Theory Refinement
theory Refinement
imports
Constructions
Next_Imp
Stability
begin
section‹ Refinement\label{sec:refinement} ›
text‹
We develop a refinement story for the \<^typ>‹('a, 's, 'v) spec› lattice.
References:
▪ \<^citet>‹"Vafeiadis:2008"› (RGsep, program logic) and \<^citet>‹"LiangFenFu:2014"› (RGsim, refinement)
▪ \<^citet>‹"ArmstrongGomesStruth:2014"›
▪ \<^citet>‹"vanStaden:2015"›
›
definition refinement :: "'s pred ⇒ ('a, 's, 'v) spec ⇒ ('a, 's, 'v) spec ⇒ ('v ⇒ 's pred) ⇒ ('a, 's, 'v) spec" (‹⦃_⦄, _ ⊩ _, ⦃_⦄› [0,0,0,0] 100) where
"⦃P⦄, A ⊩ G, ⦃Q⦄ = spec.pre P ⊓ A ❙⟶⇩+ G ⊓ spec.post Q"
text‹
An intuitive gloss on the proposition ‹c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄› is: assuming the precondition ‹P› holds
and all steps conform to the process ‹A›, then ‹c› is a refinement of ‹G› and satisfies
the postcondition ‹Q›.
Observations:
▪ We use \<^const>‹next_imp› here;\<^const>‹heyting› is (only) enough for an assume/guarantee program logic (see \S\ref{sec:refinement-ag})
▪ ‹A› is arbitrary but is intended to constrain only \<^const>‹env› steps
▪ similarly termination can depend on ‹A›: a parallel composition can only terminate if all of its constituent processes terminate
▪ As ‹P ❙⟶⇩+ Q› implies ‹idle ≤ Q›, in practice ‹idle ≤ G›
▪ see \S\ref{sec:programs-refinement-intros} for some introduction rules
›
setup ‹Sign.mandatory_path "refinement"›
lemma E:
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
obtains "c ≤ spec.pre P ⊓ A ❙⟶⇩+ G"
and "c ≤ spec.pre P ⊓ A ❙⟶⇩+ spec.post Q"
using assms by (simp add: refinement_def spec.next_imp.infR)
lemma pre_post_cong:
assumes "P = P'"
assumes "Q = Q'"
shows "⦃P⦄, A ⊩ G, ⦃Q⦄ = ⦃P'⦄, A ⊩ G, ⦃Q'⦄"
using assms by simp
lemma top:
shows "⦃P⦄, A ⊩ ⊤, ⦃⊤⦄ = ⊤"
and "⦃P⦄, A ⊩ ⊤, ⦃⟨⊤⟩⦄ = ⊤"
and "⦃P⦄, A ⊩ ⊤, ⦃λ_ _. True⦄ = ⊤"
by (simp_all add: refinement_def)
lemma mcont2mcont[cont_intro]:
assumes "mcont luba orda Sup (≤) G"
shows "mcont luba orda Sup (≤) (λx. ⦃P⦄, A ⊩ G x, ⦃Q⦄)"
by (simp add: assms refinement_def)
lemma mono:
assumes "P' ≤ P"
assumes "A' ≤ A"
assumes "G ≤ G'"
assumes "Q ≤ Q'"
shows "⦃P⦄, A ⊩ G, ⦃Q⦄ ≤ ⦃P'⦄, A' ⊩ G', ⦃Q'⦄"
unfolding refinement_def
apply (strengthen ord_to_strengthen(1)[OF assms(1)])
apply (strengthen ord_to_strengthen(1)[OF assms(2)])
apply (strengthen ord_to_strengthen(1)[OF assms(3)])
apply (strengthen ord_to_strengthen(1)[OF assms(4)])
apply simp
done
lemma strengthen[strg]:
assumes "st_ord (¬ F) P P'"
assumes "st_ord (¬ F) A A'"
assumes "st_ord F G G'"
assumes "st_ord F Q Q'"
shows "st_ord F (⦃P⦄, A ⊩ G, ⦃Q⦄) (⦃P'⦄, A' ⊩ G', ⦃Q'⦄)"
using assms by (cases F; simp add: refinement.mono)
lemma mono_stronger:
assumes "P' ≤ P"
assumes "spec.pre P' ⊓ A' ≤ A"
assumes "spec.pre P' ⊓ G ≤ A' ❙⟶⇩+ G'"
assumes "Q ≤ Q'"
assumes "spec.idle ≤ G'"
shows "⦃P⦄, A ⊩ G, ⦃Q⦄ ≤ ⦃P'⦄, A' ⊩ G', ⦃Q'⦄"
unfolding refinement_def
apply (strengthen ord_to_strengthen(2)[OF assms(1)])
apply (strengthen ord_to_strengthen(2)[OF assms(2)])
apply (strengthen ord_to_strengthen(2)[OF assms(4)])
apply (simp add: spec.next_imp.infR)
apply (metis assms(3) heyting.commute le_infI1
spec.next_imp.closure.cl spec.pre.next_imp_eq_heyting(2)[OF assms(5)])
done
lemmas pre_ag = order.trans[OF _ refinement.mono[OF order.refl _ _ order.refl], of c] for c
lemmas pre_a = refinement.pre_ag[OF _ _ order.refl]
lemmas pre_g = refinement.pre_ag[OF _ order.refl]
lemma pre:
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
assumes "⋀s. P' s ⟹ P s"
assumes "A' ≤ A"
assumes "G ≤ G'"
assumes "⋀s v. Q s v ⟹ Q' s v"
shows "c ≤ ⦃P'⦄, A' ⊩ G', ⦃Q'⦄"
using assms(2-) by (blast intro: order.trans[OF assms(1) refinement.mono])
lemmas pre_pre_post = refinement.pre[OF _ _ order.refl order.refl, of c] for c
lemma pre_imp:
assumes "⋀s. P s ⟹ P' s"
assumes "c ≤ ⦃P'⦄, A ⊩ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
using assms refinement.pre by blast
lemmas pre_pre = refinement.pre_imp[rotated]
lemma post_imp:
assumes "⋀v s. Q v s ⟹ R v s"
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊩ G, ⦃R⦄"
using assms refinement.pre by blast
lemmas pre_post = refinement.post_imp[rotated]
lemmas strengthen_post = refinement.pre_post
lemma pre_inf_assume:
shows "⦃P⦄, A ⊩ G, ⦃Q⦄ = ⦃P⦄, A ⊓ spec.pre P ⊩ G, ⦃Q⦄"
by (simp add: refinement_def ac_simps)
lemma pre_assume_absorb:
assumes "A ≤ spec.pre P"
shows "⦃P⦄, A ⊩ G, ⦃Q⦄ = ⦃⊤⦄, A ⊩ G, ⦃Q⦄"
by (simp add: assms refinement_def inf_absorb2)
lemmas sup = sup_least[where x="⦃P⦄, A ⊩ G, ⦃Q⦄"] for A G P Q
lemma
shows supRL: "c ≤ ⦃P⦄, A ⊩ G⇩1, ⦃Q⦄ ⟹ c ≤ ⦃P⦄, A ⊩ G⇩1 ⊔ G⇩2, ⦃Q⦄"
and supRR: "c ≤ ⦃P⦄, A ⊩ G⇩2, ⦃Q⦄ ⟹ c ≤ ⦃P⦄, A ⊩ G⇩1 ⊔ G⇩2, ⦃Q⦄"
by (simp_all add: refinement.pre_g)
lemma infR_conv:
shows "⦃P⦄, A ⊩ G⇩1 ⊓ G⇩2, ⦃Q⇩1 ⊓ Q⇩2⦄ = ⦃P⦄, A ⊩ G⇩1, ⦃Q⇩1⦄ ⊓ ⦃P⦄, A ⊩ G⇩2, ⦃Q⇩2⦄"
by (simp add: refinement_def ac_simps spec.next_imp.infR spec.post.inf)
lemma inf_le:
shows "X ⊓ ⦃P⦄, A ⊩ G, ⦃Q⦄ ≤ ⦃P⦄, X ⊓ A ⊩ X ⊓ G, ⦃Q⦄"
by (simp add: refinement_def le_infI1 le_infI2
spec.next_imp.infR spec.next_imp.mono spec.next_imp.contains)
lemma heyting_le:
shows "⦃P⦄, A ⊓ B ⊩ B ❙⟶⇩H G, ⦃Q⦄ ≤ B ❙⟶⇩H ⦃P⦄, A ⊩ G, ⦃Q⦄"
by (simp add: refinement_def ac_simps heyting.infR heyting.commute
spec.next_imp.heytingL_distrib spec.next_imp.mono)
lemma heyting_pre:
assumes "spec.idle ≤ G"
shows "spec.pre P ❙⟶⇩H ⦃P'⦄, A ⊩ G, ⦃Q⦄ = ⦃P ❙∧ P'⦄, A ⊩ G, ⦃Q⦄"
by (simp add: ac_simps refinement_def spec.pre.conj assms spec.idle.post_le
flip: spec.pre.next_imp_eq_heyting)
lemma sort_of_refl:
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊩ c, ⦃Q⦄"
using assms by (simp add: refinement_def spec.next_imp.infR spec.next_imp.closure.expansive)
lemma gen_asm_base:
assumes "P ⟹ c ≤ ⦃P' ❙∧ P''⦄, A ⊩ G, ⦃Q⦄"
assumes "spec.idle ≤ G"
shows "c ≤ ⦃P' ❙∧ ⟨P⟩ ❙∧ P''⦄, A ⊩ G, ⦃Q⦄"
using assms by (simp add: refinement_def spec.pre.conj spec.pre.K spec.next_imp.botL spec.idle.post_le)
lemmas gen_asm =
refinement.gen_asm_base[where P'="⟨True⟩" and P''="⟨True⟩", simplified]
refinement.gen_asm_base[where P'="⟨True⟩", simplified]
refinement.gen_asm_base[where P''="⟨True⟩", simplified]
refinement.gen_asm_base
lemma post_conj:
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q'⦄"
shows "c ≤ ⦃P⦄, A ⊩ G, ⦃λrv. Q rv ❙∧ Q' rv⦄"
using assms unfolding refinement_def by (simp add: spec.post.conj spec.next_imp.infR)
lemma conj_lift:
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
assumes "c ≤ ⦃P'⦄, A ⊩ G, ⦃Q'⦄"
shows "c ≤ ⦃P ❙∧ P'⦄, A ⊩ G, ⦃λrv. Q rv ❙∧ Q' rv⦄"
using assms by (blast intro: refinement.post_conj refinement.pre)
lemma drop_imp:
assumes "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊩ G, ⦃λrv. Q' rv ❙⟶ Q rv⦄"
using assms refinement.strengthen_post by fastforce
lemma "prop":
shows "c ≤ ⦃⟨P⟩⦄, A ⊩ c, ⦃λv. ⟨P⟩⦄"
by (simp add: refinement.sort_of_refl[where G=⊤] refinement.gen_asm refinement.top)
lemma name_pre_state:
assumes "⋀s. P s ⟹ c ≤ ⦃(=) s⦄, A ⊩ G, ⦃Q⦄"
assumes "spec.idle ≤ G"
shows "c ≤ ⦃P⦄, A ⊩ G, ⦃Q⦄" (is "?lhs ≤ ?rhs")
proof -
have "⦉σ⦊ ≤ G ∧ ⦉σ⦊ ≤ spec.post Q"
if "⦉σ⦊ ≤ c"
and "∀σ''<σ. ⦉σ''⦊ ≤ spec.pre P ∧ ⦉σ''⦊ ≤ A"
for σ
proof(cases "trace.rest σ = [] ∧ trace.term σ = None")
case True with ‹spec.idle ≤ G› show ?thesis
by (cases σ) (simp add: spec.singleton.le_conv order.trans[OF spec.idle.minimal_le])
next
case False with order.trans[OF ‹⦉σ⦊ ≤ c› assms(1)[where s="trace.init σ"]] that(2)
show ?thesis
by (cases σ)
(clarsimp simp: refinement_def spec.singleton.next_imp_le_conv spec.singleton.le_conv;
fastforce simp: trace.less dest: spec[where x="trace.T (trace.init σ) [] None"])
qed
then show ?thesis
by - (rule spec.singleton_le_extI;
auto simp: refinement_def spec.singleton.next_imp_le_conv
intro: order.trans[OF spec.singleton.mono])
qed
setup ‹Sign.parent_path›
subsection‹ Geenral rules for the ∗‹('a, 's, 'v) spec› lattice\label{sec:refinement-spec} ›
setup ‹Sign.mandatory_path "spec"›
setup ‹Sign.mandatory_path "term"›
setup ‹Sign.mandatory_path "all"›
lemma refinement:
shows "spec.term.all (⦃P⦄, A ⊩ G, ⦃Q⦄) = ⦃P⦄, spec.term.all A ⊩ spec.term.all G, ⦃⊤⦄"
by (simp add: refinement_def spec.term.all.next_imp spec.term.all.inf spec.term.all.pre spec.term.all.post)
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "none"›
lemma refinement_le:
shows "spec.term.none (⦃P⦄, A ⊩ G, ⦃Q⦄) ≤ ⦃P⦄, spec.term.all A ⊩ spec.term.all G, ⦃⊥⦄"
by (simp add: spec.term.galois spec.term.all.refinement order.trans[OF spec.term.all.expansive])
setup ‹Sign.parent_path›
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "invmap"›
lemma refinement:
fixes af :: "'a ⇒ 'b"
fixes sf :: "'s ⇒ 't"
fixes vf :: "'v ⇒ 'w"
fixes A :: "('b, 't, 'w) spec"
fixes G :: "('b, 't, 'w) spec"
fixes P :: "'t pred"
fixes Q :: "'w ⇒ 't pred"
shows "spec.invmap af sf vf (⦃P⦄, A ⊩ G, ⦃Q⦄)
= (⦃λs. P (sf s)⦄, spec.invmap af sf vf A ⊩ spec.invmap af sf vf G, ⦃λv s. Q (vf v) (sf s)⦄)"
unfolding refinement_def
by (simp only: spec.next_imp.invmap spec.invmap.inf spec.invmap.pre spec.invmap.post)
setup ‹Sign.parent_path›
setup ‹Sign.parent_path›
subsubsection‹ Actions\label{sec:refinement-action} ›
text‹
Actions are anchored at the start of a trace, and therefore must be an initial step of the
assume ‹A›. However by the semantics of \<^const>‹spec.next_imp› we may only know
that that initial state of the trace is acceptable to ‹A›
when showing that ‹F›-steps are ‹F'›-steps
(the second assumption). This hypothesis is vacuous when ‹idle ≤ A›.
›
setup ‹Sign.mandatory_path "refinement.spec"›
lemma action:
fixes F :: "('v × 'a × 's × 's) set"
assumes "⋀v a s s'. ⟦P s; (v, a, s, s') ∈ F; (a, s, s') ∈ spec.initial_steps A⟧ ⟹ Q v s'"
assumes "⋀v a s s'. ⟦P s; (v, a, s, s') ∈ F; (a, s, s) ∈ spec.initial_steps A⟧ ⟹ (v, a, s, s') ∈ F'"
shows "spec.action F ≤ ⦃P⦄, A ⊩ spec.action F', ⦃Q⦄"
proof -
have "spec.action (F ∩ UNIV × UNIV × Pre P) ≤ A ❙⟶⇩+ spec.action F' ⊓ spec.post Q"
proof(induct rule: spec.action_le)
case idle show ?case
by (simp add: spec.next_imp.contains spec.idle.action_le spec.idle.post_le)
next
case (step v a s s') then show ?case
by (fastforce simp: spec.singleton.next_imp_le_conv trace.split_all spec.initial_steps_def
trace.less Cons_eq_append_conv spec.singleton.post_le_conv
order.trans[OF spec.idle.minimal_le spec.idle.action_le]
elim: assms trace.less_eqE prefixE
intro: spec.action.stepI)
qed
then show ?thesis
by (simp add: refinement_def spec.pre.next_imp_eq_heyting spec.idle.post_le spec.idle.action_le
heyting order.trans[OF spec.pre.inf_action_le(2)])
qed
lemma return:
shows "spec.return v ≤ ⦃Q v⦄, A ⊩ spec.return v, ⦃Q⦄"
by (auto simp: spec.return_def intro: refinement.spec.action)
lemma action_rel:
fixes F :: "('v × 'a × 's × 's) set"
assumes "⋀v a s s'. ⟦P s; (v, a, s, s') ∈ F; (a, s, s') ∈ spec.initial_steps A⟧ ⟹ Q v s'"
assumes "⋀v a s s'. ⟦P s; (v, a, s, s') ∈ F; (a, s, s) ∈ spec.initial_steps A; s ≠ s'⟧ ⟹ (a, s, s') ∈ r"
shows "spec.action F ≤ ⦃P⦄, A ⊩ spec.rel r, ⦃Q⦄"
by (force simp: spec.rel_def spec.rel.act_def spec.term.all.action
intro: assms refinement.supRL refinement.spec.action
refinement.pre_g[OF _ spec.term.all.mono[OF spec.kleene.expansive_star]])
setup ‹Sign.parent_path›
subsubsection‹ Bind\label{sec:refinement-bind} ›
text‹
Consider showing ‹f ⤜ g ≤ f' ⤜ g'› under the assume ‹A› and pre/post conditions ‹P›/‹Q›.
The tricky part is to residuate the assume ‹A› wrt the process ‹f› for use in the refinement proof of ‹g›.
▪ we want to preserve as much of the structure of ‹A› as possible
▪ intuition: we want all the ways a trace can continue in ‹A› having started with a terminating trace in ‹f›
▪ intuitively a right residual for \<^const>‹spec.bind› should do the job
▪ however unlike \<^citet>‹"HoareHe:1987"› we have no chance of a right residual for \<^const>‹spec.bind› as we use traces (they use relations)
▪ i.e., if it is not the case that ‹f ⤜ ⊥ ≤ A› then there is no continuation ‹h› such that ‹f ⤜ h ≤ A›.
▪ also such a residual ‹h› has arbitrary behavior starting from states that ‹f› cannot reach
▪ i.e., for traces ‹¬σ ≤ f› ‹⦉σ⦊ ⪢ h ≤ A› need not hold
▪ and the user-provided assertions may be too weak to correct for this
▪ in practice the termination information in the assume ‹A› is not useful
We therefore define an ad hoc residual that does the trick.
See \<^citet>‹‹\S4› in "Emerson:1983"› for some related concerns.
›
setup ‹Sign.mandatory_path "refinement.spec.bind"›
definition res :: "('a, 's, 'v) spec ⇒ ('a, 's, 'w) spec ⇒ 'v ⇒ ('a, 's, 'w) spec" where
"res f A v = ⨆{⦉trace.final' s xs, ys, w⦊ |s xs ys w. ⦉s, xs, Some v⦊ ≤ f ∧ ⦉s, xs @ ys, None⦊ ≤ A}"
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec.singleton.refinement.bind"›
lemma res_le_conv[spec.singleton.le_conv]:
shows "⦉σ⦊ ≤ refinement.spec.bind.res f A v
⟷ (∃s xs. ⦉s, xs, Some v⦊ ≤ f
∧ trace.init σ = trace.final' s xs
∧ ⦉s, xs @ trace.rest σ, None⦊ ≤ A)" (is "?lhs ⟷ ?rhs")
proof(rule iffI)
show "?lhs ⟹ ?rhs"
by (fastforce simp: refinement.spec.bind.res_def trace.split_Ex spec.singleton_le_conv
trace.less_eq_None trace.natural'.append trace.natural_def
elim: trace.less_eqE order.trans[rotated])
show "?rhs ⟹ ?lhs"
by (cases σ) (clarsimp simp: refinement.spec.bind.res_def; blast)
qed
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec.term.none.refinement.bind"›
lemma resL:
shows "refinement.spec.bind.res (spec.term.none f) A v = ⊥"
by (simp add: refinement.spec.bind.res_def spec.singleton.le_conv)
lemma resR:
shows "refinement.spec.bind.res f (spec.term.none A) v = refinement.spec.bind.res f A v"
by (simp add: refinement.spec.bind.res_def spec.singleton.le_conv)
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec.term.all.refinement.bind"›
lemma resR_mono:
shows "refinement.spec.bind.res f (spec.term.all A) v = refinement.spec.bind.res f A v"
by (simp add: refinement.spec.bind.res_def spec.singleton.le_conv)
(meson dual_order.trans spec.singleton.less_eq_None)
lemma res:
shows "spec.term.all (refinement.spec.bind.res f A v) = refinement.spec.bind.res f A v"
by (rule spec.singleton.antisym) (auto simp: spec.singleton.le_conv)
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec.term.closed.refinement.bind"›
lemma res:
shows "refinement.spec.bind.res f A v ∈ spec.term.closed _"
by (subst spec.term.all.refinement.bind.res[symmetric]) (rule spec.term.all.closed)
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "refinement.spec.bind.res"›
lemma bot:
shows botL: "refinement.spec.bind.res ⊥ = ⊥"
and botR: "refinement.spec.bind.res f ⊥ = ⊥"
by (simp_all add: refinement.spec.bind.res_def fun_eq_iff spec.singleton.not_bot)
lemma mono:
assumes "f ≤ f'"
assumes "A ≤ A'"
shows "refinement.spec.bind.res f A v ≤ refinement.spec.bind.res f' A' v"
using assms unfolding refinement.spec.bind.res_def by (fastforce intro!: Sup_subset_mono)
lemma strengthen[strg]:
assumes "st_ord F f f'"
assumes "st_ord F A A'"
shows "st_ord F (refinement.spec.bind.res f A v) (refinement.spec.bind.res f' A' v)"
using assms by (cases F; simp add: refinement.spec.bind.res.mono)
lemma mono2mono[cont_intro, partial_function_mono]:
assumes "monotone orda (≤) f"
assumes "monotone orda (≤) A"
shows "monotone orda (≤) (λx. refinement.spec.bind.res (f x) (A x) v)"
using assms by (simp add: monotone_def refinement.spec.bind.res.mono)
lemma SupL:
shows "refinement.spec.bind.res (⨆X) A v = (⨆x∈X. refinement.spec.bind.res x A v)"
by (rule antisym; simp add: refinement.spec.bind.res_def; blast)
lemma SupR:
shows "refinement.spec.bind.res f (⨆X) v = (⨆x∈X. refinement.spec.bind.res f x v)"
by (rule antisym; simp add: refinement.spec.bind.res_def; blast)
lemma InfL_le:
shows "refinement.spec.bind.res (⨅X) A v ≤ (⨅x∈X. refinement.spec.bind.res x A v)"
by (simp add: refinement.spec.bind.res_def le_Inf_iff) fast
lemma InfR_le:
shows "refinement.spec.bind.res f (⨅X) v ≤ (⨅x∈X. refinement.spec.bind.res f x v)"
by (simp add: refinement.spec.bind.res_def le_Inf_iff) fast
lemma mcont2mcont[cont_intro]:
assumes "mcont luba orda Sup (≤) f"
assumes "mcont luba orda Sup (≤) A"
shows "mcont luba orda Sup (≤) (λx. refinement.spec.bind.res (f x) (A x) v)"
proof(rule ccpo.mcont2mcont'[OF complete_lattice_ccpo _ _ assms(1)])
show "mcont Sup (≤) Sup (≤) (λf. refinement.spec.bind.res f (A x) v)" for x
by (intro mcontI contI monotoneI)
(simp_all add: refinement.spec.bind.res.mono refinement.spec.bind.res.SupL)
show "mcont luba orda Sup (≤) (λx. refinement.spec.bind.res f (A x) v)" for f
by (intro mcontI monotoneI contI)
(simp_all add: mcont_monoD[OF assms(2)] refinement.spec.bind.res.mono contD[OF mcont_cont[OF assms(2)]]
refinement.spec.bind.res.SupR image_image)
qed
lemma returnL:
assumes "spec.idle ≤ A"
shows "refinement.spec.bind.res (spec.return v) A v = spec.term.all A" (is "?lhs = ?rhs")
proof(rule antisym[OF _ spec.singleton_le_extI])
show "?lhs ≤ ?rhs"
by (auto simp: refinement.spec.bind.res_def trace.split_all spec.singleton.le_conv)
show "⦉σ⦊ ≤ ?lhs" if "⦉σ⦊ ≤ ?rhs" for σ
using that
by (auto simp: spec.singleton.le_conv
intro!: exI[where x="trace.init σ"] exI[where x="[]"]
elim: order.trans[rotated])
qed
lemma rel_le:
assumes "r ⊆ r'"
shows "refinement.spec.bind.res f (spec.rel r) v ≤ spec.rel r'"
using assms by (force intro: spec.singleton_le_extI simp: spec.singleton.le_conv trace.steps'.append)
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec.steps.refinement.spec.bind"›
lemma res_le:
shows "spec.steps (refinement.spec.bind.res f A v) ⊆ spec.steps A"
by (meson order_trans refinement.spec.bind.res.mono refinement.spec.bind.res.rel_le
spec.rel.galois spec.rel.upper_lower_expansive)
setup ‹Sign.parent_path›
text‹
A refinement rule for \<^const>‹spec.bind›.
The function ‹vf› abstracts interstitial monadic return values.
›
setup ‹Sign.mandatory_path "refinement.spec"›
lemma bind_abstract:
fixes f :: "('a, 's, 'v) spec"
fixes f' :: "('a, 's, 'v') spec"
fixes g :: "'v ⇒ ('a, 's, 'w) spec"
fixes g' :: "'v' ⇒ ('a, 's, 'w) spec"
fixes vf :: "'v ⇒ 'v'"
assumes g: "⋀v. g v ≤ ⦃Q' (vf v)⦄, refinement.spec.bind.res (spec.pre P ⊓ spec.term.all A ⊓ f') A (vf v) ⊩ g' (vf v), ⦃Q⦄"
assumes f: "f ≤ ⦃P⦄, spec.term.all A ⊩ spec.vinvmap vf f', ⦃λv. Q' (vf v)⦄"
shows "f ⤜ g ≤ ⦃P⦄, A ⊩ f' ⤜ g', ⦃Q⦄"
proof (rule order.trans[OF spec.bind.mono[OF f g]],
unfold refinement_def spec.bind.inf_post,
induct rule: spec.bind_le)
case incomplete show ?case
apply (simp add: spec.term.galois spec.term.all.next_imp spec.term.all.bind spec.term.all.inf
spec.term.all.post spec.term.all.pre)
apply (simp add: spec.next_imp.mono[OF order.refl] le_supI1 le_infI1 spec.term.none.invmap
spec.invmap.id
flip: spec.term.galois)
done
next
case (continue σ⇩f σ⇩g v)
have "⦉s, xs, w⦊ ≤ f' ⤜ (λv. g' v ⊓ spec.post Q)"
if le: "trace.T s xs w ≤ trace.T (trace.init σ⇩f) (trace.rest σ⇩f @ trace.rest σ⇩g) (trace.term σ⇩g)"
and pre: "∀σ''<trace.T s xs w. ⦉σ''⦊ ≤ spec.pre P ⊓ A"
for s xs w
using le
proof(induct rule: trace.less_eq_extE)
case prefix
from prefix(3) show ?case
proof(induct rule: prefix_append_not_NilE[case_names incomplete1 continue1])
case incomplete1 with pre continue(1) prefix(1,2) show ?case
apply (clarsimp simp: spec.singleton.next_imp_le_conv)
apply (drule spec[where x="trace.T s xs None"],
drule mp[where P="trace.T s xs None ≤ σ⇩f"])
apply (force simp: spec.singleton.le_conv spec.map.singleton
le_inf_iff trace.less trace.split_All trace.less_eq_None
simp flip: spec.map_invmap.galois
intro!: spec.bind.incompleteI)+
done
next
case (continue1 us)
from continue(1,3) prefix(2) continue1(1,2)
spec[OF pre, where x="trace.T (trace.init σ⇩f) (trace.rest σ⇩f) None"]
have "⦉trace.init σ⇩f, trace.rest σ⇩f, Some (vf v)⦊ ≤ spec.pre P ⊓ spec.term.all A ⊓ f' ⊓ spec.post Q'"
apply (cases σ⇩f)
apply (clarsimp simp: spec.singleton.le_conv spec.singleton.next_imp_le_conv
trace.less le_inf_iff exI[where x=None]
split: option.split_asm
dest!: spec[where x=σ⇩f])
apply (metis append_is_Nil_conv le_inf_iff pre trace.less_same_append_conv)
done
with pre continue(1,2,5) prefix(1,2) continue1
spec[OF continue(4)[unfolded spec.singleton.next_imp_le_conv],
where x="trace.T (trace.init σ⇩g) us None"]
show ?case
apply clarsimp
apply (rule spec.bind.continueI[where v="vf v"], assumption)
apply (clarsimp simp: spec.singleton.le_conv trace.split_All trace.less_eq_None trace.less)
apply (metis append.assoc)
done
qed
next
case (maximal w')
from maximal(1-3) continue(1,3)
spec[OF pre, where x="trace.T (trace.init σ⇩f) (trace.rest σ⇩f) None"]
have "⦉trace.init σ⇩f, trace.rest σ⇩f, Some (vf v)⦊ ≤ spec.pre P ⊓ spec.term.all A ⊓ f' ⊓ spec.post Q'"
apply (cases σ⇩f)
apply (clarsimp simp: spec.singleton.le_conv spec.singleton.next_imp_le_conv le_inf_iff
split: option.split_asm)
apply (force simp: trace.less spec.singleton.mono trace.less_eq_same_append_conv
elim: notE order.trans[rotated]
dest!: spec[where x=σ⇩f] spec[where x=None])
done
with maximal(2-4) pre continue(2)
spec[OF continue(4)[unfolded spec.singleton.next_imp_le_conv], where x="σ⇩g"]
show ?case
by (cases σ⇩g)
(auto 0 2 intro!: spec.bind.continueI[where v="vf v"] exI[where x=s]
simp: spec.singleton.le_conv trace.split_All trace.less)
qed
then show ?case
by (clarsimp simp: spec.singleton.next_imp_le_conv trace.split_all)
qed
lemmas bind = refinement.spec.bind_abstract[where vf=id, simplified spec.invmap.id, simplified]
subsubsection‹ Interference\label{sec:refinement-interference} ›
lemma rel_mono:
assumes "r ⊆ r'"
assumes "stable (snd ` (spec.steps A ∩ r)) P"
shows "spec.rel r ≤ ⦃P⦄, A ⊩ spec.rel r', ⦃λ_::unit. P⦄"
apply (subst (1) spec.rel.monomorphic_conv)
using assms(2)
proof(induct arbitrary: A rule: spec.kleene.star.fixp_induct[case_names adm bot step])
case (step R A)
have *: "spec.rel.act r ≤ ⦃P⦄, spec.term.all A ⊩ spec.rel r', ⦃⟨P⟩⦄"
unfolding spec.rel.act_def
proof(rule refinement.spec.action_rel)
show "P s'"
if "P s"
and "(v, a, s, s') ∈ {()} × (r ∪ UNIV × Id)"
and "(a, s, s') ∈ spec.initial_steps (spec.term.all A)"
for v a s s'
using that monotoneD[OF stable.antimono_rel, unfolded le_bool_def, rule_format, OF _ step.prems,
where x="{(s, s')}"]
by (cases "s = s'";
force simp: spec.initial_steps.term.all stable.singleton_conv
dest: subsetD[OF spec.initial_steps.steps_le])
show "(a, s, s') ∈ r'" if "(v, a, s, s') ∈ {()} × (r ∪ UNIV × Id)" and "s ≠ s'" for v a s s'
using that assms(1) by fast
qed
show ?case
apply (rule refinement.sup[OF _ refinement.pre_g[OF refinement.spec.return spec.return.rel_le]])
apply (subst spec.rel.unwind_bind)
apply (rule refinement.spec.bind[OF step.hyps *])
apply (force intro: monotoneD[OF stable.antimono_rel, unfolded le_bool_def, rule_format, OF _ step.prems]
dest: subsetD[OF spec.steps.refinement.spec.bind.res_le])
done
qed simp_all
setup ‹Sign.parent_path›
subsubsection‹ Parallel\label{sec:refinement-parallel} ›
text‹
Our refinement rule for \<^const>‹spec.Parallel› does not constrain the constituent processes in
any way, unlike Abadi and Plotkin's proposed rule (see \S\ref{sec:abadi_plotkin}).
›
setup ‹Sign.mandatory_path "refinement.spec"›
definition
env_hyp :: "('a ⇒ 's pred) ⇒ (sequential, 's, unit) spec ⇒ 'a set ⇒ ('a ⇒ (sequential, 's, unit) spec) ⇒ 'a ⇒ (sequential, 's, unit) spec"
where
"env_hyp P A as Ps a =
spec.pre (⨅ (P ` as))
⊓ spec.amap (toConcurrent_fn (proc a))
(spec.rel (({env} ∪ proc ` as) × UNIV)
⊓ (⨅i∈as. spec.toConcurrent i (Ps i))
⊓ spec.ainvmap toSequential_fn A)"
setup ‹Sign.mandatory_path "env_hyp"›
lemma mono:
assumes "⋀a. a ∈ as ⟹ P a ≤ P' a"
assumes "A ≤ A'"
assumes "⋀a. a ∈ as ⟹ Ps a ≤ Ps' a"
shows "refinement.spec.env_hyp P A as Ps a ≤ refinement.spec.env_hyp P' A' as Ps' a"
unfolding refinement.spec.env_hyp_def
apply (strengthen ord_to_strengthen(2)[OF assms(1)], assumption)
apply (strengthen ord_to_strengthen(1)[OF assms(2)])
apply (strengthen ord_to_strengthen(1)[OF assms(3)], assumption)
apply simp
done
lemma strengthen[strg]:
assumes "⋀a. a ∈ as ⟹ st_ord F (P a) (P' a)"
assumes "st_ord F A A'"
assumes "⋀a. a ∈ as ⟹ st_ord F (Ps a) (Ps' a)"
shows "st_ord F (refinement.spec.env_hyp P A as Ps a) (refinement.spec.env_hyp P' A' as Ps' a)"
using assms by (cases F; simp add: refinement.spec.env_hyp.mono)
setup ‹Sign.parent_path›
lemma Parallel:
fixes A :: "(sequential, 's, unit) spec"
fixes Q :: "'a ⇒ 's ⇒ bool"
fixes Ps :: "'a ⇒ (sequential, 's, unit) spec"
fixes Ps' :: "'a ⇒ (sequential, 's, unit) spec"
assumes "⋀a. a ∈ as ⟹ Ps a ≤ ⦃P a⦄, refinement.spec.env_hyp P A as Ps' a ⊩ Ps' a, ⦃λv. Q a⦄"
shows "spec.Parallel as Ps ≤ ⦃⨅a∈as. P a⦄, A ⊩ spec.Parallel as Ps', ⦃λv. ⨅a∈as. Q a⦄"
proof(cases "as = {}")
case True then show ?thesis
by (simp add: spec.Parallel.no_agents refinement.sort_of_refl[where G=⊤] refinement.top)
next
case False then show ?thesis
unfolding refinement_def
apply (subst (1) spec.Parallel_def)
apply (simp only: spec.map_invmap.galois spec.invmap.inf
spec.next_imp.invmap spec.invmap.post spec.invmap.pre)
apply (subst (1) spec.Parallel_def)
apply (strengthen ord_to_strengthen(2)[OF spec.map_invmap.upper_lower_expansive])
apply (subst inf.assoc)
apply (subst spec.next_imp.infR)
apply (simp only: spec.next_imp.contains inf.bounded_iff inf_le1)
apply (strengthen ord_to_strengthen[OF assms], assumption)
apply (simp only: spec.invmap.refinement id_apply simp_thms)
apply (rule order.trans[rotated, OF spec.Abadi_Merz_Theorem4[where
I=as
and As="λa. spec.pre (P a) ⊓ spec.toConcurrent a (refinement.spec.env_hyp P A as Ps' a)"
and Cs="λa. spec.toConcurrent a (Ps' a) ⊓ spec.post ⟨Q a⟩"]])
apply (simp only: inf.bounded_iff)
apply (intro conjI)
apply (simp only: heyting)
apply (rule INFI)
apply (simp only: inf.bounded_iff
flip: INF_inf_distrib)
apply (intro conjI)
apply (force simp: ac_simps spec.pre.INF
intro: le_infI1 le_infI2)
apply (simp add: refinement.spec.env_hyp_def ac_simps
flip: spec.map_invmap.galois)
apply (rule conjI)
apply (simp add: spec.map_invmap.galois spec.invmap.pre le_infI2
del: Inf_apply INF_apply; fail)
apply (simp add: spec.map.mono le_infI2; fail)
apply (simp add: spec.next_imp.contains heyting spec.post.INF flip: INF_inf_distrib; fail)
apply (force simp: refinement_def)
done
qed
setup ‹Sign.parent_path›
subsection‹ A relational assume/guarantee program logic for the ∗‹(sequential, 's, 'v) spec› lattice\label{sec:refinement-ag} ›
text‹
Here we develop an assume/guarantee story based on abstracting processes
(represented as safety properties) to binary relations.
Observations:
▪ this can be seen as a reconstruction of the algebraic account given by \<^citet>‹"vanStaden:2015"› in our setting
▪ we show Heyting implication suffices for relations (see ‹ag.refinement›)
▪ the processes' agent type is required to be \<^typ>‹sequential›
▪ we use predicates and not relations for pre/post assertions
▪ we can use the metalanguage to do some relational reasoning; see, for example, ‹ag.name_pre_state›
▪ \<^const>‹Id› is the smallest significant assume and guarantee relation here; processes can always stutter any state
›
setup ‹Sign.mandatory_path "ag"›
abbreviation (input) assm :: "'s rel ⇒ (sequential, 's, 'v) spec" where
"assm A ≡ spec.rel ({env} × A ∪ {self} × UNIV)"
abbreviation (input) guar :: "'s rel ⇒ (sequential, 's, 'v) spec" where
"guar G ≡ spec.rel ({env} × UNIV ∪ {self} × G)"
setup ‹Sign.parent_path›
definition ag :: "'s pred ⇒ 's rel ⇒ 's rel ⇒ ('v ⇒ 's pred) ⇒ (sequential, 's, 'v) spec" (‹⦃_⦄, _/ ⊢ _, ⦃_⦄› [0,0,0,0] 100) where
"⦃P⦄, A ⊢ G, ⦃Q⦄ = spec.pre P ⊓ ag.assm A ❙⟶⇩H ag.guar G ⊓ spec.post Q"
setup ‹Sign.mandatory_path "spec.invmap"›
lemma ag:
fixes sf :: "'s ⇒ 't"
fixes vf :: "'v ⇒ 'w"
fixes A :: "'t rel"
fixes G :: "'t rel"
fixes P :: "'t pred"
fixes Q :: "'w ⇒ 't pred"
shows "spec.invmap id sf vf (⦃P⦄, A ⊢ G, ⦃Q⦄) = ⦃λs. P (sf s)⦄, inv_image (A⇧=) sf ⊢ inv_image (G⇧=) sf, ⦃λv s. Q (vf v) (sf s)⦄"
proof -
have "{self} × UNIV ∪ ({env} × inv_image A sf ∪ UNIV × inv_image Id sf) = {self} × UNIV ∪ {env} × inv_image (A⇧=) sf"
and "{env} × UNIV ∪ ({self} × inv_image G sf ∪ UNIV × inv_image Id sf) = {env} × UNIV ∪ {self} × inv_image (G⇧=) sf"
by auto
then show ?thesis
by (simp add: ag_def spec.invmap.heyting spec.invmap.inf spec.invmap.rel spec.invmap.pre spec.invmap.post
ac_simps map_prod_vimage_Times Sigma_Un_distrib2
flip: inv_image_alt_def)
qed
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "ag"›
lemma refinement:
shows "⦃P⦄, A ⊢ G, ⦃Q⦄ = ⦃P⦄, ag.assm A ⊩ ag.guar G, ⦃Q⦄"
proof -
have constrains_heyting_ag: "ag.assm A ❙⟶⇩+ ag.guar G = ag.assm A ❙⟶⇩H ag.guar G"
apply (rule antisym[OF spec.next_imp.heyting_le])
apply (simp add: spec.next_imp.heyting heyting)
apply (subst inf.commute)
apply (rule spec.composition_principle_half[where a⇩1="{self}" and a⇩2="{env}"];
force simp: spec.idle_le spec.term.closed.rel)
done
have constrains_heyting_post: "P ❙⟶⇩+ spec.post Q = P ❙⟶⇩H spec.post Q"
if "P ∈ spec.term.closed _"
for P :: "(sequential, _, _) spec"
apply (rule antisym[OF spec.next_imp.heyting_le])
apply (clarsimp simp: spec.next_imp.heyting)
apply (metis spec.term.all.closed_conv[OF that] heyting.topL order_refl spec.term.all.post
spec.term.all_none spec.term.heyting_noneL_allR_mono spec.term.lower_upper_lower(2))
done
show ?thesis
by (simp add: ag_def refinement_def
spec.pre.next_imp_eq_heyting spec.idle_le
constrains_heyting_ag spec.next_imp.infR spec.term.closed.rel
constrains_heyting_post[OF spec.term.closed.rel] heyting.infR heyting.curry_conv)
qed
lemma E:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
obtains "c ≤ spec.pre P ⊓ ag.assm A ❙⟶⇩H ag.guar G"
and "c ≤ spec.pre P ⊓ ag.assm A ❙⟶⇩H spec.post Q"
using assms by (simp add: ag_def heyting.infR)
lemma pre_post_cong:
assumes "P = P'"
assumes "Q = Q'"
shows "⦃P⦄, A ⊢ G, ⦃Q⦄ = ⦃P'⦄, A ⊢ G, ⦃Q'⦄"
using assms by simp
lemma pre_bot:
shows "⦃⊥⦄, A ⊢ G, ⦃Q⦄ = ⊤"
and "⦃⟨⊥⟩⦄, A ⊢ G, ⦃Q⦄ = ⊤"
and "⦃⟨False⟩⦄, A ⊢ G, ⦃Q⦄ = ⊤"
by (simp_all add: ag_def heyting.botL)
lemma post_top:
shows "⦃P⦄, A ⊢ UNIV, ⦃⊤⦄ = ⊤"
and "⦃P⦄, A ⊢ UNIV, ⦃⟨⊤⟩⦄ = ⊤"
and "⦃P⦄, A ⊢ UNIV, ⦃λ_ _. True⦄ = ⊤"
by (simp_all add: ag_def spec.rel.upper_top flip: Sigma_Un_distrib1)
lemma mono:
assumes "P' ≤ P"
assumes "A' ≤ A"
assumes "G ≤ G'"
assumes "Q ≤ Q'"
shows "⦃P⦄, A ⊢ G, ⦃Q⦄ ≤ ⦃P'⦄, A' ⊢ G', ⦃Q'⦄"
unfolding ag_def
apply (strengthen ord_to_strengthen(1)[OF assms(1)])
apply (strengthen ord_to_strengthen(1)[OF assms(2)])
apply (strengthen ord_to_strengthen(1)[OF assms(3)])
apply (strengthen ord_to_strengthen(1)[OF assms(4)])
apply simp
done
lemma strengthen[strg]:
assumes "st_ord (¬ F) P P'"
assumes "st_ord (¬ F) A A'"
assumes "st_ord F G G'"
assumes "st_ord F Q Q'"
shows "st_ord F (⦃P⦄, A ⊢ G, ⦃Q⦄) (⦃P'⦄, A' ⊢ G', ⦃Q'⦄)"
using assms by (cases F; simp add: ag.mono)
lemma strengthen_pre:
assumes "st_ord (¬ F) P P'"
shows "st_ord F (⦃P⦄, A ⊢ G, ⦃Q⦄) (⦃P'⦄, A ⊢ G, ⦃Q⦄)"
using assms by (cases F; simp add: ag.mono)
lemmas pre_ag = order.trans[OF _ ag.mono[OF order.refl _ _ order.refl], of c] for c
lemmas pre_a = ag.pre_ag[OF _ _ order.refl]
lemmas pre_g = ag.pre_ag[OF _ order.refl]
lemma pre:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
assumes "⋀s. P' s ⟹ P s"
assumes "A' ⊆ A"
assumes "G ⊆ G'"
assumes "⋀v s. Q v s ⟹ Q' v s"
shows "c ≤ ⦃P'⦄, A' ⊢ G', ⦃Q'⦄"
using assms(2-) by (blast intro: order.trans[OF assms(1) ag.mono])
lemmas pre_pre_post = ag.pre[OF _ _ order.refl order.refl, of c] for c
lemma pre_imp:
assumes "⋀s. P s ⟹ P' s"
assumes "c ≤ ⦃P'⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
using assms ag.pre by blast
lemmas pre_pre = ag.pre_imp[rotated]
lemma post_imp:
assumes "⋀v s . Q v s ⟹ Q' v s"
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃Q'⦄"
using assms ag.pre by blast
lemmas pre_post = ag.post_imp[rotated]
lemmas strengthen_post = ag.pre_post
lemmas reflcl_ag = spec.invmap.ag[where sf=id and vf=id, simplified spec.invmap.id, simplified]
lemma
shows reflcl_a: "⦃P⦄, A ⊢ G, ⦃Q⦄ = ⦃P⦄, A⇧= ⊢ G, ⦃Q⦄"
and reflcl_g: "⦃P⦄, A ⊢ G, ⦃Q⦄ = ⦃P⦄, A ⊢ G⇧=, ⦃Q⦄"
by (metis ag.reflcl_ag sup.left_idem sup_commute)+
lemma gen_asm_base:
assumes "P ⟹ c ≤ ⦃P' ❙∧ P''⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P' ❙∧ ⟨P⟩ ❙∧ P''⦄, A ⊢ G, ⦃Q⦄"
using assms by (simp add: ag_def spec.pre.conj spec.pre.K heyting.botL)
lemmas gen_asm =
ag.gen_asm_base[where P'="⟨True⟩" and P''="⟨True⟩", simplified]
ag.gen_asm_base[where P'="⟨True⟩", simplified]
ag.gen_asm_base[where P''="⟨True⟩", simplified]
ag.gen_asm_base
lemma post_conj:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q'⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃λv. Q v ❙∧ Q' v⦄"
using assms by (simp add: ag_def spec.post.conj heyting)
lemma pre_disj:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
assumes "c ≤ ⦃P'⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P ❙∨ P'⦄, A ⊢ G, ⦃Q⦄"
using assms by (simp add: ag_def spec.pre.disj inf_sup_distrib heyting)
lemma drop_imp:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃λv. Q' v ❙⟶ Q v⦄"
using assms ag.strengthen_post by fastforce
lemma "prop":
shows "c ≤ ⦃⟨P⟩⦄, A ⊢ UNIV, ⦃λv. ⟨P⟩⦄"
by (simp add: ag.gen_asm(1) ag.post_top(3))
lemma name_pre_state:
assumes "⋀s. P s ⟹ c ≤ ⦃(=) s⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
by (metis assms ag.refinement refinement.name_pre_state spec.idle.rel_le)
lemma conj_lift:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
assumes "c ≤ ⦃P'⦄, A ⊢ G, ⦃Q'⦄"
shows "c ≤ ⦃P ❙∧ P'⦄, A ⊢ G, ⦃λv. Q v ❙∧ Q' v⦄"
using assms by (blast intro: ag.post_conj ag.pre)
lemma disj_lift:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
assumes "c ≤ ⦃P'⦄, A ⊢ G, ⦃Q'⦄"
shows "c ≤ ⦃P ❙∨ P'⦄, A ⊢ G, ⦃λv. Q v ❙∨ Q' v⦄"
using assms by (simp add: ag_def spec.post.disj spec.pre.disj heyting inf_sup_distrib le_supI1 le_supI2)
lemma all_lift:
assumes "⋀x. c ≤ ⦃P x⦄, A ⊢ G, ⦃Q x⦄"
shows "c ≤ ⦃❙∀x. P x⦄, A ⊢ G, ⦃λv. ❙∀x. Q x v⦄"
using assms
by (auto simp: ag_def spec.pre.All spec.post.All le_Inf_iff heyting
simp flip: INF_inf_const1 INF_inf_const2)
lemma interference_le:
shows "spec.rel ({env} × UNIV) ≤ ⦃P⦄, A ⊢ G, ⦃⊤⦄"
and "spec.rel ({env} × UNIV) ≤ ⦃P⦄, A ⊢ G, ⦃λ_. ⊤⦄"
and "spec.rel ({env} × UNIV) ≤ ⦃P⦄, A ⊢ G, ⦃λ_ _. True⦄"
by (auto simp: ag_def heyting spec.term.all.rel intro: spec.rel.mono inf.coboundedI1)
lemma assm_heyting:
fixes Q :: "'v ⇒ 's pred"
shows "ag.assm r ❙⟶⇩H ⦃P⦄, A ⊢ G, ⦃Q⦄ = ⦃P⦄, A ∩ r ⊢ G, ⦃Q⦄"
by (simp add: ag_def ac_simps Int_Un_distrib Times_Int_Times flip: heyting.curry_conv spec.rel.inf)
lemma augment_a:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
shows "c ≤ ⦃P⦄, A ∩ A' ⊢ G, ⦃Q⦄"
by (blast intro: ag.pre_a[OF assms])
lemma augment_post:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃λv. Q' v ❙∧ Q v⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃Q'⦄"
by (blast intro: ag.pre_post[OF assms])
lemma augment_post_imp:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃λv. (Q v ❙⟶ Q' v) ❙∧ Q v⦄"
shows "c ≤ ⦃P⦄, A ⊢ G, ⦃Q'⦄"
by (blast intro: ag.pre_post[OF assms])
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec.term.none"›
lemma ag_le:
shows "spec.term.none (⦃P⦄, A ⊢ G, ⦃Q⦄) ≤ ⦃P⦄, A ⊢ G, ⦃⊥⦄"
by (simp add: ag.refinement spec.term.all.rel order.trans[OF spec.term.none.refinement_le])
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "ag.spec.term"›
lemmas none_inteference =
order.trans[OF spec.term.none.mono,
OF ag.interference_le(1) ag.pre_post[where Q'=Q for Q, OF spec.term.none.ag_le, simplified]]
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "ag.spec"›
lemma bind:
assumes g: "⋀v. g v ≤ ⦃Q' v⦄, A ⊢ G, ⦃Q⦄"
assumes f: "f ≤ ⦃P⦄, A ⊢ G, ⦃Q'⦄"
shows "f ⤜ g ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
apply (subst ag.refinement)
apply (rule refinement.spec.bind[where f'="ag.guar G" and g'="⟨ag.guar G⟩", simplified spec.rel.wind_bind])
apply (rule refinement.pre_a[OF g[unfolded ag.refinement]])
apply (simp_all add: refinement.spec.bind.res.rel_le spec.term.all.rel f[unfolded ag.refinement])
done
lemma action:
fixes F :: "('v × sequential × 's × 's) set"
assumes Q: "⋀v a s s'. ⟦P s; (v, a, s, s') ∈ F⟧ ⟹ Q v s'"
assumes G: "⋀v s s'. ⟦P s; (v, self, s, s') ∈ F; s ≠ s'⟧ ⟹ (s, s') ∈ G"
shows "spec.action F ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
proof -
from G have *: "spec.pre P ⊓ spec.action F ≤ spec.rel ({env} × UNIV ∪ {self} × G)"
by - (rule order.trans[OF spec.pre.inf_action_le(1) spec.action.rel_le]; auto)
show ?thesis
by (fastforce intro: order.trans[OF _ refinement.mono_stronger[OF order.refl _ _ order.refl]]
refinement.spec.action Q
simp: ag.refinement order.trans[OF *] spec.next_imp.closure.expansive spec.idle.rel_le)
qed
lemma return:
shows "spec.return v ≤ ⦃Q v⦄, A ⊢ G, ⦃Q⦄"
by (auto simp: spec.return_def intro: ag.spec.action)
lemma Parallel_assm:
shows "refinement.spec.env_hyp P (ag.assm A) as (ag.guar ∘ G) a ≤ ag.assm (A ∪ ⋃ (G ` (as - {a})))"
by (simp add: refinement.spec.env_hyp_def spec.invmap.rel flip: spec.rel.upper_INF spec.rel.inf)
(force intro!: le_infI2 order.trans[OF spec.map.rel_le] spec.rel.mono_reflcl)
lemma Parallel_guar:
shows "spec.Parallel as (ag.guar ∘ G) = ag.guar (⋃a∈as. G a)"
proof -
have *: "{self} × Id ∪ (insert env ((λx. self) ` as) × Id ∪ map_prod toSequential_fn id ` (insert env (proc ` as) × UNIV ∩ (⋂x∈as. {proc x} × G x ∪ (- {proc x}) × UNIV)))
= {env} × UNIV ∪ ({self} × Id ∪ {self} × ⋃ (G ` as))"
by (rule antisym, force simp: toSequential_fn_def, (safe; force simp: map_prod_conv))
show ?thesis
apply (simp add: spec.Parallel_def spec.invmap.rel
flip: spec.rel.INF spec.rel.inf)
apply (subst spec.map.rel)
apply (clarsimp; blast)
apply (subst (1 2) spec.rel.reflcl[where A="{self}", symmetric])
apply (clarsimp simp: ac_simps inf_sup_distrib image_Un image_image *
map_prod_image_Times map_prod_vimage_Times Times_Int_Times)
done
qed
lemma Parallel:
fixes A :: "'s rel"
fixes G :: "'a ⇒ 's rel"
fixes Q :: "'a ⇒ 's ⇒ bool"
fixes Ps :: "'a ⇒ (sequential, 's, unit) spec"
assumes proc_ag: "⋀a. a ∈ as ⟹ Ps a ≤ ⦃P a⦄, A ∪ (⋃a'∈as-{a}. G a') ⊢ G a, ⦃λv. Q a⦄"
shows "spec.Parallel as Ps ≤ ⦃⨅a∈as. P a⦄, A ⊢ ⋃a∈as. G a, ⦃λrv. ⨅a∈as. Q a⦄"
unfolding ag.refinement
apply (rule order.trans[OF _ refinement.mono[OF order.refl _ _ order.refl]])
apply (rule refinement.spec.Parallel[where A="ag.assm A" and Ps'="ag.guar ∘ G"])
apply (rule order.trans[OF proc_ag, unfolded ag.refinement], assumption)
apply (rule refinement.mono[OF order.refl _ _ order.refl])
apply (force intro: ag.spec.Parallel_assm simp: ag.spec.Parallel_guar)+
done
setup ‹Sign.parent_path›
subsubsection‹ Stability rules ›
setup ‹Sign.mandatory_path "spec"›
lemma stable_pre_post:
fixes S :: "('a, 's, 'v) spec"
assumes "stable (snd ` r) P"
assumes "spec.steps S ⊆ r"
shows "S ≤ spec.pre P ❙⟶⇩H spec.post ⟨P⟩"
proof -
have "P (trace.final' s xs)"
if "P s"
and "trace.steps (trace.T s xs v) ⊆ r"
for s :: 's and xs :: "('a × 's) list" and v :: "'v option"
using that
proof(induct xs arbitrary: s)
case (Cons x xs) with ‹stable (snd ` r) P› show ?case
by (cases x; cases "snd x = s";
force simp: stable_def monotone_def dest: le_boolD)
qed simp
from this ‹spec.steps S ⊆ r› show ?thesis
by - (rule spec.singleton_le_extI;
auto dest: order.trans[where b=S]
simp: spec.singleton.le_conv spec.singleton.heyting_le_conv trace.split_all spec.rel.galois
split: option.split)
qed
lemma pre_post_stable:
fixes P :: "'s ⇒ bool"
assumes "stable (snd ` r) P"
shows "spec.rel r ≤ spec.pre P ❙⟶⇩H spec.post ⟨P⟩"
by (rule spec.stable_pre_post[OF assms spec.rel.lower_upper_contractive])
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "ag"›
lemma stable_lift:
assumes "stable (A ∪ G) P'"
shows "⦃P ❙∧ P'⦄, A ⊢ G, ⦃λv. P' ❙⟶ Q v⦄ ≤ ⦃P ❙∧ P'⦄, A ⊢ G, ⦃λv. Q v ❙∧ P'⦄"
apply (simp add: ag_def spec.pre.conj heyting heyting.detachment le_infI2 flip: spec.heyting.post)
apply (simp add: ac_simps Sigma_Un_distrib2 Int_Un_distrib Times_Int_Times flip: spec.rel.inf)
apply (rule order.subgoal)
apply (rule order.trans[OF _ spec.pre_post_stable[where r="{env} × A ∪ {self} × G", simplified image_Un, simplified, OF assms]])
apply (simp add: le_infI2; fail)
apply (simp add: ac_simps spec.post.conj)
apply (simp add: heyting.discharge le_infI1 flip: inf.assoc)
done
lemma stable_augment_base:
assumes "c ≤ ⦃P ❙∧ P'⦄, A ⊢ G, ⦃λv. P' ❙⟶ Q v⦄"
assumes "stable (A ∪ G) P'"
shows "c ≤ ⦃P ❙∧ P'⦄, A ⊢ G, ⦃λv. Q v ❙∧ P'⦄"
using order.trans[OF _ ag.stable_lift] assms by blast
lemma stable_augment:
assumes "c ≤ ⦃P'⦄, A ⊢ G, ⦃Q'⦄"
assumes "⋀v s. ⟦P s; Q' v s⟧ ⟹ Q v s"
assumes "stable (A ∪ G) P"
shows "c ≤ ⦃P' ❙∧ P⦄, A ⊢ G, ⦃Q⦄"
apply (rule ag.strengthen_post)
apply (rule ag.stable_augment_base[where Q=Q, OF _ assms(3)])
apply (auto intro: assms(2) ag.pre[OF assms(1)])
done
lemma stable_augment_post:
assumes "c ≤ ⦃P'⦄, A ⊢ G, ⦃Q'⦄"
assumes "⋀v. stable (A ∪ G) (Q' v ❙⟶ Q v)"
shows "c ≤ ⦃(❙∀v. Q' v ❙⟶ Q v) ❙∧ P'⦄, A ⊢ G, ⦃Q⦄"
apply (rule ag.pre_pre_post)
apply (rule ag.stable_augment_base[where P=P' and Q=Q' and P'="(❙∀v. Q' v ❙⟶ Q v)"])
apply (rule ag.pre_pre_post[OF assms(1)])
using assms(2) apply (fast intro: stable.allI)+
done
lemma stable_augment_frame:
assumes "c ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
assumes "stable (A ∪ G) P'"
shows "c ≤ ⦃P ❙∧ P'⦄, A ⊢ G, ⦃λv. Q v ❙∧ P'⦄"
using assms by (blast intro: ag.stable_augment[OF assms(1)])
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "ag.spec"›
lemma stable_interference:
assumes "stable (A ∩ r) P"
shows "spec.rel ({env} × r) ≤ ⦃P⦄, A ⊢ G, ⦃⟨P⟩⦄"
using assms
by (auto simp: ag_def ac_simps heyting Int_Un_distrib Times_Int_Times
simp flip: spec.rel.inf
intro: le_infI2 spec.rel.mono spec.pre_post_stable[simplified heyting ac_simps])
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "spec"›
setup ‹Sign.mandatory_path "cam"›
lemma closed_ag:
shows "⦃P⦄, A ⊢ G, ⦃Q⦄ ∈ spec.cam.closed ({env} × r)"
unfolding ag_def heyting.infR
by (blast intro: subsetD[OF spec.cam.closed.antimono, rotated])
setup ‹Sign.parent_path›
setup ‹Sign.mandatory_path "interference"›
lemma cl_ag_le:
assumes P: "stable (A ∩ r) P"
assumes Q: "⋀v. stable (A ∩ r) (Q v)"
shows "spec.interference.cl ({env} × r) (⦃P⦄, A ⊢ G, ⦃Q⦄) ≤ ⦃P⦄, A ⊢ G, ⦃Q⦄"
unfolding spec.interference.cl_def
by (rule ag.spec.bind ag.spec.return ag.spec.stable_interference spec.cam.least[OF _ spec.cam.closed_ag] assms order.refl)+
lemma closed_ag:
assumes P: "stable (A ∩ r) P"
assumes Q: "⋀v. stable (A ∩ r) (Q v)"
shows "⦃P⦄, A ⊢ G, ⦃Q⦄ ∈ spec.interference.closed ({env} × r)"
by (rule spec.interference.closed_clI[OF spec.interference.cl_ag_le[OF assms]])
setup ‹Sign.parent_path›
setup ‹Sign.parent_path›
end