Theory Decl
section ‹Class Declarations and Programs›
theory Decl imports Expr begin
type_synonym
fdecl = "vname × ty"
type_synonym
"method" = "ty list × ty × (vname list × expr)"
type_synonym
mdecl = "mname × method"
type_synonym
"class" = "base list × fdecl list × mdecl list"
type_synonym
cdecl = "cname × class"
type_synonym
prog = "cdecl list"
translations
(type) "fdecl" <= (type) "vname × ty"
(type) "mdecl" <= (type) "mname × ty list × ty × (vname list × expr)"
(type) "class" <= (type) "cname × fdecl list × mdecl list"
(type) "cdecl" <= (type) "cname × class"
(type) "prog " <= (type) "cdecl list"
definition "class" :: "prog ⇒ cname ⇀ class" where
"class ≡ map_of"
definition is_class :: "prog ⇒ cname ⇒ bool" where
"is_class P C ≡ class P C ≠ None"
definition baseClasses :: "base list ⇒ cname set" where
"baseClasses Bs ≡ set ((map getbase) Bs)"
definition RepBases :: "base list ⇒ cname set" where
"RepBases Bs ≡ set ((map getbase) (filter isRepBase Bs))"
definition SharedBases :: "base list ⇒ cname set" where
"SharedBases Bs ≡ set ((map getbase) (filter isShBase Bs))"
lemma not_getbase_repeats:
"D ∉ set (map getbase xs) ⟹ Repeats D ∉ set xs"
by (induct rule: list.induct, auto)
lemma not_getbase_shares:
"D ∉ set (map getbase xs) ⟹ Shares D ∉ set xs"
by (induct rule: list.induct, auto)
lemma RepBaseclass_isBaseclass:
"⟦class P C = Some(Bs,fs,ms); Repeats D ∈ set Bs⟧
⟹ D ∈ baseClasses Bs"
by (simp add:baseClasses_def, induct rule: list.induct,
auto simp:not_getbase_repeats)
lemma ShBaseclass_isBaseclass:
"⟦class P C = Some(Bs,fs,ms); Shares D ∈ set Bs⟧
⟹ D ∈ baseClasses Bs"
by (simp add:baseClasses_def, induct rule: list.induct,
auto simp:not_getbase_shares)
lemma base_repeats_or_shares:
"⟦B ∈ set Bs; D = getbase B⟧
⟹ Repeats D ∈ set Bs ∨ Shares D ∈ set Bs"
by(induct B rule:base.induct) simp+
lemma baseClasses_repeats_or_shares:
"D ∈ baseClasses Bs ⟹ Repeats D ∈ set Bs ∨ Shares D ∈ set Bs"
by (auto elim!:bexE base_repeats_or_shares
simp add:baseClasses_def image_def)
lemma finite_is_class: "finite {C. is_class P C}"
apply (unfold is_class_def class_def)
apply (fold dom_def)
apply (rule finite_dom_map_of)
done
lemma finite_baseClasses:
"class P C = Some(Bs,fs,ms) ⟹ finite (baseClasses Bs)"
apply (unfold is_class_def class_def baseClasses_def)
apply clarsimp
done
definition is_type :: "prog ⇒ ty ⇒ bool" where
"is_type P T ≡
(case T of Void ⇒ True | Boolean ⇒ True | Integer ⇒ True | NT ⇒ True
| Class C ⇒ is_class P C)"
lemma is_type_simps [simp]:
"is_type P Void ∧ is_type P Boolean ∧ is_type P Integer ∧
is_type P NT ∧ is_type P (Class C) = is_class P C"
by(simp add:is_type_def)
abbreviation
"types P == Collect (CONST is_type P)"
lemma typeof_lit_is_type:
"typeof v = Some T ⟹ is_type P T"
by (induct v) (auto)
end