Theory Executions
section Executions
text ‹This section contains all definitions required for reasoning about executions in the concurrent
revisions model. It also contains a number of proofs for inductive variants. One of these
proves the equivalence of the two definitions of the operational semantics. The others are
required for proving determinacy.›
theory Executions
imports OperationalSemantics
begin
context substitution
begin
subsection ‹Generalizing the original transition›
subsubsection Definition
definition steps :: "('r,'l,'v) global_state rel" (‹[↝]›) where
"steps = { (s,s') | s s'. ∃r. revision_step r s s' }"
abbreviation valid_step :: "('r,'l,'v) global_state ⇒ ('r,'l,'v) global_state ⇒ bool" (infix ‹↝› 60) where
"s ↝ s' ≡ (s,s') ∈ [↝]"
lemma valid_stepI [intro]:
"revision_step r s s' ⟹ s ↝ s'"
using steps_def by auto
lemma valid_stepE [dest]:
"s ↝ s' ⟹ ∃r. revision_step r s s'"
by (simp add: steps_def)
subsubsection Closures
abbreviation refl_trans_step_rel :: "('r,'l,'v) global_state ⇒ ('r,'l,'v) global_state ⇒ bool"(infix ‹↝⇧*› 60) where
"s ↝⇧* s' ≡ (s,s') ∈ [↝]⇧*"
abbreviation refl_step_rel :: "('r,'l,'v) global_state ⇒ ('r,'l,'v) global_state ⇒ bool" (infix ‹↝⇧=› 60) where
"s ↝⇧= s' ≡ (s,s') ∈ [↝]⇧="
lemma refl_rewritesI [intro]: "s ↝ s' ⟹ s ↝⇧= s'" by blast
subsection Properties
abbreviation program_expr :: "('r,'l,'v) expr ⇒ bool" where
"program_expr e ≡ LID⇩E e = {} ∧ RID⇩E e = {}"
abbreviation initializes :: "('r,'l,'v) global_state ⇒ ('r,'l,'v) expr ⇒ bool" where
"initializes s e ≡ ∃r. s = (ε(r ↦(ε,ε,e))) ∧ program_expr e"
abbreviation initial_state :: "('r,'l,'v) global_state ⇒ bool" where
"initial_state s ≡ ∃e. initializes s e"
definition execution :: "('r,'l,'v) expr ⇒ ('r,'l,'v) global_state ⇒ ('r,'l,'v) global_state ⇒ bool" where
"execution e s s' ≡ initializes s e ∧ s ↝⇧* s'"
definition maximal_execution :: "('r,'l,'v) expr ⇒ ('r,'l,'v) global_state ⇒ ('r,'l,'v) global_state ⇒ bool" where
"maximal_execution e s s' ≡ execution e s s' ∧ (∄s''. s' ↝ s'')"
definition reachable :: "('r,'l,'v) global_state ⇒ bool" where
"reachable s ≡ ∃e s'. execution e s' s"
definition terminates_in :: "('r,'l,'v) expr ⇒ ('r,'l,'v) global_state ⇒ bool" (infix ‹↓› 60) where
"e ↓ s' ≡ ∃s. maximal_execution e s s'"
subsection Invariants
subsubsection ‹Inductive invariance›
definition inductive_invariant :: "(('r,'l,'v) global_state ⇒ bool) ⇒ bool" where
"inductive_invariant P ≡ (∀s. initial_state s ⟶ P s) ∧ (∀s s'. s ↝ s' ⟶ P s ⟶ P s')"
lemma inductive_invariantI [intro]:
"(⋀s. initial_state s ⟹ P s) ⟹ (⋀s s'. s ↝ s' ⟹ P s ⟹ P s') ⟹ inductive_invariant P"
by (auto simp add: inductive_invariant_def)
lemma inductive_invariant_is_execution_invariant: "reachable s ⟹ inductive_invariant P ⟹ P s"
proof -
assume reach: "reachable s" and ind_inv: "inductive_invariant P"
then obtain e initial n where initializes: "initializes initial e" and trace: "(initial,s) ∈ [↝]^^n"
by (metis execution_def reachable_def rtrancl_power)
thus "P s"
proof (induct n arbitrary: s)
case 0
have "initial = s" using "0.prems"(2) by auto
hence "initial_state s" using initializes by blast
then show ?case using ind_inv inductive_invariant_def by auto
next
case (Suc n)
obtain s' where nfold: "(initial, s') ∈ [↝]^^n" and step: "s' ↝ s" using Suc.prems(2) by auto
have "P s'" using Suc(1) nfold initializes by blast
then show ?case using ind_inv step inductive_invariant_def by auto
qed
qed
subsubsection ‹Subsumption is invariant›
lemma nice_ind_inv_is_inductive_invariant: "inductive_invariant (λs. 𝒮⇩G s ∧ 𝒜⇩G s)"
proof (rule inductive_invariantI)
fix s
assume "initial_state s"
then obtain e r where s: "s = ε(r ↦ (ε, ε, e))" and prog_expr_e: "program_expr e" by blast
show "𝒮⇩G s ∧ 𝒜⇩G s"
proof (rule conjI)
show "𝒮⇩G s"
proof (rule domains_subsume_globallyI)
fix r' σ' τ' e'
assume s_r': "s r' = Some (σ',τ',e')"
have "r' = r" using s s_r' prog_expr_e by (meson domI domIff fun_upd_other)
hence "LID⇩L (σ',τ',e') = LID⇩L (ε, ε, e)" using s s_r' by auto
also have "... = {}" using prog_expr_e by auto
also have "... = dom σ' ∪ dom τ'" using ‹r' = r› s s_r' by auto
finally show "𝒮 (σ', τ', e')" by (simp add: domains_subsume_def)
qed
show "𝒜⇩G s"
proof (rule subsumes_accessible_globallyI)
fix r⇩1 σ⇩1 τ⇩1 e⇩1 r⇩2 σ⇩2 τ⇩2 e⇩2
assume s_r1: "s r⇩1 = Some (σ⇩1, τ⇩1, e⇩1)" and s_r2: "s r⇩2 = Some (σ⇩2, τ⇩2, e⇩2)"
have "r⇩2 = r" using s s_r2 prog_expr_e by (meson domI domIff fun_upd_other)
hence "σ⇩2 = ε" using s s_r2 by auto
hence "LID⇩S σ⇩2 = {}" by auto
thus "𝒜 r⇩1 r⇩2 s" using s_r2 by auto
qed
qed
qed (use step_preserves_𝒮⇩G_and_𝒜⇩G in auto)
corollary reachable_imp_𝒮⇩G: "reachable s ⟹ 𝒮⇩G s"
proof -
assume reach: "reachable s"
have "𝒮⇩G s ∧ 𝒜⇩G s" by (rule inductive_invariant_is_execution_invariant[OF reach nice_ind_inv_is_inductive_invariant])
thus ?thesis by auto
qed
lemma transition_relations_equivalent: "reachable s ⟹ revision_step r s s' = revision_step_relaxed r s s'"
proof -
assume reach: "reachable s"
have doms_sub_local: "𝒮⇩G s" by (rule reachable_imp_𝒮⇩G[OF reach])
show "revision_step r s s' = revision_step_relaxed r s s'"
proof (rule iffI)
assume step: "revision_step r s s'"
show "revision_step_relaxed r s s'"
proof (use step in ‹induct rule: revision_stepE›)
case (new σ τ ℰ v l)
have "revision_step_relaxed r s (s(r ↦ (σ, τ(l ↦ v), ℰ [VE (Loc l)])))"
proof (rule revision_step_relaxed.new)
show "l ∉ ⋃ { doms ls | ls. ls ∈ ran s}"
proof
assume "l ∈ ⋃ { doms ls | ls. ls ∈ ran s}"
then obtain ls where in_ran: "ls ∈ ran s" and in_doms: "l ∈ doms ls" by blast
from in_doms have "l ∈ LID⇩L ls" by (cases ls) auto
have "l ∈ LID⇩G s"
proof -
have "ls ∈ {ls. ∃r. s r = Some ls}" by (metis (full_types) in_ran ran_def)
then show ?thesis using ‹l ∈ LID⇩L ls› by blast
qed
thus False using new by auto
qed
qed (simp add: new.hyps(2))
thus ?thesis using new.hyps(1) by blast
qed (use revision_step_relaxed.intros in simp)+
next
assume step: "revision_step_relaxed r s s'"
show "revision_step r s s'"
proof (use step in ‹induct rule: revision_step_relaxedE›)
case (new σ τ ℰ v l)
have "revision_step r s (s(r ↦ (σ, τ(l ↦ v), ℰ [VE (Loc l)])))"
proof (rule revision_step.new)
show "s r = Some (σ, τ, ℰ [Ref (VE v)])" by (simp add: new.hyps(2))
show "l ∉ LID⇩G s"
proof
assume "l ∈ LID⇩G s"
then obtain r' σ' τ' e' where s_r': "s r' = Some (σ',τ',e')" and l_in_local: "l ∈ LID⇩L (σ',τ',e')" by auto
hence "l ∈ dom σ' ∪ dom τ'"
by (metis (no_types, lifting) domains_subsume_def domains_subsume_globally_def doms.simps doms_sub_local rev_subsetD)
thus False by (meson s_r' new.hyps(3) ranI)
qed
qed
then show ?case using new.hyps(1) by blast
next
case (get σ τ ℰ l)
have "revision_step r s (s(r ↦ (σ, τ, ℰ [VE (the ((σ;;τ) l))])))"
proof
show "s r = Some (σ, τ, ℰ [Read (VE (Loc l))])" by (simp add: get.hyps(2))
show "l ∈ dom (σ;;τ)"
proof -
have "l ∈ LID⇩L (σ, τ, ℰ [Read (VE (Loc l))])" by simp
hence "l ∈ dom σ ∪ dom τ"
using domains_subsume_def domains_subsume_globally_def doms_sub_local get.hyps(2) by fastforce
thus "l ∈ dom (σ;;τ)" by (simp add: dom_combination_dom_union)
qed
qed
then show ?case using get.hyps(1) by auto
next
case (set σ τ ℰ l v)
have "revision_step r s (s(r ↦ (σ, τ(l ↦ v), ℰ [VE (CV Unit)])))"
proof
show "s r = Some (σ, τ, ℰ [Assign (VE (Loc l)) (VE v)])" by (simp add: set.hyps(2))
show "l ∈ dom (σ;;τ)"
proof -
have "l ∈ LID⇩L (σ, τ, ℰ [Assign (VE (Loc l)) (VE v)])" by simp
hence "l ∈ dom σ ∪ dom τ"
using domains_subsume_def domains_subsume_globally_def doms_sub_local set.hyps(2) by fastforce
thus "l ∈ dom (σ;;τ)" by (simp add: dom_combination_dom_union)
qed
qed
then show ?case using set.hyps(1) by blast
qed (simp add: revision_step.intros)+
qed
qed
subsubsection ‹Finitude is invariant›
lemma finite_occurrences_val_expr [simp]:
fixes
v :: "('r,'l,'v) val" and
e :: "('r,'l,'v) expr"
shows
"finite (RID⇩V v)"
"finite (RID⇩E e)"
"finite (LID⇩V v)"
"finite (LID⇩E e)"
proof -
have "(finite (RID⇩V v) ∧ finite (LID⇩V v)) ∧ finite (RID⇩E e) ∧ finite (LID⇩E e)"
by (induct rule: val_expr.induct) auto
thus
"finite (RID⇩V v)"
"finite (RID⇩E e)"
"finite (LID⇩V v)"
"finite (LID⇩E e)"
by auto
qed
lemma store_finite_upd [intro]:
"finite (RID⇩S τ) ⟹ finite (RID⇩S (τ(l := None)))"
"finite (LID⇩S τ) ⟹ finite (LID⇩S (τ(l := None)))"
apply (meson ID_restricted_store_subset_store(1) finite_subset)
by (simp add: ID_restricted_store_subset_store(2) rev_finite_subset)
lemma finite_state_imp_restriction_finite [intro]:
"finite (RID⇩G s) ⟹ finite (RID⇩G (s(r := None)))"
"finite (LID⇩G s) ⟹ finite (LID⇩G (s(r := None)))"
proof -
assume "finite (RID⇩G s)"
thus "finite (RID⇩G (s(r := None)))" by (meson infinite_super ID_restricted_global_subset_unrestricted)
next
assume fin: "finite (LID⇩G s)"
have "LID⇩G (s(r := None)) ⊆ LID⇩G s" by auto
thus "finite (LID⇩G (s(r := None)))" using fin finite_subset by auto
qed
lemma local_state_of_finite_restricted_global_state_is_finite [intro]:
"s r' = Some ls ⟹ finite (RID⇩G (s(r := None))) ⟹ r ≠ r' ⟹ finite (RID⇩L ls)"
"s r' = Some ls ⟹ finite (LID⇩G (s(r := None))) ⟹ r ≠ r' ⟹ finite (LID⇩L ls)"
apply (metis (no_types, lifting) ID_distr_global(1) finite_Un finite_insert fun_upd_triv fun_upd_twist)
by (metis ID_distr_global(2) finite_Un fun_upd_triv fun_upd_twist)
lemma empty_map_finite [simp]:
"finite (RID⇩S ε)"
"finite (LID⇩S ε)"
"finite (RID⇩G ε)"
"finite (LID⇩G ε)"
by (simp add: RID⇩S_def LID⇩S_def RID⇩G_def LID⇩G_def)+
lemma finite_combination [intro]:
"finite (RID⇩S σ) ⟹ finite (RID⇩S τ) ⟹ finite (RID⇩S (σ;;τ))"
"finite (LID⇩S σ) ⟹ finite (LID⇩S τ) ⟹ finite (LID⇩S (σ;;τ))"
by (meson finite_UnI rev_finite_subset ID_combination_subset_union)+
lemma RID⇩G_finite_invariant:
assumes
step: "revision_step r s s'" and
fin: "finite (RID⇩G s)"
shows
"finite (RID⇩G s')"
proof (use step in ‹cases rule: revision_stepE›)
case (join σ τ ℰ r' σ' τ' v)
hence "r ≠ r'" by auto
then show ?thesis
by (metis (mono_tags, lifting) ID_distr_global(1) ID_distr_local(2) fin finite_Un finite_combination(1) finite_insert finite_occurrences_val_expr(2) finite_state_imp_restriction_finite(1) join local_state_of_finite_restricted_global_state_is_finite(1))
qed (use fin in ‹auto simp add: ID_distr_global_conditional›)
lemma RID⇩L_finite_invariant:
assumes
step: "revision_step r s s'" and
fin: "finite (LID⇩G s)"
shows
"finite (LID⇩G s')"
proof (use step in ‹cases rule: revision_stepE›)
case (join σ τ ℰ r' σ' τ' v)
hence "r ≠ r'" by auto
then show ?thesis
using join assms
by (metis (mono_tags, lifting) ID_distr_global(2) ID_distr_local(1) fin finite_Un finite_combination(2) finite_occurrences_val_expr(4) finite_state_imp_restriction_finite(2) join local_state_of_finite_restricted_global_state_is_finite(2))
qed (use fin in ‹auto simp add: ID_distr_global_conditional›)
lemma reachable_imp_identifiers_finite:
assumes reach: "reachable s"
shows
"finite (RID⇩G s)"
"finite (LID⇩G s)"
proof -
from reach obtain e r where exec: "execution e (ε(r ↦ (ε,ε,e))) s" using reachable_def execution_def by auto
hence prog_exp: "program_expr e" by (meson execution_def)
obtain n where n_reachable: "(ε(r ↦ (ε,ε,e)), s) ∈ [↝]^^n" using exec by (meson execution_def rtrancl_imp_relpow)
hence "finite (RID⇩G s) ∧ finite (LID⇩G s)"
proof (induct n arbitrary: s)
case 0
hence s: "s = ε(r ↦ (ε, ε, e))" by auto
hence rid_dom: "dom s = {r}" by auto
hence rid_ran: "⋃ (RID⇩L ` ran s) = {}" using s by (auto simp add: prog_exp)
have rids: "RID⇩G s = {r}" by (unfold RID⇩G_def, use rid_dom rid_ran in auto)
have lid_ran: "⋃ (LID⇩L ` ran s) = {}" using s by (auto simp add: prog_exp)
hence lids: "LID⇩G s = {}" by (unfold LID⇩G_def, simp)
thus ?case using rids lids by simp
next
case (Suc n)
then obtain s' where
n_steps: "(ε(r ↦ (ε, ε, e)), s') ∈ [↝]^^n" and
step: "s' ↝ s"
by (meson relpow_Suc_E)
have fin_rid: "finite (RID⇩G s')" using Suc.hyps n_steps by blast
have fin_lid: "finite (LID⇩G s')" using Suc.hyps n_steps by blast
thus ?case by (meson RID⇩G_finite_invariant RID⇩L_finite_invariant fin_rid local.step valid_stepE)
qed
thus "finite (RID⇩G s)" "finite (LID⇩G s)" by auto
qed
lemma reachable_imp_identifiers_available:
assumes
"reachable (s :: ('r,'l,'v) global_state)"
shows
"infinite (UNIV :: 'r set) ⟹ ∃r. r ∉ RID⇩G s"
"infinite (UNIV :: 'l set) ⟹ ∃l. l ∉ LID⇩G s"
by (simp add: assms ex_new_if_finite reachable_imp_identifiers_finite)+
subsubsection ‹Reachability is invariant›
lemma initial_state_reachable:
assumes "program_expr e"
shows "reachable (ε(r ↦ (ε,ε,e)))"
proof -
have "initializes (ε(r ↦ (ε,ε,e))) e" using assms by auto
hence "execution e (ε(r ↦ (ε,ε,e))) (ε(r ↦ (ε,ε,e)))" by (simp add: execution_def)
thus ?thesis using reachable_def by blast
qed
lemma reachability_closed_under_execution_step:
assumes
reach: "reachable s" and
step: "revision_step r s s'"
shows "reachable s'"
proof -
obtain init e where exec: "execution e init s" using reach reachable_def by blast
hence init_s:"init ↝⇧* s" by (simp add: execution_def)
have s_s': "s ↝ s'" using step by blast
have "init ↝⇧* s'" using init_s s_s' by auto
hence "execution e init s'" using exec by (simp add: execution_def)
thus ?thesis using reachable_def by auto
qed
lemma reachability_closed_under_execution: "reachable s ⟹ s ↝⇧* s' ⟹ reachable s'"
proof -
assume reach: "reachable s" and "s ↝⇧* s'"
then obtain n where "(s, s') ∈ [↝]^^n" using rtrancl_imp_relpow by blast
thus "reachable s'"
proof (induct n arbitrary: s')
case 0
thus ?case using reach by auto
next
case (Suc n)
obtain s'' where "(s,s'') ∈ [↝]^^n" "s'' ↝ s'" using Suc.prems by auto
have "reachable s''" by (simp add: Suc.hyps ‹(s, s'') ∈ [↝]^^n›)
then show ?case using ‹s'' ↝ s'› reachability_closed_under_execution_step by blast
qed
qed
end
end