theory ValuesFSet imports Main Lambda "HOL-Library.FSet" begin datatype val = VNat nat | VFun "(val × val) fset" type_synonym func = "(val × val) fset" inductive val_le :: "val ⇒ val ⇒ bool" (infix ‹⊑› 52) where vnat_le[intro!]: "(VNat n) ⊑ (VNat n)" | vfun_le[intro!]: "fset t1 ⊆ fset t2 ⟹ (VFun t1) ⊑ (VFun t2)" type_synonym env = "((name × val) list)" definition env_le :: "env ⇒ env ⇒ bool" (infix ‹⊑› 52) where "ρ ⊑ ρ' ≡ ∀ x v. lookup ρ x = Some v ⟶ (∃ v'. lookup ρ' x = Some v' ∧ v ⊑ v')" definition env_eq :: "env ⇒ env ⇒ bool" (infix ‹≈› 50) where "ρ ≈ ρ' ≡ (∀ x. lookup ρ x = lookup ρ' x)" fun vadd :: "(val × nat) × (val × nat) ⇒ nat ⇒ nat" where "vadd ((_,v),(_,u)) r = v + u + r" primrec vsize :: "val ⇒ nat" where "vsize (VNat n) = 1" | "vsize (VFun t) = 1 + ffold vadd 0 (fimage (map_prod (λ v. (v,vsize v)) (λ v. (v,vsize v))) t)" abbreviation vprod_size :: "val × val ⇒ (val × nat) × (val × nat)" where "vprod_size ≡ map_prod (λ v. (v,vsize v)) (λ v. (v,vsize v))" abbreviation fsize :: "func ⇒ nat" where "fsize t ≡ 1 + ffold vadd 0 (fimage vprod_size t)" interpretation vadd_vprod: comp_fun_commute "vadd ∘ vprod_size" unfolding comp_fun_commute_def by auto lemma vprod_size_inj: "inj_on vprod_size (fset A)" unfolding inj_on_def by auto lemma fsize_def2: "fsize t = 1 + ffold (vadd ∘ vprod_size) 0 t" using vprod_size_inj[of t] ffold_fimage[of vprod_size t vadd 0] by simp lemma fsize_finsert_in[simp]: assumes v12_t: "(v1,v2) |∈| t" shows "fsize (finsert (v1,v2) t) = fsize t" proof - from v12_t have "finsert (v1,v2) t = t" by auto from this show ?thesis by simp qed lemma fsize_finsert_notin[simp]: assumes v12_t: "(v1,v2) |∉| t" shows "fsize (finsert (v1,v2) t) = vsize v1 + vsize v2 + fsize t" proof - let ?f = "vadd ∘ vprod_size" have "fsize (finsert (v1,v2) t) = 1 + ffold ?f 0 (finsert (v1,v2) t)" using fsize_def2[of "finsert (v1,v2) t"] by simp also from v12_t have "... = 1 + ?f (v1,v2) (ffold ?f 0 t)" by simp finally have "fsize (finsert (v1,v2) t) = 1 + ?f (v1,v2) (ffold ?f 0 t)" . from this show ?thesis using fsize_def2[of t] by simp qed end