Theory HOL-Library.LaTeXsugar

(*  Title:      HOL/Library/LaTeXsugar.thy
    Author:     Gerwin Klein, Tobias Nipkow, Norbert Schirmer
    Copyright   2005 NICTA and TUM
*)

(*<*)
theory LaTeXsugar
imports Main
begin

(* Boxing *)

definition mbox :: "'a  'a" where
"mbox x = x"

definition mbox0 :: "'a  'a" where
"mbox0 x = x"

notation (latex) mbox (latex‹\mbox{›_latex‹}› [999] 999)

notation (latex) mbox0 (latex‹\mbox{›_latex‹}› [0] 999)

(* LOGIC *)
notation (latex output)
  If  ((latex‹\textsf{›iflatex‹}› (_)/ latex‹\textsf{›thenlatex‹}› (_)/ latex‹\textsf{›elselatex‹}› (_)) 10)

syntax (latex output)

  "_Let"        :: "[letbinds, 'a] => 'a"
  ((latex‹\textsf{›letlatex‹}› (_)/ latex‹\textsf{›inlatex‹}› (_)) 10)

  "_case_syntax":: "['a, cases_syn] => 'b"
  ((latex‹\textsf{›caselatex‹}› _ latex‹\textsf{›oflatex‹}›/ _) 10)


(* SETS *)

(* empty set *)
notation (latex)
  "Set.empty" ()

(* insert *)
translations 
  "{x}  A" <= "CONST insert x A"
  "{x,y}" <= "{x}  {y}"
  "{x,y}  A" <= "{x}  ({y}  A)"
  "{x}" <= "{x}  "

(* set comprehension *)
syntax (latex output)
  "_Collect" :: "pttrn => bool => 'a set"              ((1{_ | _}))
  "_CollectIn" :: "pttrn => 'a set => bool => 'a set"   ((1{_  _ | _}))
translations
  "_Collect p P"      <= "{p. P}"
  "_Collect p P"      <= "{p|xs. P}"
  "_CollectIn p A P"  <= "{p : A. P}"

(* card *)
notation (latex output)
  card  (|_|)

(* LISTS *)

(* Cons *)
notation (latex)
  Cons  (‹_ / _› [66,65] 65)

(* length *)
notation (latex output)
  length  (|_|)

(* nth *)
notation (latex output)
  nth  (‹_latex‹\ensuremath{_{[\mathit{›_latex‹}]}}› [1000,0] 1000)

(* DUMMY *)
consts DUMMY :: 'a (latex‹\_›)

(* THEOREMS *)
notation (Rule output)
  Pure.imp  (latex‹\mbox{}\inferrule{\mbox{›_latex‹}}›latex‹{\mbox{›_latex‹}}›)

syntax (Rule output)
  "_bigimpl" :: "asms  prop  prop"
  (latex‹\mbox{}\inferrule{›_latex‹}›latex‹{\mbox{›_latex‹}}›)

  "_asms" :: "prop  asms  asms" 
  (latex‹\mbox{›_latex‹}\\›/ _›)

  "_asm" :: "prop  asms" (latex‹\mbox{›_latex‹}›)

notation (Axiom output)
  "Trueprop"  (latex‹\mbox{}\inferrule{\mbox{}}{\mbox{›_latex‹}}›)

notation (IfThen output)
  Pure.imp  (latex‹{\normalsize{}›Iflatex‹\,}› _/ latex‹{\normalsize \,›thenlatex‹\,}›/ _.)
syntax (IfThen output)
  "_bigimpl" :: "asms  prop  prop"
  (latex‹{\normalsize{}›Iflatex‹\,}› _ /latex‹{\normalsize \,›thenlatex‹\,}›/ _.)
  "_asms" :: "prop  asms  asms" (latex‹\mbox{›_latex‹}› /latex‹{\normalsize \,›andlatex‹\,}›/ _›)
  "_asm" :: "prop  asms" (latex‹\mbox{›_latex‹}›)

notation (IfThenNoBox output)
  Pure.imp  (latex‹{\normalsize{}›Iflatex‹\,}› _/ latex‹{\normalsize \,›thenlatex‹\,}›/ _.)
syntax (IfThenNoBox output)
  "_bigimpl" :: "asms  prop  prop"
  (latex‹{\normalsize{}›Iflatex‹\,}› _ /latex‹{\normalsize \,›thenlatex‹\,}›/ _.)
  "_asms" :: "prop  asms  asms" (‹_ /latex‹{\normalsize \,›andlatex‹\,}›/ _›)
  "_asm" :: "prop  asms" (‹_›)

setup Document_Output.antiquotation_pretty_source_embedded bindingconst_typ
    (Scan.lift Parse.embedded_inner_syntax)
    (fn ctxt => fn c =>
      let val tc = Proof_Context.read_const {proper = false, strict = false} ctxt c in
        Pretty.block [Document_Output.pretty_term ctxt tc, Pretty.str " ::",
          Pretty.brk 1, Syntax.pretty_typ ctxt (fastype_of tc)]
      end)

setuplet
  fun dummy_pats (wrap $ (eq $ lhs $ rhs)) =
    let
      val rhs_vars = Term.add_vars rhs [];
      fun dummy (v as Var (ixn as (_, T))) =
            if member ((=) ) rhs_vars ixn then v else Const (const_nameDUMMY, T)
        | dummy (t $ u) = dummy t $ dummy u
        | dummy (Abs (n, T, b)) = Abs (n, T, dummy b)
        | dummy t = t;
    in wrap $ (eq $ dummy lhs $ rhs) end
in
  Term_Style.setup bindingdummy_pats (Scan.succeed (K dummy_pats))
end

setup let

fun eta_expand Ts t xs = case t of
    Abs(x,T,t) =>
      let val (t', xs') = eta_expand (T::Ts) t xs
      in (Abs (x, T, t'), xs') end
  | _ =>
      let
        val (a,ts) = strip_comb t (* assume a atomic *)
        val (ts',xs') = fold_map (eta_expand Ts) ts xs
        val t' = list_comb (a, ts');
        val Bs = binder_types (fastype_of1 (Ts,t));
        val n = Int.min (length Bs, length xs');
        val bs = map Bound ((n - 1) downto 0);
        val xBs = ListPair.zip (xs',Bs);
        val xs'' = drop n xs';
        val t'' = fold_rev Term.abs xBs (list_comb(t', bs))
      in (t'', xs'') end

val style_eta_expand =
  (Scan.repeat Args.name) >> (fn xs => fn ctxt => fn t => fst (eta_expand [] t xs))

in Term_Style.setup bindingeta_expand style_eta_expand end

end
(*>*)