_almost_same
by (auto simp: ad_agr_list_def ad_equiv_list_def ad_equiv_pair.simps)
(smt append_take_drop_id set_append sp_equiv_list_almost_same)+
lemma Inr_in_tuple:
assumes "fo_nmlz AD zs = zs" "n < card (Inr -` set zs)"
shows "Inr n ∈ set zs"
using assms fo_nmlz_set_card[OF assms(1)]
by (auto simp: fo_nmlzd_code[symmetric])
lemma card_wit_sub:
assumes "finite Z" "card Z ≤ card {ts ∈ X. ∃z ∈ Z. ts = f z}"
shows "f ` Z ⊆ X"
proof -
have set_unfold: "{ts ∈ X. ∃z ∈ Z. ts = f z} = f ` Z ∩ X"
by auto
show ?thesis
using assms
unfolding set_unfold
by (metis Int_lower1 card_image_le card_seteq finite_imageI inf.absorb_iff1 le_antisym
surj_card_le)
qed
lemma add_nth_iff_card:
assumes "(⋀xs. xs ∈ X ⟹ fo_nmlz AD xs = xs)" "(⋀xs. xs ∈ X ⟹ i < length xs)"
"fo_nmlz AD zs = zs" "i ≤ length zs" "finite AD" "finite X"
shows "(∀z. fo_nmlz AD (add_nth i z zs) ∈ X) ⟷
Suc (card AD + card (Inr -` set zs)) ≤ card {ts ∈ X. ∃z. ts = fo_nmlz AD (add_nth i z zs)}"
proof -
have inj: "inj_on (λz. fo_nmlz AD (add_nth i z zs))
(Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))})"
using ad_agr_list_add_nth[OF assms(4)] Inr_in_tuple[OF assms(3)] less_Suc_eq
by (fastforce simp: inj_on_def dest!: fo_nmlz_eqD)
have card_Un: "card (Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}) =
Suc (card AD + card (Inr -` set zs))"
using card_Un_disjoint[of "Inl ` AD" "Inr ` {..<Suc (card (Inr -` set zs))}"] assms(5)
by (auto simp add: card_image disjoint_iff_not_equal)
have restrict_z: "(∀z. fo_nmlz AD (add_nth i z zs) ∈ X) ⟷
(∀z ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}. fo_nmlz AD (add_nth i z zs) ∈ X)"
using add_nth_restrict[OF assms(3,4)]
by metis
have restrict_z': "{ts ∈ X. ∃z. ts = fo_nmlz AD (add_nth i z zs)} =
{ts ∈ X. ∃z ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}.
ts = fo_nmlz AD (add_nth i z zs)}"
using add_nth_restrict[OF assms(3,4)]
by auto
{
assume "⋀z. fo_nmlz AD (add_nth i z zs) ∈ X"
then have image_sub: "(λz. fo_nmlz AD (add_nth i z zs)) `
(Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}) ⊆
{ts ∈ X. ∃z. ts = fo_nmlz AD (add_nth i z zs)}"
by auto
have "Suc (card AD + card (Inr -` set zs)) ≤
card {ts ∈ X. ∃z. ts = fo_nmlz AD (add_nth i z zs)}"
unfolding card_Un[symmetric]
using card_inj_on_le[OF inj image_sub] assms(6)
by auto
then have "Suc (card AD + card (Inr -` set zs)) ≤
card {ts ∈ X. ∃z. ts = fo_nmlz AD (add_nth i z zs)}"
by (auto simp: card_image)
}
moreover
{
assume assm: "card (Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}) ≤
card {ts ∈ X. ∃z ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}.
ts = fo_nmlz AD (add_nth i z zs)}"
have "∀z ∈ Inl ` AD ∪ Inr ` {..<Suc (card (Inr -` set zs))}. fo_nmlz AD (add_nth i z zs) ∈ X"
using card_wit_sub[OF _ assm] assms(5)
by auto
}
ultimately show ?thesis
unfolding restrict_z[symmetric] restrict_z'[symmetric] card_Un
by auto
qed
lemma set_fo_nmlz_add_nth_rem_nth:
assumes "j < length xs" "⋀x. x ∈ X ⟹ fo_nmlz AD x = x"
"⋀x. x ∈ X ⟹ j < length x"
shows "{ts ∈ X. ∃z. ts = fo_nmlz AD (add_nth j z (fo_nmlz AD (rem_nth j xs)))} =
{y ∈ X. fo_nmlz AD (rem_nth j y) = fo_nmlz AD (rem_nth j xs)}"
using fo_nmlz_rem_nth_add_nth[where ?zs="fo_nmlz AD (rem_nth j xs)"] rem_nth_length[OF assms(1)] fo_nmlz_add_nth_rem_nth assms
by (fastforce simp: fo_nmlz_idem[OF fo_nmlz_sound] fo_nmlz_length)
lemma eval_forall:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
assumes wf: "fo_wf φ I t"
shows "fo_wf (Forall i φ) I (eval_forall i (fv_fo_fmla_list φ) t)"
proof -
obtain AD n X where t_def: "t = (AD, n, X)" "AD = act_edom φ I"
"AD = act_edom (Forall i φ) I"
using assms
by (cases t) auto
have AD_sub: "act_edom φ I ⊆ AD"
by (auto simp: t_def(2))
have fin_AD: "finite AD"
using finite_act_edom wf
by (auto simp: t_def)
have fin_X: "finite X"
using wf
by (auto simp: t_def)
note X_def = fo_wf_X[OF wf[unfolded t_def], folded t_def(2)]
have eval: "eval_forall i (fv_fo_fmla_list φ) t = eval_abs (Forall i φ) I"
proof (cases "pos i (fv_fo_fmla_list φ)")
case None
note fv_eq = fv_ex_all[OF None]
have "X = fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat φ I σ UNIV}"
unfolding X_def
by (auto simp: proj_fmla_def fv_eq)
also have "… = fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
using esat_forall_not_fv[of i φ UNIV I] pos_complete[OF None]
by (auto simp: fv_fo_fmla_list_set)
finally show ?thesis
by (auto simp: t_def None eval_abs_def fv_eq nfv_def)
next
case (Some j)
have i_in_fv: "i ∈ fv_fo_fmla φ"
by (rule pos_set[OF Some, unfolded fv_fo_fmla_list_set])
have fo_nmlz_X: "⋀xs. xs ∈ X ⟹ fo_nmlz AD xs = xs"
by (auto simp: X_def proj_fmla_map fo_nmlz_idem[OF fo_nmlz_sound])
have j_lt_len: "⋀xs. xs ∈ X ⟹ j < length xs"
using pos_sound[OF Some]
by (auto simp: X_def proj_fmla_map fo_nmlz_length)
have rem_nth_j_le_len: "⋀xs. xs ∈ X ⟹ j ≤ length (fo_nmlz AD (rem_nth j xs))"
using rem_nth_length j_lt_len
by (fastforce simp: fo_nmlz_length)
have img_proj_fmla: "Mapping.keys (Mapping.filter (λt Z. Suc (card AD + card (Inr -` set t)) ≤ card Z)
(cluster (Some ∘ (λts. fo_nmlz AD (rem_nth j ts))) X)) =
fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
proof (rule set_eqI, rule iffI)
fix vs
assume "vs ∈ Mapping.keys (Mapping.filter (λt Z. Suc (card AD + card (Inr -` set t)) ≤ card Z)
(cluster (Some ∘ (λts. fo_nmlz AD (rem_nth j ts))) X))"
then obtain ws where ws_def: "ws ∈ X" "vs = fo_nmlz AD (rem_nth j ws)"
"⋀a. fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) ∈ X"
using add_nth_iff_card[OF fo_nmlz_X j_lt_len fo_nmlz_idem[OF fo_nmlz_sound]
rem_nth_j_le_len fin_AD fin_X] set_fo_nmlz_add_nth_rem_nth[OF j_lt_len fo_nmlz_X j_lt_len]
by transfer (fastforce split: option.splits if_splits)
then obtain σ where σ_def:
"esat φ I σ UNIV" "ws = fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
unfolding X_def
by (auto simp: proj_fmla_map)
obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
using fo_nmlz_map σ_def(2)
by blast
have fo_nmlzd_τ: "fo_nmlzd AD (map τ (fv_fo_fmla_list φ))"
unfolding τ_def[symmetric] σ_def(2)
by (rule fo_nmlz_sound)
have rem_nth_j_ws: "rem_nth j ws = map τ (filter ((≠) i) (fv_fo_fmla_list φ))"
using rem_nth_sound[OF _ Some] sorted_distinct_fv_list
by (auto simp: τ_def)
have esat_τ: "esat (Forall i φ) I τ UNIV"
unfolding esat.simps
proof (rule ballI)
fix x
have "fo_nmlz AD (add_nth j x (rem_nth j ws)) ∈ X"
using fo_nmlz_add_rem[of j "rem_nth j ws" AD x] rem_nth_length
j_lt_len[OF ws_def(1)] ws_def(3)
by fastforce
then have "fo_nmlz AD (map (τ(i := x)) (fv_fo_fmla_list φ)) ∈ X"
using add_nth_rem_nth_map[OF _ Some, of x] sorted_distinct_fv_list
unfolding τ_def
by fastforce
then show "esat φ I (τ(i := x)) UNIV"
by (auto simp: X_def proj_fmla_map esat_UNIV_ad_agr_list[OF _ AD_sub]
dest!: fo_nmlz_eqD)
qed
have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Forall i φ))"
using rem_nth_sound[OF _ Some] sorted_distinct_fv_list
by (auto simp: fv_fo_fmla_list_forall τ_def)
then show "vs ∈ fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
using ws_def(2) esat_τ
by (auto simp: proj_fmla_map rem_nth_ws)
next
fix vs
assume assm: "vs ∈ fo_nmlz AD ` proj_fmla (Forall i φ) {σ. esat (Forall i φ) I σ UNIV}"
from assm obtain σ where σ_def: "vs = fo_nmlz AD (map σ (fv_fo_fmla_list (Forall i φ)))"
"esat (Forall i φ) I σ UNIV"
by (auto simp: proj_fmla_map)
then have all_esat: "⋀x. esat φ I (σ(i := x)) UNIV"
by auto
define ws where "ws ≡ fo_nmlz AD (map σ (fv_fo_fmla_list φ))"
then have "length ws = nfv φ"
using nfv_def fo_nmlz_length by (metis length_map)
then have ws_in: "ws ∈ fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
using all_esat[of "σ i"] ws_def
by (auto simp: fo_nmlz_sound proj_fmla_map)
then have ws_in_X: "ws ∈ X"
by (auto simp: X_def)
obtain τ where τ_def: "ws = map τ (fv_fo_fmla_list φ)"
using fo_nmlz_map ws_def
by blast
have rem_nth_ws: "rem_nth j ws = map τ (fv_fo_fmla_list (Forall i φ))"
using rem_nth_sound[of "fv_fo_fmla_list φ" i j] sorted_distinct_fv_list Some
unfolding fv_fo_fmla_list_forall τ_def
by auto
have "set (fv_fo_fmla_list (Forall i φ)) ⊆ set (fv_fo_fmla_list φ)"
by (auto simp: fv_fo_fmla_list_forall)
then have ad_agr: "ad_agr_list AD (map σ (fv_fo_fmla_list (Forall i φ)))
(map τ (fv_fo_fmla_list (Forall i φ)))"
apply (rule ad_agr_list_subset)
using fo_nmlz_ad_agr[of AD] ws_def τ_def
by metis
have map_fv_cong: "⋀x. map (σ(i := x)) (fv_fo_fmla_list (Forall i φ)) =
map σ (fv_fo_fmla_list (Forall i φ))"
by (auto simp: fv_fo_fmla_list_forall)
have vs_rem_nth: "vs = fo_nmlz AD (rem_nth j ws)"
unfolding σ_def(1) rem_nth_ws
apply (rule fo_nmlz_eqI)
using ad_agr[unfolded map_fv_cong] .
have "⋀a. fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) ∈
fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
proof -
fix a
obtain x where add_rem: "fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) =
fo_nmlz AD (map (τ(i := x)) (fv_fo_fmla_list φ))"
using add_nth_rem_nth_map[OF _ Some, of _ τ] sorted_distinct_fv_list
fo_nmlz_add_rem'[of j "rem_nth j ws"] rem_nth_length[of j ws]
j_lt_len[OF ws_in_X]
by (fastforce simp: τ_def)
have "esat (Forall i φ) I τ UNIV"
apply (rule iffD1[OF esat_UNIV_ad_agr_list σ_def(2), OF _ subset_refl, folded t_def])
using fo_nmlz_ad_agr[of AD "map σ (fv_fo_fmla_list φ)", folded ws_def, unfolded τ_def]
unfolding ad_agr_list_link[symmetric]
by (auto simp: fv_fo_fmla_list_set ad_agr_sets_def sp_equiv_def pairwise_def)
then have "esat φ I (τ(i := x)) UNIV"
by auto
then show "fo_nmlz AD (add_nth j a (fo_nmlz AD (rem_nth j ws))) ∈
fo_nmlz AD ` proj_fmla φ {σ. esat φ I σ UNIV}"
by (auto simp: add_rem proj_fmla_map)
qed
then show "vs ∈ Mapping.keys (Mapping.filter (λt Z. Suc (card AD + card (Inr -` set t)) ≤ card Z)
(cluster (Some ∘ (λts. fo_nmlz AD (rem_nth j ts))) X))"
unfolding vs_rem_nth X_def[symmetric]
using add_nth_iff_card[OF fo_nmlz_X j_lt_len fo_nmlz_idem[OF fo_nmlz_sound]
rem_nth_j_le_len fin_AD fin_X] set_fo_nmlz_add_nth_rem_nth[OF j_lt_len fo_nmlz_X j_lt_len] ws_in_X
by transfer (fastforce split: option.splits if_splits)
qed
show ?thesis
using nfv_ex_all[OF Some]
by (simp add: t_def Some eval_abs_def nfv_def img_proj_fmla[unfolded t_def(2)]
split: option.splits)
qed
have wf_all: "wf_fo_intp (Forall i φ) I"
using wf
by (auto simp: t_def)
show ?thesis
using fo_wf_eval_abs[OF wf_all]
by (auto simp: eval)
qed
fun fo_res :: "('a, nat) fo_t ⇒ 'a eval_res" where
"fo_res (AD, n, X) = (if fo_fin (AD, n, X) then Fin (map projl ` X) else Infin)"
lemma fo_res_fin:
fixes t :: "('a :: infinite, nat) fo_t"
assumes "fo_wf φ I t" "finite (fo_rep t)"
shows "fo_res t = Fin (fo_rep t)"
proof -
obtain AD n X where t_def: "t = (AD, n, X)"
using assms(1)
by (cases t) auto
show ?thesis
using fo_fin assms
by (fastforce simp only: t_def fo_res.simps fo_rep_fin split: if_splits)
qed
lemma fo_res_infin:
fixes t :: "('a :: infinite, nat) fo_t"
assumes "fo_wf φ I t" "¬finite (fo_rep t)"
shows "fo_res t = Infin"
proof -
obtain AD n X where t_def: "t = (AD, n, X)"
using assms(1)
by (cases t) auto
show ?thesis
using fo_fin assms
by (fastforce simp only: t_def fo_res.simps split: if_splits)
qed
lemma fo_rep: "fo_wf φ I t ⟹ fo_rep t = proj_sat φ I"
by (cases t) auto
global_interpretation Ailamazyan: eval_fo fo_wf eval_pred fo_rep fo_res
eval_bool eval_eq eval_neg eval_conj eval_ajoin eval_disj
eval_exists eval_forall
defines eval_fmla = Ailamazyan.eval_fmla
and eval = Ailamazyan.eval
apply standard
apply (rule fo_rep, assumption+)
apply (rule fo_res_fin, assumption+)
apply (rule fo_res_infin, assumption+)
apply (rule eval_pred, assumption+)
apply (rule eval_bool)
apply (rule eval_eq)
apply (rule eval_neg, assumption+)
apply (rule eval_conj, assumption+)
apply (rule eval_ajoin, assumption+)
apply (rule eval_disj, assumption+)
apply (rule eval_exists, assumption+)
apply (rule eval_forall, assumption+)
done
definition esat_UNIV :: "('a :: infinite, 'b) fo_fmla ⇒ ('a table, 'b) fo_intp ⇒ ('a + nat) val ⇒ bool" where
"esat_UNIV φ I σ = esat φ I σ UNIV"
lemma esat_UNIV_code[code]: "esat_UNIV φ I σ ⟷ (if wf_fo_intp φ I then
(case eval_fmla φ I of (AD, n, X) ⇒
fo_nmlz (act_edom φ I) (map σ (fv_fo_fmla_list φ)) ∈ X)
else esat_UNIV φ I σ)"
proof -
obtain AD n T where t_def: "Ailamazyan.eval_fmla φ I = (AD, n, T)"
by (cases "Ailamazyan.eval_fmla φ I") auto
{
assume wf_fo_intp: "wf_fo_intp φ I"
note fo_wf = Ailamazyan.eval_fmla_correct[OF wf_fo_intp, unfolded t_def]
note T_def = fo_wf_X[OF fo_wf]
have AD_def: "AD = act_edom φ I"
using fo_wf
by auto
have "esat_UNIV φ I σ ⟷
fo_nmlz (act_edom φ I) (map σ (fv_fo_fmla_list φ)) ∈ T"
using esat_UNIV_ad_agr_list[OF _ subset_refl]
by (force simp add: esat_UNIV_def T_def AD_def proj_fmla_map
dest!: fo_nmlz_eqD)
}
then show ?thesis
by (auto simp: t_def)
qed
lemma sat_code[code]:
fixes φ :: "('a :: infinite, 'b) fo_fmla"
shows "sat φ I σ ⟷ (if wf_fo_intp φ I then
(case eval_fmla φ I of (AD, n, X) ⇒
fo_nmlz (act_edom φ I) (map (Inl ∘ σ) (fv_fo_fmla_list φ)) ∈ X)
else sat φ I σ)"
using esat_UNIV_code sat_esat_conv[folded esat_UNIV_def]
by metis
end