Theory DeclSemAsNDInterpFSet
section "Declarative semantics as a non-deterministic interpreter"
theory DeclSemAsNDInterpFSet
imports Lambda ValuesFSet
begin
subsection "Non-determinism monad"
type_synonym 'a M = "'a set"
definition set_bind :: "'a M ⇒ ('a ⇒ 'b M) ⇒ 'b M" where
"set_bind m f ≡ { v. ∃ v'. v' ∈ m ∧ v ∈ f v' }"
declare set_bind_def[simp]
syntax "_set_bind" :: "[pttrns,'a M,'b] ⇒ 'c" (‹(_ ← _;//_)› 0)
syntax_consts "_set_bind" ⇌ set_bind
translations "P ← E; F" ⇌ "CONST set_bind E (λP. F)"
definition return :: "'a ⇒ 'a M" where
"return v ≡ {v}"
declare return_def[simp]
definition zero :: "'a M" where
"zero ≡ {}"
declare zero_def[simp]
unbundle no binomial_syntax
definition choose :: "'a set ⇒ 'a M" where
"choose S ≡ S"
declare choose_def[simp]
definition down :: "val ⇒ val M" where
"down v ≡ (v' ← UNIV; if v' ⊑ v then return v' else zero)"
declare down_def[simp]
definition mapM :: "'a fset ⇒ ('a ⇒ 'b M) ⇒ ('b fset) M" where
"mapM as f ≡ ffold (λa. λr. (b ← f a; bs ← r; return (finsert b bs))) (return ({||})) as"
subsection "Non-deterministic interpreter"
abbreviation apply_fun :: "val M ⇒ val M ⇒ val M" where
"apply_fun V1 V2 ≡ (v1 ← V1; v2 ← V2;
case v1 of VFun f ⇒
(v2',v3') ← choose (fset f);
if v2' ⊑ v2 then return v3' else zero
| _ ⇒ zero)"
fun E :: "exp ⇒ env ⇒ val set" where
Enat2: "E (ENat n) ρ = return (VNat n)" |
Evar2: "E (EVar x) ρ = (case lookup ρ x of None ⇒ zero | Some v ⇒ down v)" |
Elam2: "E (ELam x e) ρ = (vs ← choose UNIV;
t ← mapM vs (λ v. (v' ← E e ((x,v)#ρ); return (v, v')));
return (VFun t))" |
Eapp2: "E (EApp e1 e2) ρ = apply_fun (E e1 ρ) (E e2 ρ)" |
Eprim2: "E (EPrim f e1 e2) ρ = (v⇩1 ← E e1 ρ; v⇩2 ← E e2 ρ;
case (v⇩1,v⇩2) of
(VNat n⇩1, VNat n⇩2) ⇒ return (VNat (f n⇩1 n⇩2))
| (VNat n⇩1, VFun t⇩2) ⇒ zero
| (VFun t⇩1, v⇩2) ⇒ zero)" |
Eif2[eta_contract = false]: "E (EIf e1 e2 e3) ρ = (v⇩1 ← E e1 ρ;
case v⇩1 of
(VNat n) ⇒ if n ≠ 0 then E e2 ρ else E e3 ρ
| (VFun t) ⇒ zero)"
end