Theory Native_Word.Uint_Common
chapter ‹Common logic auxiliary for all fixed-width word types›
theory Uint_Common
imports
"HOL-Library.Word"
"Word_Lib.Signed_Division_Word"
"Word_Lib.Most_significant_bit"
"Word_Lib.Generic_set_bit"
"Word_Lib.Bit_Comprehension"
begin
section ‹Some abstract nonsense›
lemmas [transfer_rule] =
identity_quotient
fun_quotient
Quotient_integer[folded integer.pcr_cr_eq]
lemma undefined_transfer:
assumes "Quotient R Abs Rep T"
shows "T (Rep undefined) undefined"
using assms unfolding Quotient_alt_def by blast
bundle undefined_transfer = undefined_transfer[transfer_rule]
section ‹Establishing type class instances for type copies of word type›
text ‹The lifting machinery is not localized, hence the abstract proofs are carried out using morphisms.›
locale word_type_copy =
fixes of_word :: ‹'b::len word ⇒ 'a›
and word_of :: ‹'a ⇒ 'b word›
assumes type_definition: ‹type_definition word_of of_word UNIV›
begin
lemma word_of_word:
‹word_of (of_word w) = w›
using type_definition by (simp add: type_definition_def)
lemma of_word_of [code abstype]:
‹of_word (word_of p) = p›
using type_definition by (simp add: type_definition_def)
lemma word_of_eqI:
‹p = q› if ‹word_of p = word_of q›
proof -
from that have ‹of_word (word_of p) = of_word (word_of q)›
by simp
then show ?thesis
by (simp add: of_word_of)
qed
lemma eq_iff_word_of:
‹p = q ⟷ word_of p = word_of q›
by (auto intro: word_of_eqI)
end
bundle constraintless
begin
declaration ‹
let
val cs = map (rpair NONE o fst o dest_Const)
[\<^term>‹0›, \<^term>‹(+)›, \<^term>‹uminus›, \<^term>‹(-)›,
\<^term>‹1›, \<^term>‹(*)›, \<^term>‹(div)›, \<^term>‹(mod)›,
\<^term>‹HOL.equal›, \<^term>‹(≤)›, \<^term>‹(<)›,
\<^term>‹(dvd)›, \<^term>‹of_bool›, \<^term>‹numeral›, \<^term>‹of_nat›,
\<^term>‹bit›,
\<^term>‹Bit_Operations.not›, \<^term>‹Bit_Operations.and›, \<^term>‹Bit_Operations.or›, \<^term>‹Bit_Operations.xor›, \<^term>‹mask›,
\<^term>‹push_bit›, \<^term>‹drop_bit›, \<^term>‹take_bit›,
\<^term>‹Bit_Operations.set_bit›, \<^term>‹unset_bit›, \<^term>‹flip_bit›,
\<^term>‹msb›, \<^term>‹size›, \<^term>‹Generic_set_bit.set_bit›, \<^term>‹set_bits›]
in
K (Context.mapping I (fold Proof_Context.add_const_constraint cs))
end
›
end
locale word_type_copy_ring = word_type_copy
opening constraintless +
constrains word_of :: ‹'a ⇒ 'b::len word›
assumes word_of_0 [code]: ‹word_of 0 = 0›
and word_of_1 [code]: ‹word_of 1 = 1›
and word_of_add [code]: ‹word_of (p + q) = word_of p + word_of q›
and word_of_minus [code]: ‹word_of (- p) = - (word_of p)›
and word_of_diff [code]: ‹word_of (p - q) = word_of p - word_of q›
and word_of_mult [code]: ‹word_of (p * q) = word_of p * word_of q›
and word_of_div [code]: ‹word_of (p div q) = word_of p div word_of q›
and word_of_mod [code]: ‹word_of (p mod q) = word_of p mod word_of q›
and equal_iff_word_of [code]: ‹HOL.equal p q ⟷ HOL.equal (word_of p) (word_of q)›
and less_eq_iff_word_of [code]: ‹p ≤ q ⟷ word_of p ≤ word_of q›
and less_iff_word_of [code]: ‹p < q ⟷ word_of p < word_of q›
begin
lemma of_class_comm_ring_1:
‹OFCLASS('a, comm_ring_1_class)›
by standard (simp_all add: eq_iff_word_of word_of_0 word_of_1
word_of_add word_of_minus word_of_diff word_of_mult algebra_simps)
lemma of_class_semiring_modulo:
‹OFCLASS('a, semiring_modulo_class)›
by standard (simp_all add: eq_iff_word_of word_of_0 word_of_1
word_of_add word_of_minus word_of_diff word_of_mult word_of_mod word_of_div algebra_simps
mod_mult_div_eq)
lemma of_class_equal:
‹OFCLASS('a, equal_class)›
by standard (simp add: eq_iff_word_of equal_iff_word_of equal)
lemma of_class_linorder:
‹OFCLASS('a, linorder_class)›
by standard (auto simp add: eq_iff_word_of less_eq_iff_word_of less_iff_word_of)
end
locale word_type_copy_bits = word_type_copy_ring
opening constraintless and bit_operations_syntax +
constrains word_of :: ‹'a::{comm_ring_1, semiring_modulo, equal, linorder} ⇒ 'b::len word›
fixes signed_drop_bit :: ‹nat ⇒ 'a ⇒ 'a›
assumes bit_eq_word_of [code]: ‹bit p = bit (word_of p)›
and word_of_not [code]: ‹word_of (NOT p) = NOT (word_of p)›
and word_of_and [code]: ‹word_of (p AND q) = word_of p AND word_of q›
and word_of_or [code]: ‹word_of (p OR q) = word_of p OR word_of q›
and word_of_xor [code]: ‹word_of (p XOR q) = word_of p XOR word_of q›
and word_of_mask [code]: ‹word_of (mask n) = mask n›
and word_of_push_bit [code]: ‹word_of (push_bit n p) = push_bit n (word_of p)›
and word_of_drop_bit [code]: ‹word_of (drop_bit n p) = drop_bit n (word_of p)›
and word_of_signed_drop_bit [code]: ‹word_of (signed_drop_bit n p) = Word.signed_drop_bit n (word_of p)›
and word_of_take_bit [code]: ‹word_of (take_bit n p) = take_bit n (word_of p)›
and word_of_set_bit [code]: ‹word_of (Bit_Operations.set_bit n p) = Bit_Operations.set_bit n (word_of p)›
and word_of_unset_bit [code]: ‹word_of (unset_bit n p) = unset_bit n (word_of p)›
and word_of_flip_bit [code]: ‹word_of (flip_bit n p) = flip_bit n (word_of p)›
begin
lemma word_of_bool:
‹word_of (of_bool n) = of_bool n›
by (simp add: word_of_0 word_of_1)
lemma word_of_nat:
‹word_of (of_nat n) = of_nat n›
by (induction n) (simp_all add: word_of_0 word_of_1 word_of_add)
lemma word_of_numeral [simp]:
‹word_of (numeral n) = numeral n›
proof -
have ‹word_of (of_nat (numeral n)) = of_nat (numeral n)›
by (simp only: word_of_nat)
then show ?thesis by simp
qed
lemma word_of_power:
‹word_of (p ^ n) = word_of p ^ n›
by (induction n) (simp_all add: word_of_1 word_of_mult)
lemma even_iff_word_of:
‹2 dvd p ⟷ 2 dvd word_of p› (is ‹?P ⟷ ?Q›)
proof
assume ?P
then obtain q where ‹p = 2 * q› ..
then show ?Q by (simp add: word_of_mult)
next
assume ?Q
then obtain w where ‹word_of p = 2 * w› ..
then have ‹of_word (word_of p) = of_word (2 * w)›
by simp
then have ‹p = 2 * of_word w›
by (simp add: eq_iff_word_of word_of_word word_of_mult)
then show ?P
by simp
qed
lemma of_class_ring_bit_operations:
‹OFCLASS('a, ring_bit_operations_class)›
proof -
have induct: ‹P p› if stable: ‹(⋀p. p div 2 = p ⟹ P p)›
and rec: ‹(⋀p b. P p ⟹ (of_bool b + 2 * p) div 2 = p ⟹ P (of_bool b + 2 * p))›
for p :: 'a and P
proof -
from stable have stable': ‹(⋀p. word_of p div 2 = word_of p ⟹ P p)›
by (simp add: eq_iff_word_of word_of_div)
from rec have rec': ‹(⋀p b. P p ⟹ (of_bool b + 2 * word_of p) div 2 = word_of p ⟹ P (of_bool b + 2 * p))›
by (simp add: eq_iff_word_of word_of_add word_of_bool word_of_mult word_of_div)
define w where ‹w = word_of p›
then have ‹p = of_word w›
by (simp add: of_word_of)
also have ‹P (of_word w)›
proof (induction w rule: bit_induct)
case (stable w)
show ?case
by (rule stable') (simp add: word_of_word stable)
next
case (rec w b)
have ‹P (of_bool b + 2 * of_word w)›
by (rule rec') (simp_all add: word_of_word rec)
also have ‹of_bool b + 2 * of_word w = of_word (of_bool b + 2 * w)›
by (simp add: eq_iff_word_of word_of_word word_of_add word_of_1 word_of_mult word_of_0)
finally show ?case .
qed
finally show ‹P p› .
qed
have ‹class.semiring_parity_axioms (+) (0::'a) (*) 1 (div) (mod)›
by standard
(simp_all add: eq_iff_word_of word_of_0 word_of_1 even_iff_word_of word_of_add word_of_div word_of_mod even_iff_mod_2_eq_zero)
with of_class_semiring_modulo have ‹OFCLASS('a, semiring_parity_class)›
by (rule semiring_parity_class.intro)
moreover have ‹OFCLASS('a, semiring_modulo_trivial_class)›
apply standard
apply (simp_all only: eq_iff_word_of word_of_0 word_of_1 word_of_div)
apply simp_all
done
moreover have ‹class.semiring_bits_axioms (+) (0::'a) (*) 1 (div) (mod) bit›
apply standard
apply (fact induct)
apply (simp_all only: eq_iff_word_of word_of_0 word_of_1 word_of_bool word_of_numeral
word_of_add word_of_diff word_of_mult word_of_div word_of_mod word_of_power
bit_eq_word_of push_bit_take_bit drop_bit_take_bit even_iff_word_of
fold_possible_bit
flip: push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod mask_eq_exp_minus_1 drop_bit_Suc)
apply (simp_all add: bit_simps even_drop_bit_iff_not_bit not_less)
done
ultimately have ‹OFCLASS('a, semiring_bits_class)›
by (rule semiring_bits_class.intro)
moreover have ‹class.semiring_bit_operations_axioms (+) (-) (0::'a) (*) (1::'a) (div) (mod) (AND) (OR) (XOR) mask Bit_Operations.set_bit unset_bit flip_bit push_bit drop_bit take_bit›
apply standard
apply (simp_all add: eq_iff_word_of word_of_add word_of_push_bit word_of_power
bit_eq_word_of word_of_and word_of_or word_of_xor word_of_mask word_of_diff
word_of_0 word_of_1 bit_simps
word_of_set_bit set_bit_eq_or word_of_unset_bit unset_bit_eq_or_xor word_of_flip_bit flip_bit_eq_xor
word_of_mult
word_of_drop_bit word_of_div word_of_take_bit word_of_mod
and_rec [of ‹word_of a› ‹word_of b› for a b]
or_rec [of ‹word_of a› ‹word_of b› for a b]
xor_rec [of ‹word_of a› ‹word_of b› for a b] even_iff_word_of
flip: mask_eq_exp_minus_1 push_bit_eq_mult drop_bit_eq_div take_bit_eq_mod)
done
ultimately have ‹OFCLASS('a, semiring_bit_operations_class)›
by (rule semiring_bit_operations_class.intro)
moreover have ‹OFCLASS('a, ring_parity_class)›
using ‹OFCLASS('a, semiring_parity_class)› by (rule ring_parity_class.intro) standard
moreover have ‹class.ring_bit_operations_axioms (-) (1::'a) uminus NOT›
by standard
(simp add: eq_iff_word_of word_of_not word_of_diff word_of_minus word_of_1 not_eq_complement)
ultimately show ‹OFCLASS('a, ring_bit_operations_class)›
by (rule ring_bit_operations_class.intro)
qed
lemma [code]:
‹take_bit n a = a AND mask n› for a :: 'a
by (simp add: eq_iff_word_of word_of_take_bit word_of_and word_of_mask take_bit_eq_mask)
lemma [code]:
‹mask (Suc n) = push_bit n (1 :: 'a) OR mask n›
‹mask 0 = (0 :: 'a)›
by (simp_all add: eq_iff_word_of word_of_mask word_of_or word_of_push_bit word_of_0 word_of_1 mask_Suc_exp)
lemma [code]:
‹Bit_Operations.set_bit n w = w OR push_bit n 1› for w :: 'a
by (simp add: eq_iff_word_of word_of_set_bit word_of_or word_of_push_bit word_of_1 set_bit_eq_or)
lemma [code]:
‹unset_bit n w = w AND NOT (push_bit n 1)› for w :: 'a
by (simp add: eq_iff_word_of word_of_unset_bit word_of_and word_of_not word_of_push_bit word_of_1 unset_bit_eq_and_not)
lemma [code]:
‹flip_bit n w = w XOR push_bit n 1› for w :: 'a
by (simp add: eq_iff_word_of word_of_flip_bit word_of_xor word_of_push_bit word_of_1 flip_bit_eq_xor)
end
locale word_type_copy_more = word_type_copy_bits +
constrains word_of :: ‹'a::{ring_bit_operations, equal, linorder} ⇒ 'b::len word›
fixes of_nat :: ‹nat ⇒ 'a› and nat_of :: ‹'a ⇒ nat›
and of_int :: ‹int ⇒ 'a› and int_of :: ‹'a ⇒ int›
and of_integer :: ‹integer ⇒ 'a› and integer_of :: ‹'a ⇒ integer›
assumes word_of_nat_eq: ‹word_of (of_nat n) = word_of_nat n›
and nat_of_eq_word_of: ‹nat_of p = unat (word_of p)›
and word_of_int_eq: ‹word_of (of_int k) = word_of_int k›
and int_of_eq_word_of: ‹int_of p = uint (word_of p)›
and word_of_integer_eq: ‹word_of (of_integer l) = word_of_int (int_of_integer l)›
and integer_of_eq_word_of: ‹integer_of p = unsigned (word_of p)›
begin
lemma of_word_numeral [code_post]:
‹of_word (numeral n) = numeral n›
by (simp add: eq_iff_word_of word_of_word)
lemma of_word_0 [code_post]:
‹of_word 0 = 0›
by (simp add: eq_iff_word_of word_of_0 word_of_word)
lemma of_word_1 [code_post]:
‹of_word 1 = 1›
by (simp add: eq_iff_word_of word_of_1 word_of_word)
text ‹Use pretty numerals from integer for pretty printing›
lemma numeral_eq_integer [code_unfold]:
‹numeral n = of_integer (numeral n)›
by (simp add: eq_iff_word_of word_of_integer_eq)
lemma neg_numeral_eq_integer [code_unfold]:
‹- numeral n = of_integer (- numeral n)›
by (simp add: eq_iff_word_of word_of_integer_eq word_of_minus)
end
locale word_type_copy_misc = word_type_copy_more
opening constraintless and bit_operations_syntax +
constrains word_of :: ‹'a::{ring_bit_operations, equal, linorder} ⇒ 'b::len word›
fixes size :: nat and set_bits_aux :: ‹(nat ⇒ bool) ⇒ nat ⇒ 'a ⇒ 'a›
assumes size_eq_length: ‹size = LENGTH('b::len)›
and msb_iff_word_of [code]: ‹msb p ⟷ msb (word_of p)›
and size_eq_word_of: ‹Nat.size (p :: 'a) = Nat.size (word_of p)›
and word_of_generic_set_bit [code]: ‹word_of (Generic_set_bit.set_bit p n b) = Generic_set_bit.set_bit (word_of p) n b›
and word_of_set_bits: ‹word_of (set_bits P) = set_bits P›
and word_of_set_bits_aux: ‹word_of (set_bits_aux P n p) = Bit_Comprehension.set_bits_aux P n (word_of p)›
begin
lemma size_eq [code]:
‹Nat.size p = size› for p :: 'a
by (simp add: size_eq_length size_eq_word_of word_size)
lemma set_bits_aux_code [code]:
‹set_bits_aux f n w =
(if n = 0 then w
else let n' = n - 1 in set_bits_aux f n' (push_bit 1 w OR (if f n' then 1 else 0)))›
by (simp add: eq_iff_word_of word_of_set_bits_aux Let_def word_of_mult word_of_or word_of_0 word_of_1 set_bits_aux_rec [of f n])
lemma set_bits_code [code]: ‹set_bits P = set_bits_aux P size 0›
by (simp add: fun_eq_iff eq_iff_word_of word_of_set_bits word_of_set_bits_aux word_of_0 size_eq_length set_bits_conv_set_bits_aux)
lemma of_class_set_bit:
‹OFCLASS('a, set_bit_class)›
by standard (simp add: eq_iff_word_of word_of_generic_set_bit bit_eq_word_of word_of_power word_of_0 bit_simps linorder_not_le)
lemma of_class_bit_comprehension:
‹OFCLASS('a, bit_comprehension_class)›
by standard (simp add: eq_iff_word_of word_of_set_bits bit_eq_word_of set_bits_bit_eq)
end
section ‹Establishing operation variants tailored towards target languages›
locale word_type_copy_target_language = word_type_copy_misc +
constrains word_of :: ‹'a::{ring_bit_operations, equal, linorder, Generic_set_bit.set_bit} ⇒ 'b::len word›
fixes size_integer :: integer
and almost_size :: nat
assumes size_integer_eq_length: ‹size_integer = Nat.of_nat LENGTH('b::len)›
and almost_size_eq_decr_length: ‹almost_size = LENGTH('b::len) - Suc 0›
begin
definition shiftl :: ‹'a ⇒ integer ⇒ 'a›
where ‹shiftl w k = (if k < 0 ∨ size_integer ≤ k then undefined (push_bit :: nat ⇒ 'a ⇒ 'a) w k
else push_bit (nat_of_integer k) w)›
lemma word_of_shiftl [code abstract]:
‹word_of (shiftl w k) =
(if k < 0 ∨ size_integer ≤ k then word_of (undefined (push_bit :: _ ⇒ _ ⇒ 'a) w k)
else push_bit (nat_of_integer k) (word_of w))›
by (simp add: shiftl_def word_of_push_bit)
lemma push_bit_code [code]:
‹push_bit k w = (if k < size then shiftl w (integer_of_nat k) else 0)›
by (rule word_of_eqI)
(simp add: integer_of_nat_eq_of_nat word_of_push_bit word_of_0 shiftl_def, simp add: size_eq_length size_integer_eq_length)
definition shiftr :: ‹'a ⇒ integer ⇒ 'a›
where ‹shiftr w k = (if k < 0 ∨ size_integer ≤ k then undefined (drop_bit :: nat ⇒ 'a ⇒ 'a) w k
else drop_bit (nat_of_integer k) w)›
lemma word_of_shiftr [code abstract]:
‹word_of (shiftr w k) =
(if k < 0 ∨ size_integer ≤ k then word_of (undefined (drop_bit :: _ ⇒ _ ⇒ 'a) w k)
else drop_bit (nat_of_integer k) (word_of w))›
by (simp add: shiftr_def word_of_drop_bit)
lemma drop_bit_code [code]:
‹drop_bit k w = (if k < size then shiftr w (integer_of_nat k) else 0)›
by (rule word_of_eqI)
(simp add: integer_of_nat_eq_of_nat word_of_drop_bit word_of_0 shiftr_def, simp add: size_eq_length size_integer_eq_length)
definition sshiftr :: ‹'a ⇒ integer ⇒ 'a›
where ‹sshiftr w k = (if k < 0 ∨ size_integer ≤ k then undefined (signed_drop_bit :: _ ⇒ _ ⇒ 'a) w k
else signed_drop_bit (nat_of_integer k) w)›
lemma word_of_sshiftr [code abstract]:
‹word_of (sshiftr w k) =
(if k < 0 ∨ size_integer ≤ k then word_of (undefined (signed_drop_bit :: _ ⇒ _ ⇒ 'a) w k)
else Word.signed_drop_bit (nat_of_integer k) (word_of w))›
by (simp add: sshiftr_def word_of_signed_drop_bit)
lemma signed_drop_bit_code [code]:
‹signed_drop_bit k w = (if k < size then sshiftr w (integer_of_nat k)
else if (bit w almost_size) then - 1 else 0)›
by (rule word_of_eqI)
(simp add: integer_of_nat_eq_of_nat word_of_signed_drop_bit
word_of_0 word_of_1 word_of_minus sshiftr_def bit_eq_word_of not_less,
simp add: size_eq_length size_integer_eq_length almost_size_eq_decr_length signed_drop_bit_beyond)
definition test_bit :: ‹'a ⇒ integer ⇒ bool›
where ‹test_bit w k = (if k < 0 ∨ size_integer ≤ k then undefined (bit :: 'a ⇒ _) w k
else bit w (nat_of_integer k))›
lemma test_bit_eq [code]:
‹test_bit w k = (if k < 0 ∨ size_integer ≤ k then undefined (bit :: 'a ⇒ _) w k
else bit (word_of w) (nat_of_integer k))›
by (simp add: test_bit_def bit_eq_word_of)
lemma bit_code [code]:
‹bit w n ⟷ n < size ∧ test_bit w (integer_of_nat n)›
by (simp add: test_bit_def integer_of_nat_eq_of_nat)
(simp add: bit_eq_word_of size_eq_length size_integer_eq_length impossible_bit)
definition gen_set_bit :: ‹'a ⇒ integer ⇒ bool ⇒ 'a›
where ‹gen_set_bit w k b =
(if k < 0 ∨ size_integer ≤ k then undefined (Generic_set_bit.set_bit :: 'a ⇒ _) w k b
else Generic_set_bit.set_bit w (nat_of_integer k) b)›
lemma word_of_gen_set_bit [code abstract]:
‹word_of (gen_set_bit w k b) =
(if k < 0 ∨ size_integer ≤ k then word_of (undefined (Generic_set_bit.set_bit :: 'a ⇒ _) w k b)
else Generic_set_bit.set_bit (word_of w) (nat_of_integer k) b)›
by (simp add: gen_set_bit_def word_of_generic_set_bit)
lemma generic_set_bit_code [code]:
‹Generic_set_bit.set_bit w n b = (if n < size then gen_set_bit w (integer_of_nat n) b else w)›
by (rule word_of_eqI)
(simp add: gen_set_bit_def word_of_generic_set_bit, simp add: integer_of_nat_eq_of_nat
size_eq_length size_integer_eq_length set_bit_beyond word_size)
end
subsection ‹Division by signed division›
text ‹Division on @{typ "'a word"} is unsigned, but Scala and OCaml only have signed division and modulus.›
context
begin
private lemma div_half_nat:
fixes m n :: nat
assumes "n ≠ 0"
shows "(m div n, m mod n) = (
let
q = 2 * (drop_bit 1 m div n);
r = m - q * n
in if n ≤ r then (q + 1, r - n) else (q, r))"
proof -
let ?q = "2 * (drop_bit 1 m div n)"
have q: "?q = m div n - m div n mod 2"
by (simp add: modulo_nat_def drop_bit_Suc, simp flip: div_mult2_eq add: ac_simps)
let ?r = "m - ?q * n"
have r: "?r = m mod n + m div n mod 2 * n"
by (simp add: q algebra_simps modulo_nat_def drop_bit_Suc, simp flip: div_mult2_eq add: ac_simps)
show ?thesis
proof (cases "n ≤ m - ?q * n")
case True
with assms q have "m div n mod 2 ≠ 0"
unfolding r by simp (metis add.right_neutral mod_less_divisor mult_eq_0_iff not_less not_mod2_eq_Suc_0_eq_0)
hence "m div n = ?q + 1" unfolding q
by simp
moreover have "m mod n = ?r - n" using ‹m div n = ?q + 1›
by (simp add: modulo_nat_def)
ultimately show ?thesis
using True by (simp add: Let_def)
next
case False
hence "m div n mod 2 = 0"
unfolding r by (simp add: not_le) (metis Nat.add_0_right assms div_less div_mult_self2 mod_div_trivial mult.commute)
hence "m div n = ?q"
unfolding q by simp
moreover have "m mod n = ?r" using ‹m div n = ?q›
by (simp add: modulo_nat_def)
ultimately show ?thesis
using False by (simp add: Let_def)
qed
qed
private lemma div_half_word:
fixes x y :: "'a :: len word"
assumes "y ≠ 0"
shows "(x div y, x mod y) = (
let
q = push_bit 1 (drop_bit 1 x div y);
r = x - q * y
in if y ≤ r then (q + 1, r - y) else (q, r))"
proof -
obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)"
by (rule that [of ‹unat x›]) simp_all
moreover obtain m where m: "y = of_nat m" "m < 2 ^ LENGTH('a)"
by (rule that [of ‹unat y›]) simp_all
ultimately have [simp]: ‹unat (of_nat n :: 'a word) = n› ‹unat (of_nat m :: 'a word) = m›
by (transfer, simp add: take_bit_of_nat take_bit_nat_eq_self_iff)+
let ?q = "push_bit 1 (drop_bit 1 x div y)"
let ?q' = "2 * (drop_bit 1 n div m)"
have "drop_bit 1 n div m < 2 ^ LENGTH('a)"
using n by (simp add: drop_bit_Suc) (meson div_le_dividend le_less_trans)
hence q: "?q = of_nat ?q'" using n m
by (auto simp add: drop_bit_eq_div word_arith_nat_div uno_simps take_bit_nat_eq_self unsigned_of_nat)
from assms have "m ≠ 0" using m by - (rule notI, simp)
from n have "?q' < 2 ^ LENGTH('a)"
by (simp add: drop_bit_Suc) (metis div_le_dividend le_less_trans less_mult_imp_div_less linorder_not_le mult.commute)
moreover
have "2 * (drop_bit 1 n div m) * m < 2 ^ LENGTH('a)"
using n by (simp add: drop_bit_Suc ac_simps flip: div_mult2_eq)
(metis le_less_trans mult.assoc times_div_less_eq_dividend)
moreover have "2 * (drop_bit 1 n div m) * m ≤ n"
by (simp add: drop_bit_Suc flip: div_mult2_eq ac_simps)
ultimately
have r: "x - ?q * y = of_nat (n - ?q' * m)"
and "y ≤ x - ?q * y ⟹ of_nat (n - ?q' * m) - y = of_nat (n - ?q' * m - m)"
using n m unfolding q
apply simp_all
apply (cases ‹LENGTH('a) ≥ 2›)
apply (simp_all add: word_le_nat_alt take_bit_nat_eq_self unat_sub_if' unat_word_ariths unsigned_of_nat)
done
then show ?thesis using n m div_half_nat [OF ‹m ≠ 0›, of n] unfolding q
by (simp add: word_le_nat_alt word_div_def word_mod_def Let_def take_bit_nat_eq_self unsigned_of_nat
flip: zdiv_int zmod_int
split del: if_split split: if_split_asm)
qed
text ‹
This algorithm implements unsigned division in terms of signed division.
Taken from Hacker's Delight.
›
lemma divmod_via_sdivmod:
fixes x y :: "'a :: len word"
assumes "y ≠ 0"
shows "(x div y, x mod y) = (
if push_bit (LENGTH('a) - 1) 1 ≤ y then
if x < y then (0, x) else (1, x - y)
else let
q = (push_bit 1 (drop_bit 1 x sdiv y));
r = x - q * y
in if y ≤ r then (q + 1, r - y) else (q, r))"
proof (cases "push_bit (LENGTH('a) - 1) 1 ≤ y")
case True
note y = this
show ?thesis
proof (cases "x < y")
case True
with y show ?thesis
by (simp add: word_div_less mod_word_less)
next
case False
obtain n where n: "y = of_nat n" "n < 2 ^ LENGTH('a)"
by (rule that [of ‹unat y›]) simp_all
have "unat x < 2 ^ LENGTH('a)" by (rule unsigned_less)
also have "… = 2 * 2 ^ (LENGTH('a) - 1)"
by(metis Suc_pred len_gt_0 power_Suc One_nat_def)
also have "… ≤ 2 * n" using y n
by transfer (simp add: take_bit_eq_mod)
finally have div: "x div of_nat n = 1" using False n
by (simp add: take_bit_nat_eq_self unsigned_of_nat word_div_eq_1_iff)
moreover have "x mod y = x - x div y * y"
by (simp add: minus_div_mult_eq_mod)
with div n have "x mod y = x - y" by simp
ultimately show ?thesis using False y n by simp
qed
next
case False
note y = this
obtain n where n: "x = of_nat n" "n < 2 ^ LENGTH('a)"
by (rule that [of ‹unat x›]) simp_all
hence "int n div 2 + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)"
by (cases ‹LENGTH('a)›)
(auto dest: less_imp_of_nat_less [where ?'a = int])
with y n have "sint (drop_bit 1 x) = uint (drop_bit 1 x)"
by (cases ‹LENGTH('a)›)
(auto simp add: sint_uint drop_bit_eq_div take_bit_nat_eq_self uint_div_distrib
signed_take_bit_int_eq_self_iff unsigned_of_nat)
moreover have "uint y + 2 ^ (LENGTH('a) - Suc 0) < 2 ^ LENGTH('a)"
using y by (cases ‹LENGTH('a)›)
(simp_all add: not_le word_less_alt uint_power_lower)
then have "sint y = uint y"
apply (cases ‹LENGTH('a)›)
apply (auto simp add: sint_uint signed_take_bit_int_eq_self_iff)
using uint_ge_0 [of y]
by linarith
ultimately show ?thesis using y
apply (subst div_half_word [OF assms])
apply (simp add: sdiv_word_def signed_divide_int_def flip: uint_div)
done
qed
end
subsection ‹Conversion from \<^typ>‹int› to \<^typ>‹'a word››
lemma word_of_int_via_signed:
includes bit_operations_syntax
assumes shift_def: "shift = push_bit LENGTH('a) 1"
and overflow_def:"overflow = push_bit (LENGTH('a) - 1) 1"
shows
"(word_of_int i :: 'a :: len word) =
(let i' = i AND mask LENGTH('a)
in if bit i' (LENGTH('a) - 1) then
if i' - shift < - overflow ∨ overflow ≤ i' - shift then arbitrary1 i' else word_of_int (i' - shift)
else if i' < - overflow ∨ overflow ≤ i' then arbitrary2 i' else word_of_int i')"
proof -
define i' where "i' = i AND mask LENGTH('a)"
have "shift = mask LENGTH('a) + 1" unfolding assms
by (simp add: mask_eq_exp_minus_1)
hence "i' < shift"
by (simp add: i'_def)
show ?thesis
proof(cases "bit i' (LENGTH('a) - 1)")
case True
then have unf: "i' = overflow OR i'"
apply (simp add: assms i'_def flip: take_bit_eq_mask)
apply (rule bit_eqI)
apply (auto simp add: bit_take_bit_iff bit_or_iff bit_exp_iff)
done
have ‹overflow ≤ overflow OR i'›
by (simp add: i'_def or_greater_eq)
then have "overflow ≤ i'"
by (subst unf)
hence "i' - shift < - overflow ⟷ False" unfolding assms
by(cases "LENGTH('a)")(simp_all add: not_less)
moreover
have "overflow ≤ i' - shift ⟷ False" using ‹i' < shift› unfolding assms
by(cases "LENGTH('a)")(auto simp add: not_le elim: less_le_trans)
moreover
have "word_of_int (i' - shift) = (word_of_int i :: 'a word)" using ‹i' < shift›
by (simp add: i'_def shift_def word_of_int_eq_iff flip: take_bit_eq_mask)
ultimately show ?thesis using True by(simp add: Let_def i'_def)
next
case False
have "i' = i AND mask (LENGTH('a) - 1)"
apply (rule bit_eqI)
apply (use False in ‹auto simp add: bit_simps assms i'_def›)
apply (auto simp add: less_le)
done
also have "… ≤ Bit_Operations.mask (LENGTH('a) - 1)"
using AND_upper2 mask_nonnegative_int by blast
also have "… < overflow"
by (simp add: mask_int_def overflow_def)
also
have "- overflow ≤ 0" unfolding overflow_def by simp
have "0 ≤ i'" by (simp add: i'_def)
hence "- overflow ≤ i'" using ‹- overflow ≤ 0› by simp
moreover
have "word_of_int i' = (word_of_int i :: 'a word)"
by (simp add: i'_def of_int_and_eq of_int_mask_eq)
ultimately show ?thesis using False by(simp add: Let_def i'_def)
qed
qed
subsection ‹Quickcheck conversion functions›
context
includes state_combinator_syntax
begin
definition qc_random_cnv ::
"(natural ⇒ 'a::term_of) ⇒ natural ⇒ Random.seed
⇒ ('a × (unit ⇒ Code_Evaluation.term)) × Random.seed"
where "qc_random_cnv a_of_natural i = Random.range (i + 1) ∘→ (λk. Pair (
let n = a_of_natural k
in (n, λ_. Code_Evaluation.term_of n)))"
end
definition qc_exhaustive_cnv :: "(natural ⇒ 'a) ⇒ ('a ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option"
where
"qc_exhaustive_cnv a_of_natural f d =
Quickcheck_Exhaustive.exhaustive (%x. f (a_of_natural x)) d"
definition qc_full_exhaustive_cnv ::
"(natural ⇒ ('a::term_of)) ⇒ ('a × (unit ⇒ term) ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option"
where
"qc_full_exhaustive_cnv a_of_natural f d = Quickcheck_Exhaustive.full_exhaustive
(%(x, xt). f (a_of_natural x, %_. Code_Evaluation.term_of (a_of_natural x))) d"
declare [[quickcheck_narrowing_ghc_options = "-XTypeSynonymInstances"]]
definition qc_narrowing_drawn_from :: "'a list ⇒ integer ⇒ _"
where
"qc_narrowing_drawn_from xs =
foldr Quickcheck_Narrowing.sum (map Quickcheck_Narrowing.cons (butlast xs)) (Quickcheck_Narrowing.cons (last xs))"
locale quickcheck_narrowing_samples =
fixes a_of_integer :: "integer ⇒ 'a × 'a :: {partial_term_of, term_of}"
and zero :: "'a"
and tr :: "typerep"
begin
function narrowing_samples :: "integer ⇒ 'a list"
where
"narrowing_samples i =
(if i > 0 then let (a, a') = a_of_integer i in narrowing_samples (i - 1) @ [a, a'] else [zero])"
by pat_completeness auto
termination including integer.lifting
proof(relation "measure nat_of_integer")
fix i :: integer
assume "0 < i"
thus "(i - 1, i) ∈ measure nat_of_integer"
by simp(transfer, simp)
qed simp
definition partial_term_of_sample :: "integer ⇒ 'a"
where
"partial_term_of_sample i =
(if i < 0 then undefined
else if i = 0 then zero
else if i mod 2 = 0 then snd (a_of_integer (i div 2))
else fst (a_of_integer (i div 2 + 1)))"
lemma partial_term_of_code:
"partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_variable p t) ≡
Code_Evaluation.Free (STR ''_'') tr"
"partial_term_of (ty :: 'a itself) (Quickcheck_Narrowing.Narrowing_constructor i []) ≡
Code_Evaluation.term_of (partial_term_of_sample i)"
by (rule partial_term_of_anything)+
end
lemmas [code] =
quickcheck_narrowing_samples.narrowing_samples.simps
quickcheck_narrowing_samples.partial_term_of_sample_def
subsection ‹Code generator setup›
code_identifier code_module Uint_Common ⇀
(SML) Word and (Haskell) Word and (OCaml) Word and (Scala) Word
end