Theory Code_Cayley_Hamilton_IArrays
section‹Code Cayley Hamilton›
theory Code_Cayley_Hamilton_IArrays
imports
Cayley_Hamilton.Cayley_Hamilton
Echelon_Form_Det_IArrays
begin
subsection‹Implementations over immutable arrays of some definitions
presented in the Cayley-Hamilton development›
definition scalar_matrix_mult_iarrays :: "('a::ab_semigroup_mult) ⇒ ('a iarray iarray) ⇒ ('a iarray iarray)"
(infixl ‹*ssi› 70) where "c *ssi A = tabulate2 (nrows_iarray A) (ncols_iarray A) (% i j. c * (A !! i !! j))"
definition "minorM_iarrays A i j = tabulate2 (nrows_iarray A) (ncols_iarray A)
(%k l. if k = i ∧ l = j then 1 else if k = i ∨ l = j then 0 else A !! k !! l)"
definition "cofactor_iarrays A i j = det_iarrays_rings (minorM_iarrays A i j)"
definition "cofactorM_iarrays A = tabulate2 (nrows_iarray A) (nrows_iarray A)
(%i j. cofactor_iarrays A i j)"
definition "adjugate_iarrays A = transpose_iarray (cofactorM_iarrays A)"
lemma matrix_to_iarray_scalar_matrix_mult[code_unfold]:
"matrix_to_iarray (k *k A) = k *ssi (matrix_to_iarray A)"
proof -
have n_rw: "nrows_iarray (IArray (map (λx. vec_to_iarray (A $ from_nat x)) [0..<CARD('c)]))
= CARD('c)" unfolding nrows_iarray_def by auto
have n_rw2: "nrows_iarray (IArray (map (λx. IArray (map (λi. A $ from_nat x $ from_nat i)
[0..<CARD('b)])) [0..<CARD('c)])) = CARD('c)" unfolding nrows_iarray_def by auto
have n_rw3: "ncols_iarray (IArray (map (λx. IArray (map (λi. A $ from_nat x $ from_nat i)
[0..<CARD('b)])) [0..<CARD('c)])) = CARD('b)"
unfolding ncols_iarray_def by auto
show ?thesis
unfolding matrix_to_iarray_def o_def matrix_scalar_mult_def scalar_matrix_mult_iarrays_def
tabulate2_def vec_to_iarray_def
by (simp add: n_rw n_rw2 n_rw3)
qed
lemma matrix_to_iarray_minorM[code_unfold]:
"matrix_to_iarray (minorM A i j) = minorM_iarrays (matrix_to_iarray A) (to_nat i) (to_nat j)"
proof -
have n_rw: "nrows_iarray (IArray (map (λx. IArray (map (λi. A $ from_nat x $ from_nat i)
[0..<CARD('b)])) [0..<CARD('c)])) = CARD('c)"
unfolding nrows_iarray_def by auto
have n_rw2: "ncols_iarray (IArray (map (λx. IArray (map (λi. A $ from_nat x $ from_nat i)
[0..<CARD('b)])) [0..<CARD('c)])) = CARD('b)"
unfolding ncols_iarray_def by simp
show ?thesis
unfolding matrix_to_iarray_def o_def
minorM_def minorM_iarrays_def
tabulate2_def vec_to_iarray_def
by (auto simp add: n_rw n_rw2 to_nat_from_nat_id)
qed
lemma matrix_to_iarray_cofactor[code_unfold]:
"(cofactor A i j) = cofactor_iarrays (matrix_to_iarray A) (to_nat i) (to_nat j)"
unfolding o_def cofactor_iarrays_def cofactor_def cofactorM_def
unfolding matrix_to_iarray_minorM[symmetric]
unfolding matrix_to_iarray_det_euclidean_ring[symmetric] by simp
lemma matrix_to_iarray_cofactorM[code_unfold]:
"matrix_to_iarray (cofactorM A) = cofactorM_iarrays (matrix_to_iarray A)"
proof -
have n_rw: "nrows_iarray (IArray (map (λx. IArray (map (λi. A $ from_nat x $ from_nat i)
[0..<CARD('b)])) [0..<CARD('b)])) = CARD('b)"
unfolding nrows_iarray_def by simp
show ?thesis
unfolding cofactorM_iarrays_def tabulate2_def cofactorM_def
by (auto simp add: n_rw matrix_to_iarray_cofactor
matrix_to_iarray_def o_def vec_to_iarray_def to_nat_from_nat_id)
qed
lemma matrix_to_iarray_adjugate[code_unfold]:
"matrix_to_iarray (adjugate A) = adjugate_iarrays (matrix_to_iarray A)"
unfolding adjugate_def adjugate_iarrays_def
unfolding matrix_to_iarray_cofactorM[symmetric]
unfolding matrix_to_iarray_transpose[symmetric] ..
end