Theory Complex_Euclidean_Space0

(*  Title:      HOL/Analysis/Euclidean_Space.thy
    Author:     Johannes Hölzl, TU München
    Author:     Brian Huffman, Portland State University
*)

section Complex_Euclidean_Space0› -- Finite-Dimensional Inner Product Spaces›

theory Complex_Euclidean_Space0
  imports
    "HOL-Analysis.L2_Norm"
    "Complex_Inner_Product"
    "HOL-Analysis.Product_Vector"
    "HOL-Library.Rewrite"
begin


(* subsection✐‹tag unimportant› ‹Interlude: Some properties of real sets› *)

(* Complex analogue not needed *)
(* lemma seq_mono_lemma:
  assumes "∀(n::nat) ≥ m. (d n :: real) < e n"
    and "∀n ≥ m. e n ≤ e m"
  shows "∀n ≥ m. d n < e m" *)

subsection ‹Type class of Euclidean spaces›

class ceuclidean_space = complex_inner +
  fixes CBasis :: "'a set"
  assumes nonempty_CBasis [simp]: "CBasis  {}"
  assumes finite_CBasis [simp]: "finite CBasis"
  assumes cinner_CBasis:
    "u  CBasis; v  CBasis  cinner u v = (if u = v then 1 else 0)"
  assumes ceuclidean_all_zero_iff:
    "(uCBasis. cinner x u = 0)  (x = 0)"

syntax "_type_cdimension" :: "type  nat"  ("(1CDIM/(1'(_')))")
syntax_consts "_type_cdimension"  card
translations "CDIM('a)"  "CONST card (CONST CBasis :: 'a set)"
typed_print_translation [(const_syntaxcard,
    fn ctxt => fn _ => fn [Const (const_syntaxCBasis, Type (type_nameset, [T]))] =>
      Syntax.const syntax_const‹_type_cdimension› $ Syntax_Phases.term_of_typ ctxt T)]

lemma (in ceuclidean_space) norm_CBasis[simp]: "u  CBasis  norm u = 1"
  unfolding norm_eq_sqrt_cinner by (simp add: cinner_CBasis)

lemma (in ceuclidean_space) cinner_same_CBasis[simp]: "u  CBasis  cinner u u = 1"
  by (simp add: cinner_CBasis)

lemma (in ceuclidean_space) cinner_not_same_CBasis: "u  CBasis  v  CBasis  u  v  cinner u v = 0"
  by (simp add: cinner_CBasis)

lemma (in ceuclidean_space) sgn_CBasis: "u  CBasis  sgn u = u"
  unfolding sgn_div_norm by (simp add: scaleR_one)

lemma (in ceuclidean_space) CBasis_zero [simp]: "0  CBasis"
proof
  assume "0  CBasis" thus "False"
    using cinner_CBasis [of 0 0] by simp
qed

lemma (in ceuclidean_space) nonzero_CBasis: "u  CBasis  u  0"
  by clarsimp

lemma (in ceuclidean_space) SOME_CBasis: "(SOME i. i  CBasis)  CBasis"
  by (metis ex_in_conv nonempty_CBasis someI_ex)

lemma norm_some_CBasis [simp]: "norm (SOME i. i  CBasis) = 1"
  by (simp add: SOME_CBasis)

lemma (in ceuclidean_space) cinner_sum_left_CBasis[simp]:
  "b  CBasis  cinner (iCBasis. f i *C i) b = cnj (f b)"
  by (simp add: cinner_sum_left cinner_CBasis if_distrib comm_monoid_add_class.sum.If_cases)

(* Not present in Euclidean_Space *)
(* lemma (in ceuclidean_space) cinner_sum_right_CBasis[simp]:
    "b ∈ CBasis ⟹ cinner b (∑i∈CBasis. f i *C i) = f b"
  by (metis (mono_tags, lifting) cinner_commute cinner_sum_left_CBasis comm_monoid_add_class.sum.cong complex_cnj_cnj) *)

lemma (in ceuclidean_space) ceuclidean_eqI:
  assumes b: "b. b  CBasis  cinner x b = cinner y b" shows "x = y"
proof -
  from b have "bCBasis. cinner (x - y) b = 0"
    by (simp add: cinner_diff_left)
  then show "x = y"
    by (simp add: ceuclidean_all_zero_iff)
qed

lemma (in ceuclidean_space) ceuclidean_eq_iff:
  "x = y  (bCBasis. cinner x b = cinner y b)"
  by (auto intro: ceuclidean_eqI)

lemma (in ceuclidean_space) ceuclidean_representation_sum:
  "(iCBasis. f i *C i) = b  (iCBasis. f i = cnj (cinner b i))"
  apply (subst ceuclidean_eq_iff) 
  apply simp by (metis complex_cnj_cnj cinner_commute)

lemma (in ceuclidean_space) ceuclidean_representation_sum':
  "b = (iCBasis. f i *C i)  (iCBasis. f i = cinner i b)"
  apply (auto simp add: ceuclidean_representation_sum[symmetric])
   apply (metis ceuclidean_representation_sum cinner_commute)
  by (metis local.ceuclidean_representation_sum local.cinner_commute)

lemma (in ceuclidean_space) ceuclidean_representation: "(bCBasis. cinner b x *C b) = x"
  unfolding ceuclidean_representation_sum
  using local.cinner_commute by blast

lemma (in ceuclidean_space) ceuclidean_cinner: "cinner x y = (bCBasis. cinner x b * cnj (cinner y b))"
  apply (subst (1 2) ceuclidean_representation [symmetric])
  apply (simp add: cinner_sum_right cinner_CBasis ac_simps)
  by (metis local.cinner_commute mult.commute)

lemma (in ceuclidean_space) choice_CBasis_iff:
  fixes P :: "'a  complex  bool"
  shows "(iCBasis. x. P i x)  (x. iCBasis. P i (cinner x i))"
  unfolding bchoice_iff
proof safe
  fix f assume "iCBasis. P i (f i)"
  then show "x. iCBasis. P i (cinner x i)"
    by (auto intro!: exI[of _ "iCBasis. cnj (f i) *C i"])
qed auto

lemma (in ceuclidean_space) bchoice_CBasis_iff:
  fixes P :: "'a  complex  bool"
  shows "(iCBasis. xA. P i x)  (x. iCBasis. cinner x i  A  P i (cinner x i))"
  by (simp add: choice_CBasis_iff Bex_def)

lemma (in ceuclidean_space) ceuclidean_representation_sum_fun:
  "(λx. bCBasis. cinner b (f x) *C b) = f"
  apply (rule ext) 
  apply (simp add: ceuclidean_representation_sum)
  by (meson local.cinner_commute)

lemma euclidean_isCont:
  assumes "b. b  CBasis  isCont (λx. (cinner b (f x)) *C b) x"
  shows "isCont f x"
  apply (subst ceuclidean_representation_sum_fun [symmetric])
  apply (rule isCont_sum)
  by (blast intro: assms)

lemma CDIM_positive [simp]: "0 < CDIM('a::ceuclidean_space)"
  by (simp add: card_gt_0_iff)

lemma CDIM_ge_Suc0 [simp]: "Suc 0  card CBasis"
  by (meson CDIM_positive Suc_leI)


lemma sum_cinner_CBasis_scaleC [simp]:
  fixes f :: "'a::ceuclidean_space  'b::complex_vector"
  assumes "b  CBasis" shows "(iCBasis. (cinner i b) *C f i) = f b"
  by (simp add: comm_monoid_add_class.sum.remove [OF finite_CBasis assms]
      assms cinner_not_same_CBasis comm_monoid_add_class.sum.neutral)

lemma sum_cinner_CBasis_eq [simp]:
  assumes "b  CBasis" shows "(iCBasis. (cinner i b) * f i) = f b"
  by (simp add: comm_monoid_add_class.sum.remove [OF finite_CBasis assms]
      assms cinner_not_same_CBasis comm_monoid_add_class.sum.neutral)

lemma sum_if_cinner [simp]:
  assumes "i  CBasis" "j  CBasis"
  shows "cinner (kCBasis. if k = i then f i *C i else g k *C k) j = (if j=i then cnj (f j) else cnj (g j))"
proof (cases "i=j")
  case True
  with assms show ?thesis
    by (auto simp: cinner_sum_left if_distrib [of "λx. cinner x j"] cinner_CBasis cong: if_cong)
next
  case False
  have "(kCBasis. cinner (if k = i then f i *C i else g k *C k) j) =
        (kCBasis. if k = j then cnj (g k) else 0)"
    apply (rule sum.cong)
    using False assms by (auto simp: cinner_CBasis)
  also have "... = cnj (g j)"
    using assms by auto
  finally show ?thesis
    using False by (auto simp: cinner_sum_left)
qed

lemma norm_le_componentwise:
  "(b. b  CBasis  cmod(cinner x b)  cmod(cinner y b))  norm x  norm y"
  apply (auto simp: cnorm_le ceuclidean_cinner [of x x] ceuclidean_cinner [of y y] power2_eq_square intro!: sum_mono)
  by (smt (verit, best) mult.commute sum.cong)

lemma CBasis_le_norm: "b  CBasis  cmod (cinner x b)  norm x"
  by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp

lemma norm_bound_CBasis_le: "b  CBasis  norm x  e  cmod (inner x b)  e"
  by (metis inner_commute mult.left_neutral norm_CBasis norm_of_real order_trans real_inner_class.Cauchy_Schwarz_ineq2)

lemma norm_bound_CBasis_lt: "b  CBasis  norm x < e  cmod (inner x b) < e"
  by (metis inner_commute le_less_trans mult.left_neutral norm_CBasis norm_of_real real_inner_class.Cauchy_Schwarz_ineq2)

lemma cnorm_le_l1: "norm x  (bCBasis. cmod (cinner x b))"
  apply (subst ceuclidean_representation[of x, symmetric])
  apply (rule order_trans[OF norm_sum])
  apply (auto intro!: sum_mono)
  by (metis cinner_commute complex_inner_1_left complex_inner_class.Cauchy_Schwarz_ineq2 mult.commute mult.left_neutral norm_one)

(* Maybe it holds in the complex case but the proof does not adapt trivially *)
(* lemma csum_norm_allsubsets_bound:
  fixes f :: "'a ⇒ 'n::ceuclidean_space"
  assumes fP: "finite P"
    and fPs: "⋀Q. Q ⊆ P ⟹ norm (sum f Q) ≤ e"
  shows "(∑x∈P. norm (f x)) ≤ 2 * real CDIM('n) * e" *)


(* subsection✐‹tag unimportant› ‹Subclass relationships› *)
(* Everything is commented out, so we comment out the heading, too. *)

(* If we include this, instantiation prod :: (ceuclidean_space, ceuclidean_space) ceuclidean_space below fails *)
(* instance ceuclidean_space ⊆ perfect_space
proof
  fix x :: 'a show "¬ open {x}"
  proof
    assume "open {x}"
    then obtain e where "0 < e" and e: "∀y. dist y x < e ⟶ y = x"
      unfolding open_dist by fast
    define y where "y = x + scaleR (e/2) (SOME b. b ∈ CBasis)"
    have [simp]: "(SOME b. b ∈ CBasis) ∈ CBasis"
      by (rule someI_ex) (auto simp: ex_in_conv)
    from ‹0 < e› have "y ≠ x"
      unfolding y_def by (auto intro!: nonzero_CBasis)
    from ‹0 < e› have "dist y x < e"
      unfolding y_def by (simp add: dist_norm)
    from ‹y ≠ x› and ‹dist y x < e› show "False"
      using e by simp
  qed
qed *)

subsection ‹Class instances›

subsubsectiontag unimportant› ‹Type typcomplex

(* No analogue *)
(* instantiation real :: ceuclidean_space *)

instantiation complex :: ceuclidean_space
begin

definition
  [simp]: "CBasis = {1::complex}"

instance
  by standard auto

end

lemma CDIM_complex[simp]: "CDIM(complex) = 1"
  by simp

(* lemma CDIM_complex[simp]: "DIM(complex) = 2"
lemma complex_CBasis_1 [iff]: "(1::complex) ∈ CBasis"
lemma complex_CBasis_i [iff]: "𝗂 ∈ CBasis" *)

subsubsectiontag unimportant› ‹Type typ'a × 'b

(* Already done in Complex_Inner_Product *)
(* instantiation prod :: (complex_inner, complex_inner) complex_inner begin
definition cinner_prod_def:
  "cinner x y = cinner (fst x) (fst y) + cinner (snd x) (snd y)"
instance …
end
*)

lemma cinner_Pair [simp]: "cinner (a, b) (c, d) = cinner a c + cinner b d"
  unfolding cinner_prod_def by simp

lemma cinner_Pair_0: "cinner x (0, b) = cinner (snd x) b" "cinner x (a, 0) = cinner (fst x) a"
  by (cases x, simp)+

instantiation prod :: (ceuclidean_space, ceuclidean_space) ceuclidean_space
begin

definition
  "CBasis = (λu. (u, 0)) ` CBasis  (λv. (0, v)) ` CBasis"

lemma sum_CBasis_prod_eq:
  fixes f::"('a*'b)('a*'b)"
  shows "sum f CBasis = sum (λi. f (i, 0)) CBasis + sum (λi. f (0, i)) CBasis"
proof -
  have "inj_on (λu. (u::'a, 0::'b)) CBasis" "inj_on (λu. (0::'a, u::'b)) CBasis"
    by (auto intro!: inj_onI Pair_inject)
  thus ?thesis
    unfolding CBasis_prod_def
    by (subst sum.union_disjoint) (auto simp: CBasis_prod_def sum.reindex)
qed

instance proof
  show "(CBasis :: ('a × 'b) set)  {}"
    unfolding CBasis_prod_def by simp
next
  show "finite (CBasis :: ('a × 'b) set)"
    unfolding CBasis_prod_def by simp
next
  fix u v :: "'a × 'b"
  assume "u  CBasis" and "v  CBasis"
  thus "cinner u v = (if u = v then 1 else 0)"
    unfolding CBasis_prod_def cinner_prod_def
    by (auto simp add: cinner_CBasis split: if_split_asm)
next
  fix x :: "'a × 'b"
  show "(uCBasis. cinner x u = 0)  x = 0"
    unfolding CBasis_prod_def ball_Un ball_simps
    by (simp add: cinner_prod_def prod_eq_iff ceuclidean_all_zero_iff)
qed

lemma CDIM_prod[simp]: "CDIM('a × 'b) = CDIM('a) + CDIM('b)"
  unfolding CBasis_prod_def
  by (subst card_Un_disjoint) (auto intro!: card_image arg_cong2[where f="(+)"] inj_onI)

end


subsection ‹Locale instances›

lemma finite_dimensional_vector_space_euclidean:
  "finite_dimensional_vector_space (*C) CBasis"
proof unfold_locales
  show "finite (CBasis::'a set)" by (metis finite_CBasis)
  show "complex_vector.independent (CBasis::'a set)"
    unfolding complex_vector.dependent_def cdependent_raw_def[symmetric]
    apply (subst complex_vector.span_finite)
     apply simp
    apply clarify
    apply (drule_tac f="cinner a" in arg_cong)
    by (simp add: cinner_CBasis cinner_sum_right eq_commute)
  show "module.span (*C) CBasis = UNIV"
    unfolding complex_vector.span_finite [OF finite_CBasis] cspan_raw_def[symmetric]
    by (auto intro!: ceuclidean_representation[symmetric])
qed

interpretation ceucl: finite_dimensional_vector_space "scaleC :: complex => 'a => 'a::ceuclidean_space" "CBasis"
  rewrites "module.dependent (*C) = cdependent"
    and "module.representation (*C) = crepresentation"
    and "module.subspace (*C) = csubspace"
    and "module.span (*C) = cspan"
    and "vector_space.extend_basis (*C) = cextend_basis"
    and "vector_space.dim (*C) = cdim"
    and "Vector_Spaces.linear (*C) (*C) = clinear"
    and "Vector_Spaces.linear (*) (*C) = clinear"
    and "finite_dimensional_vector_space.dimension CBasis = CDIM('a)"
    (* and "dimension = CDIM('a)" *) (* This line leads to a type error. Not sure why *)
  by (auto simp add: cdependent_raw_def crepresentation_raw_def
      csubspace_raw_def cspan_raw_def cextend_basis_raw_def cdim_raw_def clinear_def
      complex_scaleC_def[abs_def]
      finite_dimensional_vector_space.dimension_def
      intro!: finite_dimensional_vector_space.dimension_def
      finite_dimensional_vector_space_euclidean)

interpretation ceucl: finite_dimensional_vector_space_pair_1
  "scaleC::complex'a::ceuclidean_space'a" CBasis
  "scaleC::complex'b::complex_vector  'b"
  by unfold_locales

interpretation ceucl?: finite_dimensional_vector_space_prod scaleC scaleC CBasis CBasis
  rewrites "Basis_pair = CBasis"
    and "module_prod.scale (*C) (*C) = (scaleC::__('a × 'b))"
proof -
  show "finite_dimensional_vector_space_prod (*C) (*C) CBasis CBasis"
    by unfold_locales
  interpret finite_dimensional_vector_space_prod "(*C)" "(*C)" "CBasis::'a set" "CBasis::'b set"
    by fact
  show "Basis_pair = CBasis"
    unfolding Basis_pair_def CBasis_prod_def by auto
  show "module_prod.scale (*C) (*C) = scaleC"
    by (fact module_prod_scale_eq_scaleC)
qed

end