Theory Binary_Operations

theory Binary_Operations
  imports Bits_Digits Carries
begin

section ‹Digit-wise Operations›

subsection ‹Binary AND›

fun bitAND_nat :: "nat  nat  nat" (infix && 64) where
  "0 && _ = 0" |
  "m && n = 2 * ((m div 2) && (n div 2)) + (m mod 2) * (n mod 2)"

lemma bitAND_zero[simp]: "n = 0  m && n = 0"
  by (induct m n rule:bitAND_nat.induct, auto)

lemma bitAND_1: "a && 1 = (a mod 2)"
  by (induction a; auto)

lemma bitAND_rec: "m && n = 2 * ((m div 2) && (n div 2)) + (m mod 2) * (n mod 2)"
  by (cases m; simp_all)

lemma bitAND_commutes:"m && n = n && m"
  by (induct m n rule: bitAND_nat.induct, simp) (metis bitAND_rec mult.commute)

lemma nth_digit_0: "x  1  nth_bit x 0 = x" by (simp add: nth_bit_def)

lemma bitAND_zeroone: "a  1  b  1  a && b  1"
  using nth_bit_def nth_digit_0 nat_le_linear bitAND_nat.elims
  by (metis (no_types, lifting) One_nat_def add.left_neutral bitAND_zero div_less le_zero_eq lessI
             mult.right_neutral mult_0_right not_mod2_eq_Suc_0_eq_0 numeral_2_eq_2)

lemma aux1_bitAND_digit_mult:
  fixes a b c :: nat
  shows "k > 0  a mod 2 = 0  b  1  (a + b) div 2^k = a div 2^k"
  by (induction k, auto)
     (metis One_nat_def add_cancel_left_right div_mult2_eq even_succ_div_two le_0_eq le_Suc_eq)

lemma bitAND_digit_mult:"(nth_bit (a && b) k) = (nth_bit a k) * (nth_bit b k)"
proof(induction k arbitrary: a b)
  case 0
  show ?case
    using nth_bit_def
    by auto (metis (no_types, opaque_lifting) Groups.add_ac(2) bitAND_rec mod_mod_trivial
              mod_mult_self2 mult_numeral_1_right mult_zero_right not_mod_2_eq_1_eq_0 numeral_One)
next
  case (Suc k)
  have "nth_bit (a && b) (Suc k)
        = (2 * (a div 2 && b div 2) + a mod 2 * (b mod 2)) div 2 ^(Suc k) mod 2"
    using bitAND_rec by (metis nth_bit_def)

  moreover have "(a mod 2) * (b mod 2) < (2 ^ Suc(k))"
    by (metis One_nat_def lessI mult_numeral_1_right mult_zero_right not_mod_2_eq_1_eq_0
              numeral_2_eq_2 numeral_One power_gt1 zero_less_numeral zero_less_power)

  ultimately have "nth_bit (a && b) (Suc k) = (2 * (a div 2 && b div 2)) div 2 ^(Suc k) mod 2"
    using aux1_bitAND_digit_mult
    by (metis le_numeral_extra(1) le_numeral_extra(4) mod_mult_self1_is_0 mult_numeral_1_right
              mult_zero_right not_mod_2_eq_1_eq_0 numeral_One zero_less_Suc)

  then have "nth_bit (a && b) (Suc k) = (nth_bit (a div 2 && b div 2) k)"
    by (auto simp add: nth_bit_def)

  then have "nth_bit (a && b) (Suc k) = (nth_bit (a div 2) k) * (nth_bit (b div 2) k)"
    using Suc
    by presburger

  then show ?case
    by (metis div_mult2_eq nth_bit_def power_Suc)
qed

lemma bitAND_single_bit_mult_equiv: "a  1  b  1  a * b = a && b"
  using bitAND_digit_mult[of a b 0] bitAND_zeroone by (auto simp: nth_digit_0)

lemma bitAND_mult_equiv:
  "(k. (nth_bit c k) = (nth_bit a k) * (nth_bit b k))  c = a && b" (is "?P  ?Q")
proof
  assume "?Q"
  then show "?P" using bitAND_digit_mult by simp
next
  assume "?P"
  then show "?Q" using bitAND_digit_mult digit_wise_equiv by presburger
qed

lemma bitAND_linear:
  fixes k::nat
  shows "(b < 2^k)  (d < 2^k)  (a * 2^k + b) && (c * 2^k + d) = (a && c) * 2^k + (b && d)"
proof(induction k arbitrary: a b c d)
  case 0
  then show ?case by simp
next
  case (Suc k)
  define m where "m = a * 2^(Suc k) + b"
  define n where "n = c * 2^(Suc k) + d"

  have "m && n = 2 * (bitAND_nat (m div 2) (n div 2)) + (m mod 2) * (n mod 2)"
    using bitAND_rec
    by blast

  moreover have "d mod 2 = n mod 2  b mod 2 = m mod 2"
    by (metis m_def n_def add.commute mod_mult_self2 power_Suc semiring_normalization_rules(19))

  ultimately have f0:"m && n
                      = 2 * ((a * 2^k + (b div 2)) && (c * 2^k + (d div 2))) + (b mod 2)*(d mod 2)"
    by (metis add.commute div_mult_self2 m_def n_def power_Suc semiring_normalization_rules(19)
              zero_neq_numeral)

  have "b div 2 < (2 ^ k)  d div 2 < (2 ^ k)"
    using Suc.prems
    by auto

  then have f1:"m && n
                = ((a && c) * 2^(Suc k)) + 2 * ((b div 2) && (d div 2)) + (b mod 2) * (d mod 2)"
    using f0 Suc.IH
    by simp

  have "b && d = 2 * ((b div 2) && (d div 2)) + (b mod 2) * (d mod 2)"
    using bitAND_rec
    by blast

  then show ?case
    using f1
    by (auto simp add: m_def n_def)
qed

subsection ‹Binary orthogonality›
text ‹cf. citeh10lecturenotes section 2.6.1 on "Binary orthogonality"›
text ‹The following definition differs slightly from the one in the paper. However, we later prove the 
     equivalence of the two definitions.›

fun orthogonal :: "nat => nat => bool" (infix  49) where
  "(orthogonal a b) = (a && b = 0)"

lemma ortho_mult_equiv: "a  b  (k. (nth_bit a k) * (nth_bit b k) = 0)" (is "?P  ?Q")
proof
  assume "?P"
  then show "?Q" using bitAND_digit_mult nth_bit_def by (metis div_0 mod_0 orthogonal.simps)
next
  assume "?Q"
  then show "?P" using bitAND_mult_equiv nth_bit_def by (metis div_0 mod_0 orthogonal.simps)
qed

lemma aux1_1_digit_lt_linear:
  assumes "b < 2^r" "k  r"
  shows  "bin_carry (a*2^r) b k = 0"
proof-
  have "b < 2^r (a*2^r)  b"
  proof(induct a  b rule: bitAND_nat.induct)
    case (1 uu)
    then show ?case by simp
  next
    case (2 v n)
    show ?case apply auto using bitAND_linear[of n r 0 0 "Suc(v)"] bitAND_commutes by auto
  qed
  then show ?thesis using ortho_mult_equiv no_carry_mult_equiv assms(1) by auto
qed

lemma aux1_digit_lt_linear:
  assumes "b < 2^r" and "k  r"
  shows "(a*2^r + b) ¡ k = (a*2^r) ¡ k"
proof-
  have "b div 2 ^ k = 0" using assms by (simp add: order.strict_trans2)
  moreover have "(a * 2 ^ r mod 2 ^ k +  b mod 2 ^ k) div 2 ^ k = 0" using assms
  proof-
    have "bin_carry (a*2^r) b k = 0" using assms aux1_1_digit_lt_linear by auto
    then show ?thesis using assms by (auto simp add: bin_carry_def)
  qed
  ultimately show ?thesis
    by (auto simp add: nth_bit_def div_add1_eq[of "a*2^r" "b" "2^k"])
qed

lemma aux_digit_shift: "(a * 2^t) ¡ (l+t) = a ¡ l"
  using nth_bit_def
  by (induct l; auto)
     (smt (verit) div_mult2_eq mult.commute nonzero_mult_div_cancel_right power_add power_not_zero zero_neq_numeral)

lemma aux_digit_lt_linear:
  assumes b: "b < (2::nat)^t"
  assumes d: "d < (2::nat)^t"
  shows "(a * 2^t + b) ¡ k  (c * 2^t + d) ¡ k  ((a * 2^t) ¡ k  (c * 2^t) ¡ k  b ¡ k  d ¡ k)"
proof (cases "k < t")
  case True
  from True have "(a * 2^t + b) ¡ k = b ¡ k"
    using aux2_digit_sum_repr assms(1) by auto
  moreover from True have "(c * 2^t + d) ¡ k = d ¡ k"
    using aux2_digit_sum_repr assms(2) by auto
  moreover from True have "(a * 2^t) ¡ k = 0"
    using aux2_digit_sum_repr[of "0"] nth_bit_def by auto
  ultimately show ?thesis
    using aux2_digit_sum_repr assms by auto
next
  case False
  from False have "(a * 2^t + b) ¡ k = (a * 2^t) ¡ k"
    using aux1_digit_lt_linear assms(1) by auto
  moreover from False have "(c * 2^t + d) ¡ k = (c * 2^t) ¡ k" using aux1_digit_lt_linear assms(2) by auto
  moreover from False have "b ¡ k = 0"
    using aux1_digit_lt_linear[of _ _ _ "0"] nth_bit_def assms(1) by auto
  ultimately show ?thesis by auto
qed

lemma aux2_digit_lt_linear:
  fixes a b c d t l :: nat
  shows "k. (a * 2^t) ¡ k  (c * 2^t) ¡ k  a ¡ l  c ¡ l"
proof -
  define k where "k = l + t"
  have "(a * 2^t) ¡ k = a ¡ l" using nth_bit_def k_def
    using aux_digit_shift by auto
  moreover have "(c * 2^t) ¡ k = c ¡ l" using nth_bit_def k_def
    using aux_digit_shift by auto
  ultimately show ?thesis by metis
qed

lemma aux3_digit_lt_linear:
  fixes a b c d t k :: nat
  shows "l. a ¡ l  c ¡ l  (a * 2^t) ¡ k  (c * 2^t) ¡ k"
proof (cases "k < t")
  case True
  hence "(a * 2^t) ¡ k = 0"
    using aux2_digit_sum_repr[of "0"] nth_bit_def by auto
  then show ?thesis by auto
next
  case False
  define l where "l = k - t"
  hence k: "k = l + t" using False by auto
  have "(a * 2^t) ¡ k = a ¡ l" using nth_bit_def l_def
    using aux_digit_shift k by auto
  moreover have "(c * 2^t) ¡ k = c ¡ l" using nth_bit_def l_def
    using aux_digit_shift k by auto
  ultimately show ?thesis by auto
qed

lemma digit_lt_linear:
  fixes a b c d t :: nat
  assumes b: "b < (2::nat)^t"
  assumes d: "d < (2::nat)^t"
  shows "(k. (a * 2^t + b) ¡ k  (c * 2^t + d) ¡ k)  (l. a ¡ l  c ¡ l  b ¡ l  d ¡ l)"
proof -
  have shift: "(k. (a * 2^t) ¡ k  (c * 2^t) ¡ k)  (l. a ¡ l  c ¡ l)" (is "?P  ?Q")
  proof
    assume P: ?P
    show ?Q using P aux2_digit_lt_linear by auto
  next
    assume Q: ?Q
    show ?P using Q aux3_digit_lt_linear by auto
  qed

  have main: "(k. (a * 2^t + b) ¡ k  (c * 2^t + d) ¡ k  ((a * 2^t) ¡ k  (c * 2^t) ¡ k  b ¡ k  d ¡ k))"
    using aux_digit_lt_linear b d by auto

  from main shift show ?thesis by auto
qed

text ‹Sufficient bitwise (digitwise) condition for the non-strict standard order of natural numbers›

lemma digitwise_leq: 
  assumes "b>1"
  shows "t. nth_digit x t b  nth_digit y t b  x  y"
proof -
  assume asm: "t. nth_digit x t b  nth_digit y t b"
  define r where "r (if x>y then x else y)"
  have "x = (k<x. (nth_digit x k b) * b ^ k)" 
    using digit_gen_sum_repr_variant b>1 by auto
  hence x: "x = (k=0..<r. (nth_digit x k b) * b ^ k)" 
    using atLeast0LessThan r_def digit_gen_sum_index_variant b>1 
    by (metis (full_types) linorder_neqE_nat)
  have "y = (k<y. (nth_digit y k b) * b ^ k)" 
    using digit_gen_sum_repr_variant b>1 by auto
  hence y: "y = (k=0..<r. (nth_digit y k b) * b ^ k)"
    using atLeast0LessThan r_def digit_gen_sum_index_variant b>1 by auto
  show ?thesis using asm x y 
    sum_mono[of "{0..<r}" "λk. nth_digit x k b * b^k" "λk. nth_digit y k b * b^k"] 
    by auto
qed

subsection ‹Binary masking›

text ‹Preliminary result on the standard non-strict of natural numbers›

lemma bitwise_leq: "(k. a ¡ k   b ¡ k)  a  b"
  using digitwise_leq[of 2] by (simp add: nth_digit_base2_equiv)

text ‹cf. citeh10lecturenotes section 2.6.2 on "Binary Masking"›
text ‹Again, the equivalence to the definition there will be proved in a later lemma.›

fun masks :: "nat => nat => bool" (infix  49) where
  "masks 0 _ = True" |
  "masks a b = ((a div 2  b div 2)  (a mod 2  b mod 2))"

lemma masks_substr: "a  b  (a div (2^k)  b div (2^k))"
proof (induction k)
  case 0
  then show ?case by simp
next
  case (Suc k)
  moreover
  {
    fix ka :: nat
    assume a1: "a div 2 ^ ka  b div 2 ^ ka"

    have f2: "n na nb. (nb::nat) div na div n = nb div n div na"
      by (metis (no_types) div_mult2_eq semiring_normalization_rules(7))

    then have f3: "n na nb nc.
                    (nc div nb = 0  nc div 2 div nb  na div 2 div n)  ¬ nc div nb  na div n"
      by (metis (no_types) masks.elims(2))

    {
      assume "n. a div n div 2 ^ ka  0" then have "a div 2 ^ ka  0" using f2 by (metis div_0)
      then have "a div 2 div 2 ^ ka  b div 2 div 2 ^ ka" using f3 a1 by meson
    }
    then have "a div (2 * 2 ^ ka)  b div (2 * 2 ^ ka)"
      by (metis (no_types) div_mult2_eq masks.simps(1))
  }
  ultimately show ?case by simp
qed

lemma masks_digit_leq:"(a  b)  (nth_bit a k)  (nth_bit b k)"
proof (induction k arbitrary: a b)
  case 0
  then show ?case
    by (metis add_cancel_left_right bitAND_nat.elims div_by_1 le0 masks.simps(2) power_0
              mod_mult_self1_is_0 mod_mult_self4 nth_bit_def)
next
  case (Suc k)
  then show ?case
    by (simp add: nth_bit_def)
       (metis div_mult2_eq masks_substr nth_bit_def pow.simps(1) power_numeral)
qed

lemma masks_leq_equiv:"(a  b)  (k. (nth_bit a k)  (nth_bit b k))" (is "?P  ?Q")
proof
  assume "?P"
  then show "?Q" using masks_digit_leq by auto
next
  assume "?Q"
  then show "?P" using nth_bit_def
  proof (induct a b rule: masks.induct)
    case (1 uu)
    then show ?case by simp
  next
    case (2 v b)
    then show ?case by simp (metis drop_bit_Suc drop_bit_eq_div div_by_1 power.simps(1))
  qed
qed

lemma masks_leq:"a  b  a  b"
  using masks_leq_equiv bitwise_leq by simp

lemma mask_linear:
  fixes a b c d t :: nat
  assumes b: "b < (2::nat)^t"
  assumes d: "d < (2::nat)^t"
  shows "((a * 2^t + b  c * 2^t + d)  (a  c  b  d))" (is "?P  ?Q")
proof -
  have "?P  (k. (a * 2^t + b) ¡ k  (c * 2^t + d) ¡ k)" using masks_leq_equiv by auto
  also have "...  (k. a ¡ k  c ¡ k  b ¡ k  d ¡ k)" using b d digit_lt_linear by auto
  also have "...  a  c  b  d" using masks_leq_equiv by auto
  finally show ?thesis by auto
qed

lemma aux1_lm0241_pow2_up_bound:"((p::nat). (a::nat) < 2^(Suc p))"
  by (induction a) (use less_exp in fastforce)+

lemma aux2_lm0241_single_digit_binom:
  assumes "1  (a::nat)"
  assumes "1  (b::nat)"
  shows "¬(a = 1  b = 1)  ((a + b) choose b) = 1" (is "?P  ?Q")
  using assms(1) assms(2)
  by (metis Suc_eq_plus1 add.commute add_cancel_right_left add_eq_if
              binomial_n_0 choose_one le_add2 le_antisym zero_neq_one)

lemma aux3_lm0241_binom_bounds:
  assumes "1  (m::nat)"
  assumes "1  (n::nat)"
  shows "1  m choose n"
  using assms(1) assms(2) le_Suc_eq by auto

lemma aux4_lm0241_prod_one:
  fixes f::"(nat  nat)"
  assumes "(x. (1  f x))"
  shows "(k  n. (f k)) = 1  (k. k  n  f k = 1)" (is "?P  ?Q")
proof(rule ccontr)
  assume assm:"¬(?P  ?Q)"
  hence f_zero:"r. r  n  f r  1" by simp
  then obtain r where "f r  1"  and "r  n" by blast
  hence "f r = 0" using assms le_antisym not_less by blast
  hence contr:"(k  n. f k) = 0" using r  n by auto
  then show False using assm contr by simp
qed

lemma aux5_lm0241:
  "(i. (nth_bit (a + b) i) choose (nth_bit b i) = 1) 
   ¬(nth_bit a i = 1  nth_bit b i = 1)"
   (is "?P  ?Q i")
proof(rule ccontr)
  assume assm:"¬(?P  ?Q i)"
  hence "(i. ¬?Q i)" by blast
  then obtain i where contr:"¬?Q i" and i_minimal:"(j < i. ?Q j)" 
    using obtain_smallest[of λi. ¬?Q i] by auto
  hence "j. j < i  nth_bit a j * nth_bit b j = 0" by (simp add: nth_bit_def)
  hence "j. j < i  ((nth_bit a j = 0  nth_bit b j = 1) 
                            (nth_bit a j = 1  nth_bit b j = 0) 
                            (nth_bit a j = 0  nth_bit b j = 0))"
      by (auto simp add: nth_bit_def)
  hence "j. j < i  nth_bit a j + nth_bit b j  1" by auto
  hence "bin_carry a b i = 0"
    using no_carry by (metis contr add_self_mod_2 assm choose_one one_neq_zero)
  hence f0:"nth_bit (a + b) i = (nth_bit a i + nth_bit b i) mod 2"
    by(auto simp add:sum_digit_formula)
  have "... = 0" using contr by auto
  hence "(nth_bit (a + b) i) choose (nth_bit b i) = 0" using f0 contr by auto
  then show False using assm by fastforce
qed

end