Theory Bits_Digits
section ‹Digit functions›
theory Bits_Digits
imports Main
begin
text ‹We define the n-th bit of a number in base 2 representation ›
definition nth_bit :: "nat ⇒ nat ⇒ nat" (infix ‹¡› 100) where
"nth_bit num k = (num div (2 ^ k)) mod 2"
lemma nth_bit_eq_of_bool_bit:
‹nth_bit num k = of_bool (bit num k)›
by (simp add: nth_bit_def bit_iff_odd mod_2_eq_odd)
text ‹as well as the n-th digit of a number in an arbitrary base ›
definition nth_digit :: "nat ⇒ nat ⇒ nat ⇒ nat" where
"nth_digit num k base = (num div (base ^ k)) mod base"
text ‹In base 2, the two definitions coincide. ›
lemma nth_digit_base2_equiv:"nth_bit a k = nth_digit a k (2::nat)"
by (auto simp add:nth_bit_def nth_digit_def)
lemma general_digit_base:
assumes "t1 > t2" and "b>1"
shows "nth_digit (a * b^t1) t2 b = 0"
proof -
have 1: "b^t1 div b^t2 = b^(t1-t2)" using assms apply auto
by (metis Suc_lessD less_imp_le less_numeral_extra(3) power_diff)
have "b^t2 dvd b^t1" using `t1 > t2`
by (simp add: le_imp_power_dvd)
hence "(a * b^t1) div b^t2 = a * b^(t1-t2)" using div_mult_swap[of "b^t2" "b^t1" "a"] 1 by auto
thus ?thesis using nth_digit_def assms by auto
qed
lemma nth_bit_bounded: "nth_bit a k ≤ 1"
by (auto simp add: nth_bit_def)
lemma nth_digit_bounded: "b>1 ⟹ nth_digit a k b ≤ b-1"
apply (auto simp add: nth_digit_def)
using less_Suc_eq_le by fastforce
lemma obtain_smallest: "P (n::nat) ⟹ ∃k≤n. P k ∧ (∀a<k.¬(P a))"
by (metis ex_least_nat_le not_less_zero zero_le)
subsection ‹Simple properties and equivalences›
text ‹Reduce the @{term nth_digit} function to @{term nth_bit} if the base is a power of 2›
lemma digit_gen_pow2_reduct:
‹(nth_digit a t (2 ^ c)) ¡ k = a ¡ (c * t + k)› if ‹k < c›
proof -
have moddiv: "(x mod 2 ^ c) ¡ k = x ¡ k" for x
proof-
define n where ‹n = c - k›
with ‹k < c› have c_nk: ‹c = n + k›
by simp
obtain a b where x_def: "x = a * 2 ^ c + b" and "b < 2 ^ c"
by (meson mod_div_decomp mod_less_divisor zero_less_numeral zero_less_power)
then have bk: "(x mod 2 ^ c) ¡ k = b ¡ k" by simp
from ‹b < 2 ^ c› have ‹x div 2 ^ k = a * 2 ^ (c - k) + b div 2 ^ k›
by (simp add: x_def c_nk power_add flip: mult.commute [of ‹2 ^ k›] mult.left_commute [of ‹2 ^ k›])
then have "x ¡ k = (a*2^(c-k) + b div 2^k) mod 2" by (simp add: nth_bit_def)
then have "x ¡ k = b ¡ k" using nth_bit_def ‹k < c› by (simp add: mod2_eq_if)
then show ?thesis using nth_bit_def bk by linarith
qed
have "a div ((2 ^ c) ^ t * 2 ^ k) = a div (2 ^ c) ^ t div 2 ^ k" using div_mult2_eq by blast
moreover have "a div (2 ^ c) ^ t mod 2 ^ c div 2 ^ k mod 2 = a div (2 ^ c) ^ t div 2 ^ k mod 2"
using moddiv nth_bit_def by auto
ultimately show "(nth_digit a t (2^c)) ¡ k = a ¡ (c*t+k)"
using nth_digit_def nth_bit_def by (auto simp: power_add power_mult)
qed
text ‹Show equivalence of numbers by equivalence of all their bits (digits)›
lemma aux_even_pow2_factor: "a > 0 ⟹ ∃k b. ((a::nat) = (2^k) * b ∧ odd b)"
proof(induction a rule: full_nat_induct)
case (1 n)
then show ?case
proof (cases "odd n")
case True
then show ?thesis by (metis nat_power_eq_Suc_0_iff power_Suc power_Suc0_right power_commutes)
next
case False
have "(∃t. n = 2 * t)" using False by auto
then obtain t where n_def:"n = 2 * t" ..
then have "t < n" using "1.prems" by linarith
then have ih:"∃r s. t = 2^r * s ∧ odd s" using 1 n_def by simp
then have "∃r s. n = 2^(Suc r) * s" using n_def by auto
then show ?thesis by (metis ih n_def power_commutes semiring_normalization_rules(18)
semiring_normalization_rules(28))
qed
qed
lemma aux0_digit_wise_equiv:"a > 0 ⟹ (∃k. nth_bit a k = 1)"
proof -
assume a_geq_0: "a > 0"
consider (odd) "a mod 2 = 1" | (even) "a mod 2 = 0" by force
then show ?thesis
proof(cases)
case odd
then show ?thesis by (metis div_by_1 nth_bit_def power_0)
next
case even
then have bk_def:"∃k b. (a = (2^k) * b ∧ odd b)"
using aux_even_pow2_factor a_geq_0 by simp
then obtain b k where bk_cond:"(a = (2^k) * b ∧ odd b)" by blast
then have "b = a div (2^k)" by simp
then have digi_b:"nth_bit b 0 = 1" using bk_def
using bk_cond nth_bit_def odd_iff_mod_2_eq_one by fastforce
then have "nth_bit a k = (nth_bit b 0)" using nth_bit_def bk_cond by force
then have "nth_bit a k = 1" using digi_b by simp
then show ?thesis by blast
qed
qed
lemma aux1_digit_wise_equiv:"(∀k.(nth_bit a k = 0)) ⟷ a = 0" (is "?P ⟷ ?Q")
proof
assume "?Q"
then show "?P" by (simp add: nth_bit_def)
next
{
assume a_neq_0:"¬?Q"
then have "a > 0" by blast
then have "¬?P" using aux0_digit_wise_equiv by (metis zero_neq_one)
}
thus "?P ⟹ ?Q" by blast
qed
lemma aux2_digit_wise_equiv: "(∀r<k. nth_bit a r = 0) ⟶ (a mod 2^k = 0)"
proof(induct k)
case 0
then show ?case
by (auto simp add: nth_bit_def)
next
case (Suc k)
then show ?case
by (auto simp add: nth_bit_def)
(metis dvd_imp_mod_0 dvd_mult_div_cancel dvd_refl even_iff_mod_2_eq_zero
lessI minus_mod_eq_div_mult minus_mod_eq_mult_div mult_dvd_mono)
qed
lemma digit_wise_equiv: "(a = b) ⟷ (∀k. nth_bit a k = nth_bit b k)" (is "?P ⟷ ?Q")
proof
assume "?P"
then show "?Q" by simp
next
{
assume notP: "¬?P"
have "¬(∀k. nth_bit a k = nth_bit b k)" if ab: "a<b" for a b
proof-
define c::nat where "c = b - a"
have b: "a+c=b" by (auto simp add: c_def "ab" less_imp_le)
have "∃k.(nth_bit c k = 1)" using nth_bit_def aux1_digit_wise_equiv
by (metis c_def not_less0 not_mod_2_eq_1_eq_0 that zero_less_diff)
then obtain k where k1:"nth_bit c k = 1" and k2:"∀r < k. (nth_bit c r ≠ 1)"
by (auto dest: obtain_smallest)
then have cr0: "∀r < k. (nth_bit c r = 0)" by (simp add: nth_bit_def)
from aux2_digit_wise_equiv cr0 have "c mod 2^k = 0" by auto
then have "a div 2 ^ k mod 2 ≠ b div 2 ^ k mod 2"
by auto (metis b div_plus_div_distrib_dvd_right even_add k1 nth_bit_def odd_iff_mod_2_eq_one)
then show ?thesis by (auto simp add: nth_bit_def)
qed
from this [of a b] this [of b a] notP have "∀k. nth_bit a k = nth_bit b k ⟹ a = b"
using linorder_neqE_nat by auto
}
then show "?Q ==> ?P" by auto
qed
text ‹Represent natural numbers in their binary expansion›
lemma aux3_digit_sum_repr:
assumes "b < 2^r"
shows "(a*2^r + b) ¡ r = (a*2^r) ¡ r"
by (auto simp add: nth_bit_def assms)
lemma aux2_digit_sum_repr:
assumes "n < 2^c" "r < c"
shows "(a*2^c+n) ¡ r = n ¡ r"
proof -
have [simp]: ‹a*(2::nat) ^ c div 2 ^ r = a*2 ^ (c - r)›
using assms(2)
by (auto simp: less_iff_Suc_add
monoid_mult_class.power_add ac_simps)
show ?thesis
using assms
by (auto simp add: nth_bit_def
div_plus_div_distrib_dvd_left
le_imp_power_dvd
simp flip: mod_add_left_eq)
qed
lemma aux1_digit_sum_repr:
assumes "n < 2^c" "r<c"
shows "(∑k<c.((n ¡ k)*2^k)) ¡ r = n ¡ r"
proof-
define a where "a ≡ (∑k=0..<Suc(r).((n ¡ k)*2^k))"
define d where "d ≡ (∑k=Suc(r)..<c.((n ¡ k)*2^k))"
define e where "e ≡ (∑k=Suc r..<c.((n ¡ k)*2^(k-Suc(r))))"
define b where "b ≡ (∑k=0..<r.((n ¡ k)*2^k))"
have ad: "(∑k=0..<c.((n ¡ k)*2^k)) = a + d"
using a_def d_def assms
by (metis (no_types, lifting) Suc_leI a_def assms(2) d_def sum.atLeastLessThan_concat zero_le)
have "d = (∑k=Suc(r)..<c.(2^(Suc r) * (n ¡ k * 2^(k - Suc r))))"
using d_def apply (simp)
apply (rule sum.cong; auto simp: algebra_simps)
by (metis add_Suc le_add_diff_inverse numerals(2) power_Suc power_add)
hence d2r: "d = 2^Suc(r)*e" using d_def e_def
sum_distrib_left[of "2^(Suc r)" "λk. (n ¡ k) * 2^(k - Suc r)" "{Suc r..<c}"] by auto
have "(∑k<c.((n ¡ k)*2^k)) = a +2^Suc(r)*e" by (simp add: d2r ad lessThan_atLeast0)
moreover have "(∑k=0..<Suc(r).((n ¡ k)*2^k)) < 2 ^ Suc(r)" using assms
proof(induct r)
case 0
then show ?case
proof -
have "n ¡ 0 < Suc 1"
by (metis (no_types) atLeastLessThan_empty atLeastLessThan_iff lessI linorder_not_less
nth_bit_bounded)
then show ?thesis
by simp
qed
next
case (Suc r)
have r2: "n ¡ Suc(r) * 2 ^ Suc(r) ≤ 2 ^ Suc(r)" using nth_bit_bounded by simp
have "(∑k=0..<Suc(r).((n ¡ k)*2^k)) < 2 ^ Suc(r)"
using Suc.hyps using Suc.prems(2) Suc_lessD assms(1) by blast
then show ?case using "r2"
by (smt (verit) Suc_leI Suc_le_lessD add_Suc add_le_mono mult_2 power_Suc sum.atLeast0_lessThan_Suc)
qed
then have "a < 2 ^Suc(r)" using a_def by blast
ultimately have ar:"(a+d) ¡ r = a ¡ r" using d2r
by (metis (no_types, lifting) aux2_digit_sum_repr lessI semiring_normalization_rules(24)
semiring_normalization_rules(7))
have ab: "a =(n ¡ r)*2^r + b" using a_def b_def d_def by simp
have "(∑k=0..<r.((n ¡ k)*2^k)) <2^r"
proof(induct r)
case 0
then show ?case by auto
next
case (Suc r)
have r2: "n ¡ r * 2 ^ r ≤ 2 ^ r" using nth_bit_bounded by simp
have "(∑k = 0..<r. n ¡ k * 2 ^ k) < 2^r" using Suc.hyps by auto
then show ?case apply simp using "r2" by linarith
qed
then have b: "b < 2^r" using b_def by blast
then have "a ¡ r = ((n ¡ r)*2^r) ¡ r" using ab aux3_digit_sum_repr by simp
then have "a ¡ r = (n ¡ r)" using nth_bit_def by simp
then show ?thesis using ar a_def by (simp add: ad lessThan_atLeast0)
qed
lemma digit_sum_repr:
assumes "n < 2^c"
shows "n = (∑k < c.((n ¡ k) * 2^k))"
proof -
have "∀k. (c≤k ⟶ n<2^k)" using assms less_le_trans by fastforce
then have nik: "∀k.( k≥ c ⟶ (n ¡ k = 0))" by (auto simp add: nth_bit_def)
have "(∑r<c.((n ¡ r)*(2::nat)^r))<(2::nat)^c"
proof (induct c)
case 0
then show ?case by simp
next
case (Suc c)
then show ?case
using nth_bit_bounded
add_mono_thms_linordered_field[of "(n ¡ c)* 2 ^ c" " 2 ^ c" "(∑r<c. n ¡ r * 2 ^ r)" "2^c"]
by simp
qed
then have "∀k. k≥ c ⟶ (∑r<c.((n ¡ r)*2^r)) ¡ k = 0"
using less_le_trans by (auto simp add: nth_bit_def) fastforce
then have "∀r≥c.(n ¡ r = (∑k<c.((n ¡ k)*2^k)) ¡ r)" by (simp add: nik)
moreover have "∀r<c.(n ¡ r = (∑k<c.((n ¡ k)*2^k)) ¡ r)" using aux1_digit_sum_repr assms by simp
ultimately have "∀r.(∑k<c.((nth_bit n k)*2^k)) ¡ r = n ¡ r " by (metis not_less)
then show ?thesis using digit_wise_equiv by presburger
qed
lemma digit_sum_repr_variant:
"n =(∑k<n.((nth_bit n k)*2^k))"
using less_exp digit_sum_repr by auto
lemma digit_sum_index_variant:
"r>n ⟶ ((∑k< n.((n ¡ k)*2^k)) = (∑k< r.(n ¡ k)*2^k))"
proof-
have "∀r.(2^r > r)" using less_exp by simp
then have pow2: "∀r.(r>n ⟶ 2^r>n)" using less_trans by blast
then have "∀r.(r > n ⟶ (n ¡ r = 0))" by (auto simp add: nth_bit_def)
then have "∀r. r > n ⟶ (n ¡ r)*2^r = 0" by auto
then show ?thesis using digit_sum_repr digit_sum_repr_variant pow2 by auto
qed
text ‹Digits are preserved under shifts›
lemma digit_shift_preserves_digits:
assumes "b>1"
shows "nth_digit (b * y) (Suc t) b = nth_digit y t b"
using nth_digit_def assms by auto
lemma digit_shift_inserts_zero_least_siginificant_digit:
assumes "t>0" and "b>1"
shows "nth_digit (1 + b * y) t b = nth_digit (b * y) t b"
using nth_digit_def assms apply auto
proof -
assume "0 < t"
assume "Suc 0 < b"
hence "Suc (b * y) mod b = 1"
by (simp add: Suc_times_mod_eq)
hence "b * y div b = Suc (b * y) div b"
using ‹b>1› by (metis (no_types) One_nat_def diff_Suc_Suc gr_implies_not0 minus_mod_eq_div_mult
mod_mult_self1_is_0 nonzero_mult_div_cancel_right)
then show "Suc (b * y) div b ^ t mod b = b * y div b ^ t mod b"
using ‹t>0› by (metis Suc_pred div_mult2_eq power_Suc)
qed
text ‹Represent natural numbers in their base-b digitwise expansion›
lemma aux3_digit_gen_sum_repr:
assumes "d < b^r" and "b > 1"
shows "nth_digit (a*b^r + d) r b = nth_digit (a*b^r) r b"
using ‹b>1› by (auto simp: nth_digit_def assms)
lemma aux2_digit_gen_sum_repr:
assumes "n < b^c" "r < c"
shows "nth_digit (a*b^c+n) r b = nth_digit n r b"
proof -
have [simp]: ‹a*b ^ c div b ^ r = a*b ^ (c - r)›
using assms(2)
by (auto simp: less_iff_Suc_add
monoid_mult_class.power_add ac_simps)
show ?thesis
using assms
by (auto simp add: nth_digit_def
div_plus_div_distrib_dvd_left
le_imp_power_dvd
simp flip: mod_add_left_eq)
qed
lemma aux1_digit_gen_sum_repr:
assumes "n < b^c" "r<c" and "b>1"
shows "nth_digit (∑k<c.((nth_digit n k b)*b^k)) r b = nth_digit n r b"
proof-
define a where "a ≡ (∑k=0..<Suc(r).((nth_digit n k b)*b^k))"
define d where "d ≡ (∑k=Suc(r)..<c.((nth_digit n k b)*b^k))"
define e where "e ≡ (∑k=Suc r..<c.((nth_digit n k b)*b^(k-Suc(r))))"
define f where "f ≡ (∑k=0..<r.((nth_digit n k b)*b^k))"
have ad: "(∑k=0..<c.((nth_digit n k b)*b^k)) = a + d"
using a_def d_def assms
by (metis (no_types, lifting) Suc_leI a_def assms(2) d_def sum.atLeastLessThan_concat zero_le)
have "d = (∑k=Suc(r)..<c.(b^(Suc r) * (nth_digit n k b * b^(k - Suc r))))"
using d_def apply (auto) apply (rule sum.cong; auto simp: algebra_simps)
by (metis add_Suc le_add_diff_inverse power_Suc power_add)
hence d2r: "d = b^Suc(r)*e" using d_def e_def sum_distrib_left[of "b^(Suc r)"
"λk. (nth_digit n k b) * b^(k - Suc r)" "{Suc r..<c}"] by auto
have "(∑k<c.((nth_digit n k b)*b^k)) = a +b^Suc(r)*e"
by (simp add: d2r ad lessThan_atLeast0)
moreover have "(∑k=0..<Suc(r).((nth_digit n k b)*b^k)) < b ^ Suc(r)" using assms
proof(induct r)
case 0
then show ?case
proof -
have "nth_digit n 0 b < b"
using nth_digit_bounded[of "b" "n" "0"] ‹b>1› by auto
then show ?thesis
by simp
qed
next
case (Suc r)
have r2: "(nth_digit n (Suc r) b) * b ^ Suc(r) ≤ (b-1) * b ^ Suc(r)"
using nth_digit_bounded[of "b" "n" "Suc r"] ‹b>1› by auto
moreover have "(∑k=0..<Suc(r).((nth_digit n k b)*b^k)) < b ^ Suc(r)"
using Suc.hyps using Suc.prems(2) Suc_lessD assms(1) ‹b>1› by blast
ultimately have "(nth_digit n (Suc r) b) * b ^ Suc(r)
+ (∑k=0..<Suc(r).((nth_digit n k b)*b^k)) < b ^ Suc (Suc r)"
using assms(3) mult_eq_if by auto
then show ?case by auto
qed
hence "a < b^Suc(r)" using a_def by blast
ultimately have ar:"nth_digit (a+d) r b = nth_digit a r b" using d2r
by (metis (no_types, lifting) aux2_digit_gen_sum_repr lessI semiring_normalization_rules(24)
semiring_normalization_rules(7))
have ab: "a =(nth_digit n r b)*b^r + f" using a_def f_def d_def by simp
have "(∑k=0..<r.((nth_digit n k b)*b^k)) < b^r"
proof(induct r)
case 0
then show ?case by auto
next
case (Suc r)
have r2: "nth_digit n r b * b ^ r ≤ (b-1) * b ^ r"
using nth_digit_bounded[of "b"] ‹b>1› by auto
have "(∑k = 0..<r. nth_digit n k b * b ^ k) < b^r" using Suc.hyps by auto
then show ?case using "r2" assms(3) mult_eq_if by auto
qed
hence f: "f < b^r" using f_def by blast
hence "nth_digit a r b = (nth_digit (nth_digit n r b * b^r) r b)"
using ab aux3_digit_gen_sum_repr ‹b>1› by simp
hence "nth_digit a r b = nth_digit n r b"
using nth_digit_def ‹b>1› by simp
then show ?thesis using ar a_def by (simp add: ad lessThan_atLeast0)
qed
lemma aux_gen_b_factor: "a > 0 ⟹ b>1 ⟹ ∃k c. ((a::nat) = (b^k) * c ∧ ¬(c mod b = 0))"
proof(induction a rule: full_nat_induct)
case (1 n)
show ?case
proof(cases "n mod b = 0")
case True
then obtain t where n_def: "n = b * t" by blast
hence "t < n"
using 1 by auto
with 1 have ih:"∃r s. t = b^r * s ∧ ¬(s mod b = 0)"
by (metis Suc_leI gr0I mult_0_right n_def)
hence "∃r s. n = b^(Suc r) * s" using n_def by auto
then show ?thesis by (metis ih mult.commute mult.left_commute n_def power_Suc)
next
case False
then show ?thesis by (metis mult.commute power_0 power_Suc power_Suc0_right)
qed
qed
lemma aux0_digit_wise_gen_equiv:
assumes "b>1" and a_geq_0: "a > 0"
shows "(∃k. nth_digit a k b ≠ 0)"
proof(cases "a mod b = 0")
case True
hence "∃k c. a = (b^k) * c ∧ ¬(c mod b = 0)"
using aux_gen_b_factor a_geq_0 assms by simp
then obtain c k where ck_cond:"a = (b^k) * c ∧ ¬(c mod b = 0)" by blast
hence c_cond:"c = a div (b^k)" using a_geq_0 by auto
hence digi_b:"nth_digit c 0 b ≠ 0"
using ck_cond nth_digit_def by force
hence "nth_digit a k b = nth_digit c 0 b"
using nth_digit_def c_cond by simp
hence "nth_digit a k b ≠ 0" using digi_b by simp
then show ?thesis by blast next
case False
then show ?thesis
by (metis div_by_1 nth_digit_def power.simps(1))
qed
lemma aux1_digit_wise_gen_equiv:
assumes "b>1"
shows "(∀k.(nth_digit a k b = 0)) ⟷ a = 0" (is "?P ⟷ ?Q")
proof
assume "?Q"
then show "?P" by (simp add: nth_digit_def)
next
{
assume a_neq_0:"¬?Q"
hence "a > 0" by blast
hence "¬?P" using aux0_digit_wise_gen_equiv ‹b>1› by auto
} from this show "?P ⟹ ?Q" by blast
qed
lemma aux2_digit_wise_gen_equiv: "(∀r<k. nth_digit a r b = 0) ⟶ (a mod b^k = 0)"
proof(induct k)
case 0
then show ?case by auto
next
case (Suc k)
then show ?case apply(auto simp add: nth_digit_def)
using dvd_imp_mod_0 dvd_mult_div_cancel dvd_refl
lessI minus_mod_eq_div_mult minus_mod_eq_mult_div mult_dvd_mono
by (metis mod_0_imp_dvd)
qed
text ‹Two numbers are the same if and only if their digits are the same›
lemma digit_wise_gen_equiv:
assumes "b>1"
shows "(x = y) ⟷ (∀k. nth_digit x k b = nth_digit y k b)" (is "?P ⟷ ?Q")
proof
assume "?P"
then show "?Q" by simp
next{
assume notP: "¬?P"
have"¬(∀k. nth_digit x k b = nth_digit y k b)" if xy: "x<y" for x y
proof-
define c::nat where "c = y - x"
have y: "x+c=y" by (auto simp add: c_def "xy" less_imp_le)
have "∃k.(nth_digit c k b ≠ 0)"
using nth_digit_def ‹b>1› aux0_digit_wise_gen_equiv
by (metis c_def that zero_less_diff)
then obtain k where k1:"nth_digit c k b ≠ 0"
and k2:"∀r < k. (nth_digit c r b = 0)"
apply(auto dest: obtain_smallest) done
hence cr0: "∀r < k. (nth_digit c r b = 0)" by (simp add: nth_digit_def)
from aux2_digit_wise_gen_equiv cr0 have "c mod b^k = 0" by auto
hence "x div b ^ k mod b ≠ y div b ^ k mod b"
using y k1 ‹b>1› aux1_digit_wise_gen_equiv[of "b" "c"] nth_digit_def apply auto
proof -
fix ka :: nat
assume a1: "b ^ k dvd c"
assume a2: "x div b ^ k mod b = (x + c) div b ^ k mod b"
assume a3: "y = x + c"
assume a4: "⋀num k base. nth_digit num k base
= num div base ^ k mod base"
have f5: "∀n na. (na::nat) + n - na = n"
by simp
have f6: "x div b ^ k + c div b ^ k = y div b ^ k"
using a3 a1 by (simp add: add.commute div_plus_div_distrib_dvd_left)
have f7: "∀n. (x div b ^ k + n) mod b = (y div b ^ k + n) mod b"
using a3 a2 by (metis add.commute mod_add_right_eq)
have "∀n na nb. ((nb::nat) mod na + n - (nb + n) mod na) mod na = 0"
by (metis (no_types) add.commute minus_mod_eq_mult_div mod_add_right_eq
mod_mult_self1_is_0)
then show "c div b ^ ka mod b = 0"
using f7 f6 f5 a4 by (metis (no_types) k1)
qed
then show ?thesis by (auto simp add: nth_digit_def)
qed
from this [of x y] this [of y x] notP
have "∀k. nth_digit x k b = nth_digit y k b ⟹ x = y" apply(auto)
using linorder_neqE_nat by blast}then show "?Q ==> ?P" by auto
qed
text ‹A number is equal to the sum of its digits multiplied by powers of two›
lemma digit_gen_sum_repr:
assumes "n < b^c" and "b>1"
shows "n = (∑k < c.((nth_digit n k b) * b^k))"
proof -
have 1: "(c≤k ⟶ n<b^k)" for k using assms less_le_trans by fastforce
hence nik: "c≤k ⟶ (nth_digit n k b = 0)" for k
by (auto simp add: nth_digit_def)
have "(∑r<c.((nth_digit n r b)*b^r))<b^c" apply(induct c, auto)
subgoal for c
proof -
assume IH: "(∑r<c. nth_digit n r b * b ^ r) < b ^ c"
have bound: "(nth_digit n c b) * b ^ c ≤ (b-1) * b^c"
using nth_digit_bounded ‹b>1› by auto
thus ?thesis using assms IH
by (metis (no_types, lifting) bound add_mono_thms_linordered_field(1)
add_mono_thms_linordered_field(5) le_less mult_eq_if not_one_le_zero)
qed
done
hence "k≥c ⟶ nth_digit (∑r<c.((nth_digit n r b)*b^r)) k b = 0" for k
apply(auto simp add: nth_digit_def) using less_le_trans assms(2) by fastforce
hence "∀r≥c.(nth_digit n r b
= nth_digit (∑k<c.((nth_digit n k b)*b^k)) r b)" by (simp add: nik)
moreover have "∀r<c.(nth_digit n r b
= nth_digit (∑k<c.((nth_digit n k b) * b^k)) r b)"
using aux1_digit_gen_sum_repr assms by simp
ultimately have "∀r. nth_digit (∑k<c.((nth_digit n k b)*b^k)) r b
= nth_digit n r b" by (metis not_less)
then show ?thesis
using digit_wise_gen_equiv[of "b" "(∑k<c. nth_digit n k b * b ^ k)" "n"] ‹b>1› by auto
qed
lemma digit_gen_sum_repr_variant:
assumes "b>1"
shows "n = (∑k<n.((nth_digit n k b)*b^k))"
proof-
have "n < b^n" using ‹b>1› apply (induct n, auto) by (simp add: less_trans_Suc)
then show ?thesis using digit_gen_sum_repr ‹b>1› by auto
qed
lemma digit_gen_sum_index_variant:
assumes "b>1" shows "r>n ⟹
(∑k< n.((nth_digit n k b )*b^k)) = (∑k< r.(nth_digit n k b)*b^k)"
proof -
assume "r>n"
have "b^r > r" for r using ‹b>1› by (induction r, auto simp add: less_trans_Suc)
hence powb: "∀r.(r>n ⟶ b^r>n)" using less_trans by auto
hence "r > n ⟶ (nth_digit n r b = 0)" for r
by (auto simp add: nth_digit_def)
hence "r > n ⟶ (nth_digit n r b) * b^r = 0" for r by auto
then show ?thesis using digit_gen_sum_repr digit_gen_sum_repr_variant powb ‹n < r› assms by auto
qed
text ‹@{text nth_digit} extracts coefficients from a base-b digitwise expansion›
lemma nth_digit_gen_power_series:
fixes c b k q
defines "b ≡ 2^(Suc c)"
assumes bound: "∀k. (f k) < b"
shows "nth_digit (∑k=0..q. (f k) * b^k) t b = (if t≤q then (f t) else 0)"
proof (induction q arbitrary: t)
case 0
have "b>1" using b_def
using one_less_numeral_iff power_gt1 semiring_norm(76) by blast
have "f 0 < b" using bound by auto
hence "t>0 ⟶ f 0 < b^t" using ‹b>1›
using bound less_imp_le_nat less_le_trans by (metis self_le_power)
thus ?case using nth_digit_def bound by auto
next
case (Suc q)
thus ?case
proof (cases "t ≤ Suc q")
case True
have f_le_bound: "f k ≤ b-1" for k using bound apply auto
by (metis Suc_pred b_def less_Suc_eq_le numeral_2_eq_2 zero_less_Suc zero_less_power)
have series_bound: "(∑k = 0..q. f k * b ^ k) < b^(Suc q)"
apply (induct q)
subgoal using bound by (simp add: less_imp_le_nat)
subgoal for q
proof -
assume asm: "(∑k = 0..q. f k * b ^ k) < b ^ Suc q"
have "(∑k = 0..q. f k * b ^ k) + f (Suc q) * (b * b ^ q)
≤ (∑k = 0..q. f k * b ^ k) + (b-1) * (b * b ^ q)" using f_le_bound by auto
also have "... < b^(Suc q) + (b-1) * (b * b ^ q)" using asm by auto
also have "... ≤ b * b * b^q" apply auto
by (metis One_nat_def Suc_neq_Zero b_def eq_imp_le mult.assoc mult_eq_if numerals(2)
power_not_zero)
finally show ?thesis using asm by auto
qed
done
hence "nth_digit ((∑k = 0..q. f k * b ^ k) + f (Suc q) * (b * b ^ q)) t b = f t"
using Suc nth_digit_def apply (cases "t = Suc q", auto)
subgoal using Suc_n_not_le_n add.commute add.left_neutral b_def bound div_mult_self1
less_imp_le_nat less_mult_imp_div_less mod_less not_one_le_zero one_less_numeral_iff
one_less_power power_Suc semiring_norm(76) zero_less_Suc by auto
subgoal
proof -
assume "t ≠ Suc q"
hence "t < Suc q" using True by auto
hence "nth_digit (f (Suc q) * b ^ Suc q + (∑k = 0..q. f k * b ^ k)) t b
= nth_digit (∑k = 0..q. f k * b ^ k) t b"
using aux2_digit_gen_sum_repr[of "∑k = 0..q. f k * b ^ k" "b" "Suc q" "t"
"f (Suc q)"] series_bound by auto
hence "((∑k = 0..q. f k * b ^ k) + f (Suc q) * (b * b ^ q)) div b ^ t mod b
= (∑k = 0..q. f k * b ^ k) div b ^ t mod b"
using nth_digit_def by (auto simp:add.commute)
thus ?thesis using Suc[of "t"] nth_digit_def True ‹t ≠ Suc q› by auto
qed
done
thus ?thesis using True by auto
next
case False
hence "t ≥ Suc (Suc q)" by auto
have f_le_bound: "f k ≤ b-1" for k using bound apply auto
by (metis Suc_pred b_def less_Suc_eq_le numeral_2_eq_2 zero_less_Suc zero_less_power)
have bound: "(∑k = 0..q. f k * b ^ k) < b^(Suc q)" for q
apply (induct q)
subgoal using bound by (simp add: less_imp_le_nat)
subgoal for q
proof -
assume asm: "(∑k = 0..q. f k * b ^ k) < b ^ Suc q"
have "(∑k = 0..q. f k * b ^ k) + f (Suc q) * (b * b ^ q)
≤ (∑k = 0..q. f k * b ^ k) + (b-1) * (b * b ^ q)" using f_le_bound by auto
also have "... < b^(Suc q) + (b-1) * (b * b ^ q)" using asm by auto
also have "... ≤ b * b * b^q" apply auto
by (metis One_nat_def Suc_neq_Zero b_def eq_imp_le mult.assoc mult_eq_if numerals(2)
power_not_zero)
finally show ?thesis using asm by auto
qed
done
have "(∑k = 0..q. f k * b ^ k) + f (Suc q) * (b * b ^ q) < (b ^ Suc (Suc q))"
using bound[of "Suc q"] by auto
also have "... ≤ b^t" using ‹t ≥ Suc (Suc q)›
apply auto by (metis b_def nat_power_less_imp_less not_le numeral_2_eq_2 power_Suc
zero_less_Suc zero_less_power)
finally show ?thesis using ‹t ≥ Suc (Suc q)› bound[of "Suc q"] nth_digit_def by auto
qed
qed
text ‹Equivalence condition for the @{text nth_digit} function \<^cite>‹"h10lecturenotes"›
(see equation 2.29)›
lemma digit_gen_equiv:
assumes "b>1"
shows "d = nth_digit a k b ⟷ (∃x.∃y.(a = x * b^(k+1) + d*b^k +y ∧ d < b ∧ y < b^k))"
(is "?P ⟷ ?Q")
proof
assume p: ?P
then show ?Q
proof(cases "k<a")
case True
have "(∑i<k.((nth_digit a i b)*b^i)) < b^k"
proof(induct k)
case 0
then show ?case by auto
next
case (Suc k)
have "(∑i<Suc k. nth_digit a i b * b ^ i) = (nth_digit a k b) * b^k
+ (∑i<k.((nth_digit a i b)*b^i))" by simp
moreover have " (nth_digit a k b) * b^k ≤ (b-1) * b^ k"
using assms mult_le_mono nth_digit_bounded by auto
moreover have "(∑i<k.((nth_digit a i b)*b^i)) < b ^ (Suc k)"
using Suc.hyps assms order.strict_trans2 by fastforce
ultimately show ?case using assms using Suc.hyps mult_eq_if by auto
qed
moreover define y where "y = (∑i<k.((nth_digit a i b)*b^i))"
ultimately have 3: "y < b^k" by blast
have 2: "d < b" using nth_digit_bounded[of b a k] p assms by linarith
define x where "x = (∑i=Suc k..<a. ((nth_digit a i b)*b^(i-Suc k)))"
have "a = (∑i<a.((nth_digit a i b)*b^i))" using assms digit_gen_sum_repr_variant by blast
hence s:"a = y + d * b^k
+ (∑i=Suc k..<a.((nth_digit a i b)*b^i))" using True y_def p
by (metis (no_types, lifting) Suc_leI atLeast0LessThan gr_implies_not0
linorder_not_less sum.atLeastLessThan_concat sum.lessThan_Suc)
have "(∑n = Suc k..<a. nth_digit a n b * b ^ (n - Suc k) * b ^ Suc k)
= (∑i = Suc k..<a. nth_digit a i b * b ^ i)"
apply (rule sum.cong; auto simp: algebra_simps)
by (metis Suc_le_lessD Zero_not_Suc add_diff_cancel_left' diff_Suc_1 diff_Suc_Suc
less_imp_Suc_add power_add power_eq_if)
hence "x * b^(k+1) = (∑i=Suc k..<a.((nth_digit a i b)*b^i))"
using x_def sum_distrib_right[of "λi. (nth_digit a i b) * b^(i - Suc k)"] by simp
hence "a = x * b^(k+1) + d*b^k +y" using s by auto
thus ?thesis using 2 3 by blast
next
case False
then have "a < b^k" using assms power_gt_expt[of b k] by auto
moreover have "d = 0" by (simp add: calculation nth_digit_def p)
ultimately show ?thesis
using assms by force
qed
next
assume ?Q
then obtain x y where conds: "a = x * b^(k+1) + d*b^k +y ∧ d < b ∧ y < b^k" by auto
hence "nth_digit a k b = nth_digit(x * b^(k+1) + d*b^k) k b"
using aux3_digit_gen_sum_repr[of y b "k" "x*b + d"] assms by (auto simp: algebra_simps)
hence "nth_digit a k b = nth_digit(d*b^k) k b"
using aux2_digit_gen_sum_repr[of "d*b^k" "b" "k+1" k x] conds by auto
then show ?P using conds nth_digit_def by simp
qed
end