Theory Collections.ICF_Autoref
section ‹ICF-setup for Automatic Refinement›
theory ICF_Autoref
imports
ICF_Refine_Monadic
"../GenCF/Intf/Intf_Set"
"../GenCF/Intf/Intf_Map"
begin
subsection ‹Unique Priority Queue›
consts i_prio :: "interface ⇒ interface ⇒ interface"
definition [simp]: "op_uprio_empty ≡ Map.empty"
definition [simp]: "op_uprio_is_empty x ≡ x = Map.empty"
definition [simp]: "op_uprio_insert s e a ≡ s(e ↦ a)"
definition op_uprio_prio :: "('e⇀'a)⇒'e⇀'a"
where [simp]: "op_uprio_prio s e ≡ s e"
context begin interpretation autoref_syn .
lemma uprio_pats:
fixes s :: "'e⇀'a"
shows
"Map.empty::'e⇀'a ≡ op_uprio_empty"
"s e ≡ op_uprio_prio$s$e"
"s(e↦a) ≡ op_uprio_insert$s$e$a"
"dom s = {} ≡ op_uprio_is_empty$s"
"{} = dom s ≡ op_uprio_is_empty$s"
"s=Map.empty ≡ op_uprio_is_empty$s"
"Map.empty=s ≡ op_uprio_is_empty$s"
by (auto intro!: eq_reflection)
end
term prio_pop_min
lemma [autoref_itype]:
"op_uprio_empty ::⇩i ⟨Ie,Ia⟩⇩ii_prio"
"op_uprio_prio ::⇩i ⟨Ie,Ia⟩⇩ii_prio →⇩i Ie →⇩i ⟨Ia⟩⇩ii_option"
"op_uprio_is_empty ::⇩i ⟨Ie,Ia⟩⇩ii_prio →⇩i i_bool"
"op_uprio_insert ::⇩i ⟨Ie,Ia⟩⇩ii_prio →⇩i Ie →⇩i Ia →⇩i ⟨Ie,Ia⟩⇩ii_prio"
"prio_pop_min ::⇩i ⟨Ie,Ia⟩⇩ii_prio →⇩i ⟨⟨Ie,⟨Ia,⟨Ie,Ia⟩⇩ii_prio⟩⇩ii_prod⟩⇩ii_prod⟩⇩ii_nres"
by simp_all
context uprio begin
definition rel_def_internal:
"⋀Re Ra. rel Re Ra ≡ br α invar O (Re → ⟨Ra⟩ option_rel)"
lemma rel_def:
"⋀Re Ra. ⟨Re,Ra⟩rel ≡ br α invar O (Re → ⟨Ra⟩ option_rel)"
by (simp add: rel_def_internal relAPP_def)
lemma rel_id[simp]: "⟨Id,Id⟩rel = br α invar"
by (simp add: rel_def)
lemma rel_sv[relator_props]:
"⋀Re Ra. ⟦Range Re = UNIV; single_valued Ra⟧ ⟹ single_valued (⟨Re,Ra⟩rel)"
unfolding rel_def by tagged_solver
lemmas [autoref_rel_intf] = REL_INTFI[of rel i_prio]
end
lemma (in uprio) rel_alt: "⟨Id,Rv⟩rel =
{ (c,a). ∀x. (α c x,a x)∈⟨Rv⟩option_rel ∧ invar c }"
by (auto simp: rel_def br_def dest: fun_relD)
lemma (in uprio_empty) autoref_empty[autoref_rules]:
"⋀Re Ra. PREFER_id Re ⟹ (empty (),op_uprio_empty)∈⟨Re,Ra⟩rel"
by (auto simp: empty_correct rel_alt)
lemma (in uprio_isEmpty) autoref_is_empty[autoref_rules]:
"⋀Re Ra. PREFER_id Re ⟹ (isEmpty,op_uprio_is_empty)∈⟨Re,Ra⟩rel→bool_rel"
by (auto simp: isEmpty_correct rel_alt intro!: ext)
lemma (in uprio_prio) autoref_prio[autoref_rules]:
"⋀Re Ra. PREFER_id Re ⟹ (prio,op_uprio_prio)∈⟨Re,Ra⟩rel→Re→⟨Ra⟩option_rel"
by (auto simp: prio_correct rel_alt intro!: ext)
lemma (in uprio_insert) autoref_insert[autoref_rules]:
"⋀Re Ra. PREFER_id Re ⟹ (insert,op_uprio_insert)∈⟨Re,Ra⟩rel→Re→Ra→⟨Re,Ra⟩rel"
by (auto simp: insert_correct rel_alt intro!: ext)
lemma (in uprio_pop) autoref_prio_pop_min[autoref_rules]:
"⋀Re Ra. ⟦PREFER_id Re; PREFER_id Ra ⟧
⟹ (λs. RETURN (pop s),prio_pop_min)∈⟨Re,Ra⟩rel→⟨⟨Re,⟨Ra,⟨Re,Ra⟩rel⟩prod_rel⟩prod_rel⟩nres_rel"
apply simp
apply (intro fun_relI nres_relI)
by (rule prio_pop_min_refine)
context set begin
definition rel_def_internal: "rel R ≡ br α invar O ⟨R⟩set_rel"
lemma rel_def: "⟨R⟩rel ≡ br α invar O ⟨R⟩set_rel"
by (simp add: rel_def_internal relAPP_def)
lemma rel_id[simp]: "⟨Id⟩rel = br α invar" by (simp add: rel_def)
lemma rel_sv[relator_props]: "single_valued R ⟹ single_valued (⟨R⟩rel)"
unfolding rel_def by tagged_solver
lemmas [autoref_rel_intf] = REL_INTFI[of rel i_set]
end
context map begin
definition rel_def_internal:
"rel Rk Rv ≡ br α invar O (Rk → ⟨Rv⟩ option_rel)"
lemma rel_def:
"⟨Rk,Rv⟩rel ≡ br α invar O (Rk → ⟨Rv⟩ option_rel)"
by (simp add: rel_def_internal relAPP_def)
lemma rel_id[simp]: "⟨Id,Id⟩rel = br α invar"
by (simp add: rel_def)
lemma rel_sv[relator_props]:
"⟦Range Rk = UNIV; single_valued Rv⟧ ⟹ single_valued (⟨Rk,Rv⟩rel)"
unfolding rel_def
by (tagged_solver (trace))
lemmas [autoref_rel_intf] = REL_INTFI[of rel i_map]
end
setup ‹Revert_Abbrev.revert_abbrev "Autoref_Binding_ICF.*.rel"›
lemma Collect_x_x_pairs_rel_image[simp]: "{p. ∃x. p = (x, x)}``x = x"
by auto
subsection "Set"
lemma (in set_empty) empty_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (empty (), {}) ∈ ⟨Rk⟩rel"
by (simp add: br_def empty_correct)
lemma (in set_memb) memb_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (memb,(∈))∈Rk→⟨Rk⟩rel→Id"
apply simp
by (auto simp add: memb_correct br_def)
lemma (in set_ins) ins_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (ins,Set.insert)∈Rk→⟨Rk⟩rel→⟨Rk⟩rel"
by simp (auto simp add: ins_correct br_def)
context set_ins_dj begin
context begin interpretation autoref_syn .
lemma ins_dj_autoref[autoref_rules]:
assumes "SIDE_PRECOND_OPT (x'∉s')"
assumes "PREFER_id Rk"
assumes "(x,x')∈Rk"
assumes "(s,s')∈⟨Rk⟩rel"
shows "(ins_dj x s,(OP Set.insert ::: Rk → ⟨Rk⟩rel → ⟨Rk⟩rel)$x'$s')∈⟨Rk⟩rel"
using assms
apply simp
apply (auto simp add: ins_dj_correct br_def)
done
end
end
lemma (in set_delete) delete_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (delete,op_set_delete)∈Rk→⟨Rk⟩rel→⟨Rk⟩rel"
by simp (auto simp add: delete_correct op_set_delete_def br_def)
lemma (in set_isEmpty) isEmpty_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (isEmpty,op_set_isEmpty) ∈ ⟨Rk⟩rel→Id"
apply (simp add: br_def)
apply (fastforce simp: isEmpty_correct)
done
lemma (in set_isSng) isSng_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (isSng,op_set_isSng) ∈ ⟨Rk⟩rel→Id"
by simp
(auto simp add: isSng_correct op_set_isSng_def br_def card_Suc_eq)
lemma (in set_ball) ball_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (ball,Set.Ball) ∈ ⟨Rk⟩rel→(Rk→Id)→Id"
by simp (auto simp add: ball_correct fun_rel_def br_def)
lemma (in set_bex) bex_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (bex,Set.Bex) ∈ ⟨Rk⟩rel→(Rk→Id)→Id"
apply simp
apply (auto simp: bex_correct fun_rel_def br_def intro!: ext)
done
lemma (in set_size) size_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (size,card) ∈ ⟨Rk⟩rel → Id"
by simp (auto simp add: size_correct br_def)
lemma (in set_size_abort) size_abort_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (size_abort,op_set_size_abort) ∈ Id → ⟨Rk⟩rel → Id"
by simp
(auto simp add: size_abort_correct op_set_size_abort_def br_def)
lemma (in set_union) union_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (union,(∪))∈⟨Rk⟩s1.rel→⟨Rk⟩s2.rel→⟨Rk⟩s3.rel"
by simp (auto simp add: union_correct br_def)
context set_union_dj begin
context begin interpretation autoref_syn .
lemma union_dj_autoref[autoref_rules]:
assumes "PREFER_id Rk"
assumes "SIDE_PRECOND_OPT (a'∩b'={})"
assumes "(a,a')∈⟨Rk⟩s1.rel"
assumes "(b,b')∈⟨Rk⟩s2.rel"
shows "(union_dj a b,(OP (∪) ::: ⟨Rk⟩s1.rel → ⟨Rk⟩s2.rel → ⟨Rk⟩s3.rel)$a'$b')
∈⟨Rk⟩s3.rel"
using assms
by simp (auto simp: union_dj_correct br_def)
end
end
lemma (in set_diff) diff_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (diff,(-))∈⟨Rk⟩s1.rel→⟨Rk⟩s2.rel→⟨Rk⟩s1.rel"
by simp (auto simp add: diff_correct br_def)
lemma (in set_filter) filter_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (filter,op_set_filter)∈(Rk → Id) → ⟨Rk⟩s1.rel→⟨Rk⟩s2.rel"
by simp (auto simp add: filter_correct op_set_filter_def fun_rel_def
br_def)
lemma (in set_inter) inter_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (inter,(∩))∈⟨Rk⟩s1.rel→⟨Rk⟩s2.rel→⟨Rk⟩s3.rel"
by simp (auto simp add: inter_correct br_def)
lemma (in set_subset) subset_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (subset,(⊆))∈⟨Rk⟩s1.rel→⟨Rk⟩s2.rel→Id"
by simp (auto simp add: subset_correct br_def)
lemma (in set_equal) equal_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (equal,(=))∈⟨Rk⟩s1.rel→⟨Rk⟩s2.rel→Id"
by simp (auto simp add: equal_correct br_def)
lemma (in set_disjoint) disjoint_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (disjoint,op_set_disjoint)∈⟨Rk⟩s1.rel→⟨Rk⟩s2.rel→Id"
by simp (auto simp add: disjoint_correct op_set_disjoint_def br_def)
lemma (in list_to_set) to_set_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (to_set,set)∈⟨Rk⟩list_rel → ⟨Rk⟩rel"
apply simp
apply (auto simp add: to_set_correct br_def)
done
context set_sel' begin
context begin interpretation autoref_syn .
lemma autoref_op_set_pick[autoref_rules]:
assumes "SIDE_PRECOND (s'≠{})"
assumes "PREFER_id Rk"
assumes "(s,s')∈⟨Rk⟩rel"
shows "(RETURN (the (sel' s (λ_. True))),
(OP op_set_pick ::: ⟨Rk⟩rel → ⟨Rk⟩nres_rel) $ s')
∈ ⟨Rk⟩nres_rel"
using assms
apply (clarsimp simp add: br_def nres_rel_def ex_in_conv[symmetric])
apply (erule (1) sel'E[OF _ _ TrueI])
apply (auto intro: RES_refine)
done
end
end
lemma (in poly_set_iteratei) proper[proper_it]:
"proper_it' iteratei iteratei"
apply (rule proper_it'I)
by (rule pi_iteratei)
lemma (in poly_set_iteratei) autoref_iteratei[autoref_ga_rules]:
"REL_IS_ID Rk ⟹ is_set_to_list Rk rel (it_to_list iteratei)"
unfolding is_set_to_list_def is_set_to_sorted_list_def it_to_list_def
it_to_sorted_list_def
apply (simp add: br_def, intro allI impI)
apply (drule iteratei_correct)
unfolding set_iterator_def set_iterator_genord_foldli_conv
apply (elim exE)
apply clarsimp
apply (drule fun_cong[where x="λ_::'x list. True"])
apply simp
done
lemma (in poly_set_iterateoi) proper_o[proper_it]:
"proper_it' iterateoi iterateoi"
apply (rule proper_it'I)
by (rule pi_iterateoi)
lemma (in poly_set_iterateoi) autoref_iterateoi[autoref_ga_rules]:
"REL_IS_ID Rk ⟹
is_set_to_sorted_list (≤) Rk rel (it_to_list iterateoi)"
unfolding is_set_to_sorted_list_def it_to_list_def it_to_sorted_list_def
apply (simp add: br_def, intro allI impI)
apply (drule iterateoi_correct)
unfolding set_iterator_linord_def set_iterator_genord_foldli_conv
apply (elim exE)
apply clarsimp
apply (drule fun_cong[where x="λ_::'x list. True"])
apply simp
done
lemma (in poly_set_rev_iterateoi) autoref_rev_iterateoi[autoref_ga_rules]:
"REL_IS_ID Rk ⟹
is_set_to_sorted_list (≥) Rk rel (it_to_list rev_iterateoi)"
unfolding is_set_to_sorted_list_def it_to_list_def it_to_sorted_list_def
apply (simp add: br_def, intro allI impI)
apply (drule rev_iterateoi_correct)
unfolding set_iterator_rev_linord_def set_iterator_genord_foldli_conv
apply (elim exE)
apply clarsimp
apply (drule fun_cong[where x="λ_::'x list. True"])
apply simp
done
lemma (in poly_set_rev_iterateoi) proper_ro[proper_it]:
"proper_it' rev_iterateoi rev_iterateoi"
apply (rule proper_it'I)
by (rule pi_rev_iterateoi)
subsection "Map"
lemma (in map) rel_alt: "⟨Id,Rv⟩rel =
{ (c,a). ∀x. (α c x,a x)∈⟨Rv⟩option_rel ∧ invar c }"
by (auto simp: rel_def br_def dest: fun_relD)
lemma (in map_empty) empty_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (empty (),op_map_empty)∈⟨Rk,Rv⟩rel"
by (auto simp: empty_correct rel_alt)
lemma (in map_lookup) lookup_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (lookup,op_map_lookup)∈Rk→⟨Rk,Rv⟩rel→⟨Rv⟩option_rel"
apply (intro fun_relI option_relI)
apply (auto simp: lookup_correct rel_alt
dest: fun_relD2)
done
lemma (in map_update) update_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (update,op_map_update)∈Rk→Rv→⟨Rk,Rv⟩rel→⟨Rk,Rv⟩rel"
apply (intro fun_relI)
apply (simp add: update_correct rel_alt)
done
context map_update_dj begin
context begin interpretation autoref_syn .
lemma update_dj_autoref[autoref_rules]:
assumes "SIDE_PRECOND_OPT (k'∉dom m')"
assumes "PREFER_id Rk"
assumes "(k,k')∈Rk"
assumes "(v,v')∈Rv"
assumes "(m,m')∈⟨Rk,Rv⟩rel"
shows "(update_dj k v m,
(OP op_map_update ::: Rk → Rv → ⟨Rk,Rv⟩rel → ⟨Rk,Rv⟩rel)$k'$v'$m'
)∈⟨Rk,Rv⟩rel"
using assms
apply (subgoal_tac "k∉dom (α m)")
apply (simp add: update_dj_correct rel_alt)
apply (auto simp add: rel_alt option_rel_def)
apply (metis option.simps(3))
done
end
end
lemma (in map_delete) delete_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (delete,op_map_delete)∈Rk→⟨Rk,Rv⟩rel→⟨Rk,Rv⟩rel"
apply (intro fun_relI)
apply (simp add: delete_correct restrict_map_def rel_alt)
done
lemma (in map_restrict) restrict_autoref[autoref_rules]:
"PREFER_id Rk ⟹
(restrict,op_map_restrict)
∈ (⟨Rk,Rv⟩prod_rel → Id) → ⟨Rk,Rv⟩m1.rel → ⟨Rk,Rv⟩m2.rel"
apply (intro fun_relI)
apply (simp add: restrict_correct br_comp_alt m1.rel_def m2.rel_def )
apply (intro fun_relI)
apply (auto simp: restrict_map_def split: if_split_asm)
apply (drule (1) fun_relD1)
apply (auto simp: option_rel_def) []
apply (drule (1) fun_relD1)
apply (auto simp: option_rel_def) []
apply (drule (1) fun_relD1)
apply (auto simp: option_rel_def prod_rel_def fun_rel_def) []
apply (drule (1) fun_relD2)
apply (auto simp: option_rel_def prod_rel_def fun_rel_def) []
done
lemma (in map_add) add_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (add,(++))∈⟨Rk,Rv⟩rel→⟨Rk,Rv⟩rel→⟨Rk,Rv⟩rel"
apply (auto simp add: add_correct rel_alt Map.map_add_def
split: option.split)
apply (drule_tac x=x in spec)+
apply simp
apply (metis option.simps(3) option_rel_simp(2))
by (metis (lifting) option_rel_simp(3))
context map_add_dj begin
context begin interpretation autoref_syn .
lemma add_dj_autoref[autoref_rules]:
assumes "PREFER_id Rk"
assumes "SIDE_PRECOND_OPT (dom a' ∩ dom b' = {})"
assumes "(a,a')∈⟨Rk,Rv⟩rel"
assumes "(b,b')∈⟨Rk,Rv⟩rel"
shows "(add_dj a b, (OP (++) ::: ⟨Rk,Rv⟩rel → ⟨Rk,Rv⟩rel → ⟨Rk,Rv⟩rel) $ a' $ b')∈⟨Rk,Rv⟩rel"
using assms
apply simp
apply (subgoal_tac "dom (α a) ∩ dom (α b) = {}")
apply (clarsimp simp add: add_dj_correct rel_def br_comp_alt)
apply (auto
simp add: rel_def br_comp_alt Map.map_add_def
split: option.split
elim: fun_relE1 dest: fun_relD1 intro: option_relI
) []
apply (clarsimp simp add: rel_def br_comp_alt)
apply (auto simp: dom_def)
apply (drule (1) fun_relD1)
apply (drule (1) fun_relD1)
apply (auto simp: option_rel_def)
done
end
end
lemma (in map_isEmpty) isEmpty_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (isEmpty,op_map_isEmpty)∈⟨Rk,Rv⟩rel→Id"
by (auto simp: isEmpty_correct rel_alt
intro!: ext)
lemma sngI:
assumes "m k = Some v"
assumes "∀k'. k'≠k ⟶ m k' = None"
shows "m = [k↦v]"
using assms
by (auto intro!: ext)
lemma (in map_isSng) isSng_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (isSng,op_map_isSng)∈⟨Rk,Rv⟩rel→Id"
apply (auto simp add: isSng_correct rel_alt)
apply (rule_tac x=k in exI)
apply (rule_tac x="the (a' k)" in exI)
apply (rule sngI)
apply (drule_tac x=k in spec)
apply (auto elim: option_relE) []
apply (force elim: option_relE) []
apply (rule_tac x=k in exI)
apply (rule_tac x="the (α a k)" in exI)
apply (rule sngI)
apply (drule_tac x=k in spec)
apply (auto elim: option_relE) []
apply (force elim: option_relE) []
done
lemma (in map_ball) ball_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (ball,op_map_ball)∈⟨Rk,Rv⟩rel→(⟨Rk,Rv⟩prod_rel→Id)→Id"
apply (auto simp: ball_correct rel_alt map_to_set_def
option_rel_def prod_rel_def fun_rel_def)
apply (metis option.inject option.simps(3))+
done
lemma (in map_bex) bex_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (bex,op_map_bex)∈⟨Rk,Rv⟩rel→(⟨Rk,Rv⟩prod_rel→Id)→Id"
apply (auto simp: bex_correct map_to_set_def rel_alt
option_rel_def prod_rel_def fun_rel_def)
apply (metis option.inject option.simps(3))+
done
lemma (in map_size) size_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (size,op_map_size)∈⟨Rk,Rv⟩rel→Id"
apply (auto simp: size_correct rel_alt option_rel_def dom_def
intro!: arg_cong[where f=card])
apply (metis option.simps(3))+
done
lemma (in map_size_abort) size_abort_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (size_abort,op_map_size_abort)∈Id→⟨Rk,Rv⟩rel→Id"
apply (auto simp: size_abort_correct
rel_alt option_rel_def
dom_def intro!: arg_cong[where f=card] cong[OF arg_cong[where f=min]])
apply (metis option.simps(3))+
done
lemma (in list_to_map) to_map_autoref[autoref_rules]:
"PREFER_id Rk ⟹ (to_map,map_of)∈ ⟨⟨Rk,Rv⟩prod_rel⟩list_rel → ⟨Rk,Rv⟩rel"
proof (intro fun_relI)
fix l :: "('u×'v) list" and l' :: "('u×'a) list"
assume "PREFER_id Rk" hence [simp]: "Rk=Id" by simp
assume "(l,l')∈⟨⟨Rk,Rv⟩prod_rel⟩list_rel"
thus "(to_map l, map_of l') ∈ ⟨Rk,Rv⟩rel"
apply (simp add: list_rel_def)
proof (induct rule: list_all2_induct)
case Nil thus ?case
by (auto simp add: to_map_correct rel_alt)
next
case (Cons x x' l l') thus ?case
by (auto simp add: to_map_correct
rel_alt prod_rel_def)
qed
qed
lemma key_rel_true[simp]: "key_rel (λ_ _. True) = (λ_ _. True)"
by (auto intro!: ext simp: key_rel_def)
lemma (in poly_map_iteratei) proper[proper_it]:
"proper_it' iteratei iteratei"
apply (rule proper_it'I)
by (rule pi_iteratei)
lemma (in poly_map_iteratei) autoref_iteratei[autoref_ga_rules]:
assumes ID: "REL_IS_ID Rk"
"REL_IS_ID Rv"
shows "is_map_to_list Rk Rv rel (it_to_list iteratei)"
proof -
from ID have [simp]: "Rk=Id" "Rv = Id" by simp_all
show ?thesis
unfolding is_map_to_sorted_list_def is_map_to_list_def
it_to_sorted_list_def
apply simp
apply (intro allI impI conjI)
proof -
fix m m'
assume "(m, m') ∈ br α invar"
hence I: "invar m" and M': "m' = α m" by (simp_all add: br_def)
have [simp]: "⋀c. (λ(_,_). c) = (λ_. c)" by auto
from map_it_to_list_genord_correct[where it = iteratei,
where R="λ_ _. True", simplified, OF
iteratei_correct[OF I, unfolded set_iterator_def]
] have
M: "Map.map_of (it_to_list iteratei m) = α m"
and D: "distinct (List.map fst (it_to_list iteratei m))"
by (simp_all)
from D show "distinct (it_to_list iteratei m)"
by (rule distinct_mapI)
from M show "map_to_set m' = set (it_to_list iteratei m)"
by (simp add: M' map_of_map_to_set[OF D])
qed
qed
lemma (in poly_map_iterateoi) proper_o[proper_it]:
"proper_it' iterateoi iterateoi"
apply (rule proper_it'I)
by (rule pi_iterateoi)
lemma (in poly_map_iterateoi) autoref_iterateoi[autoref_ga_rules]:
assumes ID: "REL_IS_ID Rk"
"REL_IS_ID Rv"
shows "is_map_to_sorted_list (≤) Rk Rv rel (it_to_list iterateoi)"
proof -
from ID have [simp]: "Rk=Id" "Rv = Id" by simp_all
show ?thesis
unfolding is_map_to_sorted_list_def
it_to_sorted_list_def
apply simp
apply (intro allI impI conjI)
proof -
fix m m'
assume "(m, m') ∈ br α invar"
hence I: "invar m" and M': "m' = α m" by (simp_all add: br_def)
have [simp]: "⋀c. (λ(_,_). c) = (λ_. c)" by auto
from map_it_to_list_linord_correct[where it = iterateoi,
OF iterateoi_correct[OF I]
] have
M: "map_of (it_to_list iterateoi m) = α m"
and D: "distinct (map fst (it_to_list iterateoi m))"
and S: "sorted (map fst (it_to_list iterateoi m))"
by (simp_all)
from D show "distinct (it_to_list iterateoi m)"
by (rule distinct_mapI)
from M show "map_to_set m' = set (it_to_list iterateoi m)"
by (simp add: M' map_of_map_to_set[OF D])
from S show "sorted_wrt (key_rel (≤)) (it_to_list iterateoi m)"
by (simp add: key_rel_def[abs_def])
qed
qed
lemma (in poly_map_rev_iterateoi) proper_ro[proper_it]:
"proper_it' rev_iterateoi rev_iterateoi"
apply (rule proper_it'I)
by (rule pi_rev_iterateoi)
lemma (in poly_map_rev_iterateoi) autoref_rev_iterateoi[autoref_ga_rules]:
assumes ID: "REL_IS_ID Rk"
"REL_IS_ID Rv"
shows "is_map_to_sorted_list (≥) Rk Rv rel (it_to_list rev_iterateoi)"
proof -
from ID have [simp]: "Rk=Id" "Rv = Id" by simp_all
show ?thesis
unfolding is_map_to_sorted_list_def
it_to_sorted_list_def
apply simp
apply (intro allI impI conjI)
proof -
fix m m'
assume "(m, m') ∈ br α invar"
hence I: "invar m" and M': "m' = α m" by (simp_all add: br_def)
have [simp]: "⋀c. (λ(_,_). c) = (λ_. c)" by auto
from map_it_to_list_rev_linord_correct[where it = rev_iterateoi,
OF rev_iterateoi_correct[OF I]
] have
M: "map_of (it_to_list rev_iterateoi m) = α m"
and D: "distinct (map fst (it_to_list rev_iterateoi m))"
and S: "sorted (rev (map fst (it_to_list rev_iterateoi m)))"
by (simp_all)
from D show "distinct (it_to_list rev_iterateoi m)"
by (rule distinct_mapI)
from M show "map_to_set m' = set (it_to_list rev_iterateoi m)"
by (simp add: M' map_of_map_to_set[OF D])
from S show "sorted_wrt (key_rel (≥)) (it_to_list rev_iterateoi m)"
by (simp add: key_rel_def[abs_def])
qed
qed
end