Theory Commuting_Hermitian
theory Commuting_Hermitian imports Spectral_Theory_Complements Commuting_Hermitian_Misc
"Projective_Measurements.Linear_Algebra_Complements"
"Projective_Measurements.Projective_Measurements" begin
section ‹Additional results on block decompositions of matrices›
subsection ‹Split block results›
lemma split_block_diag_carrier:
assumes "D ∈ carrier_mat n n"
and "a ≤ n"
and "split_block D a a = (D1, D2, D3, D4)"
shows "D1∈ carrier_mat a a" "D4∈ carrier_mat (n-a) (n-a)"
proof -
show "D1∈ carrier_mat a a" using assms unfolding split_block_def
by (metis Pair_inject mat_carrier)
show "D4 ∈ carrier_mat (n-a) (n-a)" using assms unfolding split_block_def
by (metis Pair_inject carrier_matD(1) carrier_matD(2) mat_carrier)
qed
lemma split_block_diagonal:
assumes "diagonal_mat D"
and "D ∈ carrier_mat n n"
and "a ≤ n"
and "split_block D a a = (D1, D2, D3, D4)"
shows "diagonal_mat D1 ∧ diagonal_mat D4" unfolding diagonal_mat_def
proof (intro allI conjI impI)
have "D1 ∈ carrier_mat a a" using assms unfolding split_block_def Let_def
by fastforce
fix i j
assume "i < dim_row D1"
and "j < dim_col D1"
and "i ≠ j"
have "D1 $$ (i,j) = D $$(i,j)" using assms unfolding split_block_def Let_def
using ‹i < dim_row D1› ‹j < dim_col D1› by fastforce
also have "... = 0" using assms ‹i ≠ j› ‹D1 ∈ carrier_mat a a›
‹i < dim_row D1› ‹j < dim_col D1› unfolding diagonal_mat_def by fastforce
finally show "D1 $$(i,j) = 0" .
next
have "D4 ∈ carrier_mat (n-a) (n-a)" using assms
unfolding split_block_def Let_def by fastforce
fix i j
assume "i < dim_row D4"
and "j < dim_col D4"
and "i ≠ j"
have "D4 $$ (i,j) = D $$(i + a,j + a)" using assms unfolding split_block_def Let_def
using ‹i < dim_row D4› ‹j < dim_col D4› by fastforce
also have "... = 0" using assms ‹i ≠ j› ‹D4 ∈ carrier_mat (n-a) (n-a)›
‹i < dim_row D4› ‹j < dim_col D4› unfolding diagonal_mat_def by fastforce
finally show "D4 $$(i,j) = 0" .
qed
lemma split_block_times_diag_index:
fixes B::"'a::comm_ring Matrix.mat"
assumes "diagonal_mat D"
and "D∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and "a ≤ n"
and "split_block B a a = (B1, B2, B3, B4)"
and "split_block D a a = (D1, D2, D3, D4)"
and "i < dim_row (D4 * B4)"
and "j < dim_col (D4 * B4)"
shows "(B4 * D4) $$ (i, j) = (B*D) $$ (i+a, j+a)"
"(D4 * B4) $$ (i, j) = (D*B) $$ (i+a, j+a)"
proof -
have d4: "D4 ∈ carrier_mat (n-a) (n-a)" using assms
split_block(4)[of D] by simp
have b4: "B4 ∈ carrier_mat (n-a) (n-a)" using assms
split_block(4)[of B] by simp
have "diagonal_mat D4" using assms split_block_diagonal[of D] by blast
have "i < n-a" using ‹i < dim_row (D4 * B4)› b4 d4 by simp
have "j < n-a" using ‹j < dim_col (D4 * B4)› b4 d4 by simp
have "(B4 * D4) $$ (i, j) = D4 $$ (j,j) * B4 $$ (i,j)"
proof (rule diagonal_mat_mult_index')
show "diagonal_mat D4" using ‹diagonal_mat D4› .
show "B4 ∈ carrier_mat (n-a) (n-a)" using b4 .
show "D4 ∈ carrier_mat (n - a) (n - a)" using d4 .
show "i < n-a" using ‹i < n-a› .
show "j < n-a" using ‹j < n-a› .
qed
also have "... = D $$ (j+a, j+a) * B $$ (i+a, j+a)"
using assms ‹i < n-a› ‹j < n-a›
unfolding split_block_def Let_def by fastforce
also have "... = (B*D) $$ (i+a, j+a)" using diagonal_mat_mult_index' assms
by (metis ‹i < n - a› ‹j < n - a› less_diff_conv)
finally show "(B4 * D4) $$ (i, j) = (B*D) $$ (i+a, j+a)" .
have "(D4 * B4) $$ (i, j) = D4 $$ (i,i) * B4 $$ (i,j)"
using diagonal_mat_mult_index ‹diagonal_mat D4› ‹i < n - a› ‹j < n - a› b4 d4
by blast
also have "... = D $$ (i+a, i+a) * B $$ (i+a, j+a)"
using assms ‹i < n-a› ‹j < n-a›
unfolding split_block_def Let_def by fastforce
also have "... = (D*B) $$ (i+a, j+a)" using diagonal_mat_mult_index assms
by (metis ‹i < n - a› ‹j < n - a› less_diff_conv)
finally show "(D4 * B4) $$ (i, j) = (D*B) $$ (i+a, j+a)" .
qed
lemma split_block_commute_subblock:
fixes B::"'a::comm_ring Matrix.mat"
assumes "diagonal_mat D"
and "D∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and "a ≤ n"
and "split_block B a a = (B1, B2, B3, B4)"
and "split_block D a a = (D1, D2, D3, D4)"
and "B * D = D * B"
shows "B4 * D4 = D4 * B4"
proof
have d4: "D4 ∈ carrier_mat (n-a) (n-a)" using assms
split_block(4)[of D] by simp
have b4: "B4 ∈ carrier_mat (n-a) (n-a)" using assms
split_block(4)[of B] by simp
have "diagonal_mat D4" using assms split_block_diagonal[of D] by blast
show "dim_row (B4 * D4) = dim_row (D4 * B4)" using d4 b4 by simp
show "dim_col (B4 * D4) = dim_col (D4 * B4)" using d4 b4 by simp
fix i j
assume "i < dim_row (D4 * B4)"
and "j < dim_col (D4 * B4)"
have "(B4*D4) $$(i,j) = (B*D) $$(i+a, j+a)"
using split_block_times_diag_index[of D n B a] assms
‹i < dim_row (D4 * B4)› ‹j < dim_col (D4 * B4)› by blast
also have "... = (D*B) $$ (i+a, j+a)" using assms by simp
also have "... = (D4*B4) $$ (i, j)"
using split_block_times_diag_index[of D n B a] assms
by (metis ‹i < dim_row (D4 * B4)› ‹j < dim_col (D4 * B4)›)
finally show "(B4*D4) $$(i,j) = (D4*B4) $$ (i, j)" .
qed
lemma commute_diag_mat_zero_comp:
fixes D::"'a::{field} Matrix.mat"
assumes "diagonal_mat D"
and "D∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and" B* D = D * B"
and "i < n"
and "j < n"
and "D$$(i,i) ≠ D$$(j,j)"
shows "B $$(i,j) = 0"
proof -
have "B$$(i,j) * D$$(j,j) = (B*D) $$(i,j)"
using diagonal_mat_mult_index'[of B n D] assms by simp
also have "... = (D*B) $$ (i,j)" using assms by simp
also have "... = B$$(i,j) * D$$(i,i)"
using diagonal_mat_mult_index assms
by (metis Groups.mult_ac(2))
finally have "B$$(i,j) * D$$(j,j) = B$$(i,j) * D$$(i,i)" .
hence "B$$(i,j) * (D$$(j,j) - D$$(i,i)) = 0" by auto
thus "B$$(i,j) = 0" using assms by simp
qed
lemma commute_diag_mat_split_block:
fixes D::"'a::{field} Matrix.mat"
assumes "diagonal_mat D"
and "D∈ carrier_mat n n"
and "B∈ carrier_mat n n"
and" B* D = D * B"
and "k ≤ n"
and "∀i j. (i < k ∧ k ≤ j ∧ j < n) ⟶ D$$(i,i) ≠ D$$(j,j)"
and "(B1, B2, B3, B4) = split_block B k k"
shows "B2 = 0⇩m k (n-k)" "B3 = 0⇩m (n-k) k"
proof (intro eq_matI)
show "dim_row B2 = dim_row (0⇩m k (n - k))"
using assms unfolding split_block_def Let_def by simp
show "dim_col B2 = dim_col (0⇩m k (n - k))"
using assms unfolding split_block_def Let_def by simp
fix i j
assume "i < dim_row (0⇩m k (n - k))"
and "j < dim_col (0⇩m k (n - k))" note ijprop = this
have "B2 $$ (i, j) = B $$ (i, j+k)" using assms ijprop
unfolding split_block_def Let_def by simp
also have "... = 0"
proof (rule commute_diag_mat_zero_comp[of D n], (auto simp add: assms))
show "i < n" using ijprop assms by simp
show "j + k < n" using ijprop assms by simp
show "D $$ (i, i) = D $$ (j + k, j + k) ⟹ False" using ijprop assms
by (metis ‹j + k < n› index_zero_mat(2) le_add2)
qed
finally show "B2 $$ (i, j) = 0⇩m k (n - k) $$ (i, j)" using ijprop by simp
next
show "B3 = 0⇩m (n-k) k"
proof (intro eq_matI)
show "dim_row B3 = dim_row (0⇩m (n - k) k)"
using assms unfolding split_block_def Let_def by simp
show "dim_col B3 = dim_col (0⇩m (n - k) k)"
using assms unfolding split_block_def Let_def by simp
fix i j
assume "i < dim_row (0⇩m (n - k) k)"
and "j < dim_col (0⇩m (n - k) k)" note ijprop = this
have "B3 $$ (i, j) = B $$ (i+k, j)" using assms ijprop
unfolding split_block_def Let_def by simp
also have "... = 0"
proof (rule commute_diag_mat_zero_comp[of D n], (auto simp add: assms))
show "i + k < n" using ijprop assms by simp
show "j < n" using ijprop assms by simp
show "D $$ (i+k, i+k) = D $$ (j, j) ⟹ False" using ijprop assms
by (metis ‹i + k < n› index_zero_mat(3) le_add2)
qed
finally show "B3 $$ (i, j) = 0⇩m (n - k) k $$ (i, j)" using ijprop by simp
qed
qed
lemma split_block_hermitian_1:
assumes "hermitian A"
and "n ≤ dim_row A"
and "(A1, A2, A3, A4) = split_block A n n"
shows "hermitian A1" unfolding hermitian_def
proof (rule eq_matI, auto)
have "dim_row A = dim_col A" using assms
by (metis carrier_matD(2) hermitian_square)
show "dim_col A1 = dim_row A1" using assms unfolding split_block_def Let_def
by simp
thus "dim_row A1 = dim_col A1" by simp
show "⋀i j. i < dim_row A1 ⟹ j < dim_col A1 ⟹
Complex_Matrix.adjoint A1 $$ (i, j) = A1 $$ (i, j)"
proof -
fix i j
assume "i < dim_row A1" and "j < dim_col A1" note ij = this
have r: "dim_row A1 = n" using assms unfolding split_block_def Let_def
by simp
have c: "dim_col A1 = n" using assms unfolding split_block_def Let_def
by simp
have "Complex_Matrix.adjoint A1 $$ (i, j) = conjugate (A1 $$ (j,i))"
using ij r c unfolding Complex_Matrix.adjoint_def by simp
also have "... = conjugate (A $$ (j,i))" using assms ij r c
unfolding split_block_def Let_def by simp
also have "... = A $$ (i,j)" using assms ij r c ‹dim_row A = dim_col A›
unfolding hermitian_def Complex_Matrix.adjoint_def
by (metis adjoint_eval assms(1) hermitian_def order_less_le_trans)
also have "... = A1 $$(i,j)" using assms ij r c
unfolding split_block_def Let_def by simp
finally show "Complex_Matrix.adjoint A1 $$ (i, j) = A1 $$ (i, j)" .
qed
qed
lemma split_block_hermitian_4:
assumes "hermitian A"
and "n ≤ dim_row A"
and "(A1, A2, A3, A4) = split_block A n n"
shows "hermitian A4" unfolding hermitian_def
proof (rule eq_matI, auto)
have arc: "dim_row A = dim_col A" using assms
by (metis carrier_matD(2) hermitian_square)
thus "dim_col A4 = dim_row A4" using assms unfolding split_block_def Let_def
by simp
thus "dim_row A4 = dim_col A4" by simp
show "⋀i j. i < dim_row A4 ⟹ j < dim_col A4 ⟹
Complex_Matrix.adjoint A4 $$ (i, j) = A4 $$ (i, j)"
proof -
fix i j
assume "i < dim_row A4" and "j < dim_col A4" note ij = this
have r: "dim_row A4 = dim_row A - n" using assms
unfolding split_block_def Let_def by simp
have c: "dim_col A4 = dim_col A - n" using assms
unfolding split_block_def Let_def by simp
have "Complex_Matrix.adjoint A4 $$ (i, j) = conjugate (A4 $$ (j,i))"
using ij r c arc unfolding Complex_Matrix.adjoint_def by simp
also have "... = conjugate (A $$ (j +n ,i+n))" using assms ij r c arc
unfolding split_block_def Let_def by simp
also have "... = A $$ (i+n,j+n)" using assms ij r c arc
unfolding hermitian_def Complex_Matrix.adjoint_def
by (metis index_mat(1) less_diff_conv split_conv)
also have "... = A4 $$(i,j)" using assms ij r c
unfolding split_block_def Let_def by simp
finally show "Complex_Matrix.adjoint A4 $$ (i, j) = A4 $$ (i, j)" .
qed
qed
lemma diag_block_split_block:
assumes "B∈ carrier_mat n n"
and "k < n"
and "(B1, B2, B3, B4) = split_block B k k"
and "B2 = 0⇩m k (n-k)"
and "B3 = 0⇩m (n-k) k"
shows "B = diag_block_mat [B1,B4]"
proof -
have dr: "dim_row B = k + (n-k)" using assms by simp
have dc: "dim_col B = k + (n-k)" using assms by simp
have c1: "B1 ∈ carrier_mat k k" using assms
split_block(1)[of B, OF _ dr dc] by metis
have c4: "B4 ∈ carrier_mat (n-k) (n-k)" using assms
split_block(4)[of B, OF _ dr dc] by metis
have d4: "diag_block_mat [B4] = B4" using diag_block_mat_singleton[of B4]
by simp
have "B = four_block_mat B1 B2 B3 B4" using assms split_block(3)[of B k ]
by (metis carrier_matD(1) carrier_matD(2) diff_is_0_eq
le_add_diff_inverse nat_le_linear semiring_norm(137)
split_block(5) zero_less_diff)
also have "... = four_block_mat B1 (0⇩m k (n-k)) (0⇩m (n-k) k) B4"
using assms by simp
also have "... = four_block_mat B1 (0⇩m k (n-k)) (0⇩m (n-k) k)
(diag_block_mat [B4])" using diag_block_mat_singleton[of B4] by simp
also have "... = diag_block_mat [B1, B4]"
using diag_block_mat.simps(2)[of B1 "[B4]"] c1 c4
unfolding Let_def by auto
finally show ?thesis .
qed
subsection ‹Diagonal block matrices›
abbreviation four_block_diag where
"four_block_diag B1 B2 ≡
(four_block_mat B1 (0⇩m (dim_row B1) (dim_col B2))
(0⇩m (dim_row B2) (dim_col B1)) B2)"
lemma four_block_diag_cong_comp:
assumes "dim_row A1 = dim_row B1"
and "dim_col A1 = dim_col B1"
and "four_block_diag A1 A2 = four_block_diag B1 B2"
shows "A1 = B1"
proof (rule eq_matI, auto simp:assms)
define A where "A = four_block_diag A1 A2"
define B where "B = four_block_diag B1 B2"
fix i j
assume "i < dim_row B1" and "j<dim_col B1" note ij=this
hence "i <dim_row A1" "j<dim_col A1" using assms by auto
hence "A1$$(i,j) = A$$(i, j)"
unfolding A_def four_block_mat_def Let_def by force
also have "... = B$$(i, j)" using assms unfolding A_def B_def by simp
also have "... = B1$$(i,j)"
using ij unfolding B_def four_block_mat_def Let_def by force
finally show "A1$$(i,j) = B1$$(i,j)" .
qed
lemma four_block_diag_cong_comp':
assumes "dim_row A1 = dim_row B1"
and "dim_col A1 = dim_col B1"
and "four_block_diag A1 A2 = four_block_diag B1 B2"
shows "A2 = B2"
proof (rule eq_matI)
define n where "n=dim_row A1"
define m where "m = dim_col A1"
define A where "A = four_block_diag A1 A2"
define B where "B = four_block_diag B1 B2"
show "dim_row A2 = dim_row B2"
using assms unfolding four_block_mat_def Let_def
by (metis assms(3) diff_add_inverse index_mat_four_block(2))
show "dim_col A2 = dim_col B2"
using assms unfolding four_block_mat_def Let_def
by (metis assms(3) diff_add_inverse index_mat_four_block(3))
fix i j
assume "i < dim_row B2" and "j<dim_col B2" note ij=this
hence "i+n < dim_row A"
unfolding A_def n_def m_def four_block_mat_def Let_def
by (simp add: ‹dim_row A2 = dim_row B2›)
have "j+m < dim_col A"
unfolding A_def n_def m_def four_block_mat_def Let_def
by (simp add: ‹dim_col A2 = dim_col B2› ij)
{
have "n ≤ i+n" by simp
have "m≤ j+m" by simp
have "i + n - n = i" by simp
have "j + m - m = j" by simp
} note ijeq = this
have "A2$$(i,j) = A$$(i+n, j+m)" using ijeq
using A_def ‹i + n < dim_row A› ‹j + m < dim_col A› m_def n_def by force
also have "... = B$$(i+n, j+m)" using assms unfolding A_def B_def by simp
also have "... = B2$$(i,j)" using ijeq
by (metis A_def B_def ‹i + n < dim_row A› ‹j + m < dim_col A›
add_implies_diff assms(1) assms(2) assms(3) index_mat_four_block(1)
index_mat_four_block(2) index_mat_four_block(3) m_def n_def
not_add_less2)
finally show "A2$$(i,j) = B2$$(i,j)" .
qed
lemma four_block_mat_real_diag:
assumes "∀i < dim_row B1. B1$$(i,i) ∈ Reals"
and "∀i < dim_row B2. B2$$(i,i) ∈ Reals"
and "dim_row B1 = dim_col B1"
and "dim_row B2 = dim_col B2"
and "i < dim_row (four_block_diag B1 B2)"
shows "(four_block_diag B1 B2) $$ (i,i) ∈ Reals"
proof (cases "i < dim_row B1")
case True
then show ?thesis using assms by simp
next
case False
then show ?thesis using assms by force
qed
lemma four_block_diagonal:
assumes "dim_row B1 = dim_col B1"
and "dim_row B2 = dim_col B2"
and "diagonal_mat B1"
and "diagonal_mat B2"
shows "diagonal_mat (four_block_diag B1 B2)" unfolding diagonal_mat_def
proof (intro allI impI)
fix i j
assume "i < dim_row (four_block_diag B1 B2)"
and "j < dim_col (four_block_diag B1 B2)"
and "i ≠ j" note ijprops = this
show "(four_block_diag B1 B2) $$ (i,j) = 0"
proof (cases "i < dim_row B1")
case True
then show ?thesis
using assms(3) diagonal_mat_def ijprops(2) ijprops(3)
by (metis add_less_imp_less_left
ijprops(1) index_mat_four_block(1) index_mat_four_block(2)
index_mat_four_block(3) index_zero_mat(1)
linordered_semidom_class.add_diff_inverse)
next
case False
then show ?thesis using ijprops
by (metis (no_types, lifting) add_less_cancel_left assms(1)
assms(4) diagonal_mat_def index_mat_four_block(1)
index_mat_four_block(2) index_mat_four_block(3)
index_zero_mat(1) linordered_semidom_class.add_diff_inverse)
qed
qed
lemma four_block_diag_zero:
assumes "B∈ carrier_mat 0 0"
shows "four_block_diag A B = A"
proof (rule eq_matI, auto)
show "dim_row B = 0" using assms by simp
show "dim_col B = 0" using assms by simp
qed
lemma four_block_diag_zero':
assumes "B∈ carrier_mat 0 0"
shows "four_block_diag B A = A"
proof (rule eq_matI)
show "dim_row (four_block_diag B A) = dim_row A" using assms by simp
show "dim_col (four_block_diag B A) = dim_col A" using assms by simp
fix i j
assume "i < dim_row A" and "j < dim_col A"
thus "four_block_diag B A $$ (i, j) = A $$ (i, j)"
using ‹dim_col (four_block_diag B A) = dim_col A›
‹dim_row (four_block_diag B A) = dim_row A›
by auto
qed
lemma mult_four_block_diag:
assumes "A1 ∈ carrier_mat nr1 n1" "D1 ∈ carrier_mat nr2 n2"
and "A2 ∈ carrier_mat n1 nc1" "D2 ∈ carrier_mat n2 nc2"
shows "four_block_diag A1 D1 *
four_block_diag A2 D2
= four_block_diag (A1 * A2) (D1 * D2)"
proof -
define fb1 where "fb1 = four_block_mat A1 (0⇩m nr1 n2) (0⇩m nr2 n1) D1"
define fb2 where "fb2 = four_block_mat A2 (0⇩m n1 nc2) (0⇩m n2 nc1) D2"
have "fb1 * fb2 = four_block_mat (A1 * A2 + 0⇩m nr1 n2 * 0⇩m n2 nc1)
(A1 * 0⇩m n1 nc2 + 0⇩m nr1 n2 * D2) (0⇩m nr2 n1 * A2 + D1 * 0⇩m n2 nc1)
(0⇩m nr2 n1 * 0⇩m n1 nc2 + D1 * D2)" unfolding fb1_def fb2_def
proof (rule mult_four_block_mat)
show "A1 ∈ carrier_mat nr1 n1" using assms by simp
show "D1 ∈ carrier_mat nr2 n2" using assms by simp
show "A2 ∈ carrier_mat n1 nc1" "D2 ∈ carrier_mat n2 nc2" using assms by auto
qed auto
also have "... = four_block_mat (A1 * A2) (0⇩m nr1 nc2) (0⇩m nr2 nc1) (D1 * D2)"
using assms by simp
finally show ?thesis unfolding fb1_def fb2_def
using assms by simp
qed
lemma four_block_diag_adjoint:
shows "(Complex_Matrix.adjoint (four_block_diag A1 A2)) =
(four_block_diag (Complex_Matrix.adjoint A1)
(Complex_Matrix.adjoint A2))"
by (rule eq_matI,
auto simp: four_block_mat_adjoint zero_adjoint adjoint_eval)
lemma four_block_diag_unitary:
assumes "unitary U1"
and "unitary U2"
shows "unitary
(four_block_diag U1 U2)"
(is "unitary ?fU")
unfolding unitary_def
proof
show "?fU ∈ carrier_mat (dim_row ?fU) (dim_row ?fU)"
by (metis Complex_Matrix.unitary_def assms(1) assms(2)
four_block_carrier_mat index_mat_four_block(2))
define n where "n = dim_row ?fU"
show "inverts_mat ?fU (Complex_Matrix.adjoint ?fU)"
proof -
have "(Complex_Matrix.adjoint ?fU) =
(four_block_mat (Complex_Matrix.adjoint U1)
(0⇩m (dim_col U1) (dim_row U2))
(0⇩m (dim_col U2) (dim_row U1))
(Complex_Matrix.adjoint U2))"
by (rule eq_matI,
auto simp: four_block_mat_adjoint zero_adjoint adjoint_eval)
hence "?fU * (Complex_Matrix.adjoint ?fU) =
?fU * (four_block_diag (Complex_Matrix.adjoint U1)
(Complex_Matrix.adjoint U2))" by simp
also have "... = four_block_diag
(U1 * (Complex_Matrix.adjoint U1))
(U2 * (Complex_Matrix.adjoint U2))"
by (rule mult_four_block_diag, (auto simp add: assms))
also have "... = four_block_mat
(1⇩m (dim_row U1))
(0⇩m (dim_row U1) (dim_row U2))
(0⇩m (dim_row U2) (dim_row U1))
(1⇩m (dim_row U2))" using assms
unfolding unitary_def inverts_mat_def
by simp
also have "... = 1⇩m (dim_row U1 + dim_row U2)" by simp
finally show ?thesis unfolding inverts_mat_def by simp
qed
qed
lemma four_block_diag_similar:
assumes "unitarily_equiv A1 B1 U1"
and "unitarily_equiv A2 B2 U2"
and "dim_row A1 = dim_col A1"
and "dim_row A2 = dim_col A2"
shows "similar_mat_wit
(four_block_diag A1 A2)
(four_block_diag B1 B2)
(four_block_diag U1 U2)
(Complex_Matrix.adjoint (four_block_diag U1 U2))"
unfolding similar_mat_wit_def
proof (simp add: Let_def, intro conjI)
define n where "n = dim_row A1 + dim_row A2"
show "four_block_diag A1 A2 ∈ carrier_mat n n" unfolding n_def using assms
by auto
show "four_block_diag B1 B2 ∈ carrier_mat n n" unfolding n_def using assms
by (metis carrier_matI four_block_carrier_mat unitarily_equiv_carrier(1))
show u: "four_block_diag U1 U2 ∈ carrier_mat n n" unfolding n_def using assms
by (metis carrier_matI four_block_carrier_mat unitarily_equiv_carrier(2))
thus cu: "Complex_Matrix.adjoint (four_block_diag U1 U2) ∈ carrier_mat n n"
unfolding n_def using adjoint_dim' by blast
show "four_block_diag U1 U2*Complex_Matrix.adjoint (four_block_diag U1 U2) =
1⇩m n" unfolding n_def
using u assms four_block_diag_unitary n_def
unitarily_equiv_def unitary_simps(2) by blast
thus "Complex_Matrix.adjoint (four_block_diag U1 U2)*four_block_diag U1 U2 =
1⇩m n"
using cu mat_mult_left_right_inverse u by blast
have "four_block_diag A1 A2 =
four_block_diag (U1 * B1 * (Complex_Matrix.adjoint U1))
(U2 * B2 * (Complex_Matrix.adjoint U2))"
using assms unitarily_equiv_eq by blast
also have "... = (four_block_diag (U1*B1) (U2*B2)) *
(four_block_diag (Complex_Matrix.adjoint U1)
(Complex_Matrix.adjoint U2))"
proof (rule mult_four_block_diag[symmetric])
show "U1 * B1 ∈ carrier_mat (dim_row A1) (dim_row A1)"
by (metis assms(1) assms(3) carrier_mat_triv mult_carrier_mat
unitarily_equiv_carrier(1) unitarily_equiv_carrier(2))
show "U2 * B2 ∈ carrier_mat (dim_row A2) (dim_row A2)"
by (metis assms(2) assms(4) carrier_mat_triv mult_carrier_mat
unitarily_equiv_carrier(1) unitarily_equiv_carrier(2))
show "Complex_Matrix.adjoint U1 ∈ carrier_mat (dim_row A1) (dim_row A1)"
by (metis Complex_Matrix.unitary_def adjoint_dim assms(1)
index_mult_mat(2) unitarily_equivD(1) unitarily_equiv_eq)
show "Complex_Matrix.adjoint U2 ∈ carrier_mat (dim_row A2) (dim_row A2)"
by (meson assms(2) carrier_mat_triv similar_mat_witD2(7)
unitarily_equiv_def)
qed
also have "... = four_block_diag U1 U2 * four_block_diag B1 B2 *
Complex_Matrix.adjoint (four_block_diag U1 U2)"
proof -
have "four_block_diag (U1*B1) (U2*B2) =
four_block_diag U1 U2 * four_block_diag B1 B2"
proof (rule mult_four_block_diag[symmetric])
show "U1 ∈ carrier_mat (dim_row A1) (dim_row A1)"
by (metis assms(1) assms(3) carrier_mat_triv
unitarily_equiv_carrier(2))
show "B1 ∈ carrier_mat (dim_row A1) (dim_row A1)"
by (metis assms(1) assms(3) carrier_mat_triv
unitarily_equiv_carrier(1))
show "U2 ∈ carrier_mat (dim_row A2) (dim_row A2)"
by (metis assms(2) assms(4) carrier_mat_triv
unitarily_equiv_carrier(2))
show "B2 ∈ carrier_mat (dim_row A2) (dim_row A2)"
by (metis assms(2) assms(4) carrier_mat_triv
unitarily_equiv_carrier(1))
qed
moreover have "four_block_diag (Complex_Matrix.adjoint U1)
(Complex_Matrix.adjoint U2) =
Complex_Matrix.adjoint (four_block_diag U1 U2)"
by (rule four_block_diag_adjoint[symmetric])
ultimately show ?thesis by simp
qed
finally show "four_block_diag A1 A2 =
four_block_diag U1 U2 * four_block_diag B1 B2 *
Complex_Matrix.adjoint (four_block_diag U1 U2)" .
qed
lemma four_block_unitarily_equiv:
assumes "unitarily_equiv A1 B1 U1"
and "unitarily_equiv A2 B2 U2"
and "dim_row A1 = dim_col A1"
and "dim_row A2 = dim_col A2"
shows "unitarily_equiv
(four_block_diag A1 A2)
(four_block_diag B1 B2)
(four_block_diag U1 U2)"
(is "unitarily_equiv ?fA ?fB ?fU")
unfolding unitarily_equiv_def
proof
show "unitary ?fU" using four_block_diag_unitary assms unitarily_equivD(1)
by blast
show "similar_mat_wit ?fA ?fB ?fU (Complex_Matrix.adjoint ?fU)"
using assms four_block_diag_similar[of A1] by simp
qed
lemma four_block_unitary_diag:
assumes "unitary_diag A1 B1 U1"
and "unitary_diag A2 B2 U2"
and "dim_row A1 = dim_col A1"
and "dim_row A2 = dim_col A2"
shows "unitary_diag
(four_block_diag A1 A2)
(four_block_diag B1 B2)
(four_block_diag U1 U2)"
(is "unitary_diag ?fA ?fB ?fU")
unfolding unitary_diag_def
proof
show "unitarily_equiv ?fA ?fB ?fU"
using four_block_unitarily_equiv[of A1] assms by simp
have "dim_row B1 = dim_col B1" unfolding unitary_diag_def
by (metis assms(1) assms(3) carrier_matD(1) carrier_matD(2)
carrier_mat_triv unitary_diag_carrier(1))
moreover have "dim_row B2 = dim_col B2" unfolding unitary_diag_def
by (metis assms(2) assms(4) carrier_matD(1) carrier_matD(2)
carrier_mat_triv unitary_diag_carrier(1))
ultimately show "diagonal_mat ?fB" using four_block_diagonal assms
unfolding unitary_diag_def by blast
qed
lemma four_block_real_diag_decomp:
assumes "real_diag_decomp A1 B1 U1"
and "real_diag_decomp A2 B2 U2"
and "dim_row A1 = dim_col A1"
and "dim_row A2 = dim_col A2"
shows "real_diag_decomp
(four_block_diag A1 A2)
(four_block_diag B1 B2)
(four_block_diag U1 U2)"
(is "real_diag_decomp ?fA ?fB ?fU")
unfolding real_diag_decomp_def
proof (intro conjI allI impI)
show "unitary_diag ?fA ?fB ?fU" using four_block_unitary_diag assms
unfolding real_diag_decomp_def by blast
fix i
assume "i < dim_row ?fB"
show "?fB $$ (i,i) ∈ Reals"
proof (rule four_block_mat_real_diag)
show "i < dim_row ?fB" using ‹i < dim_row ?fB› .
show "∀i<dim_row B1. B1 $$ (i, i) ∈ ℝ" using assms
unfolding real_diag_decomp_def by simp
show "∀i<dim_row B2. B2 $$ (i, i) ∈ ℝ" using assms
unfolding real_diag_decomp_def by simp
show "dim_row B1 = dim_col B1" unfolding unitary_diag_def
by (metis assms(1) assms(3) carrier_matD(1) carrier_matD(2)
carrier_mat_triv real_diag_decompD(1) unitary_diag_carrier(1))
show "dim_row B2 = dim_col B2" unfolding unitary_diag_def
by (metis assms(2) assms(4) carrier_matD(1) carrier_matD(2)
carrier_mat_triv real_diag_decompD(1) unitary_diag_carrier(1))
qed
qed
lemma diag_block_mat_mult:
assumes "length Al = length Bl"
and "∀i < length Al. dim_col (Al!i) = dim_row (Bl!i)"
shows "diag_block_mat Al * (diag_block_mat Bl) =
(diag_block_mat (map2 (*) Al Bl))" using assms
proof (induct Al arbitrary: Bl)
case Nil
then show ?case by simp
next
case (Cons a Al)
define A where "A = diag_block_mat Al"
define B where "B = diag_block_mat (tl Bl)"
have "0 < length Bl" using Cons by auto
hence "Bl = hd Bl # (tl Bl)" by simp
have "length (tl Bl) = length Al" using Cons by simp
have dim: "∀i<length Al. dim_col (Al ! i) = dim_row (tl Bl ! i)"
proof (intro allI impI)
fix i
assume "i < length Al"
hence "dim_col (Al ! i) = dim_col ((a#Al)!(Suc i))" by simp
also have "... = dim_row (Bl!(Suc i))" using Cons
by (metis Suc_lessI ‹i < length Al› length_Cons less_Suc_eq)
also have "... = dim_row (tl Bl!i)"
by (metis ‹Bl = hd Bl # tl Bl› nth_Cons_Suc)
finally show "dim_col (Al ! i) = dim_row (tl Bl!i)" .
qed
define C where "C = map2 (*) (a # Al) Bl"
have "hd C = a * hd Bl" using ‹Bl = hd Bl # tl Bl› unfolding C_def
by (metis list.map(2) list.sel(1) prod.simps(2) zip_Cons_Cons)
have "tl C = map2 (*) Al (tl Bl)"
by (metis (no_types, lifting) C_def ‹Bl = hd Bl # tl Bl› list.sel(3)
map_tl zip_Cons_Cons)
have "C = hd C # (tl C)" unfolding C_def
by (metis Nil_eq_zip_iff Nil_is_map_conv ‹Bl = hd Bl # tl Bl›
list.exhaust_sel list.simps(3))
have "dim_row B = sum_list (map dim_row (tl Bl))" unfolding B_def
by (simp add: dim_diag_block_mat(1))
also have "... = sum_list (map dim_col Al)"
proof (rule sum_list_cong)
show "length (map dim_row (tl Bl)) = length (map dim_col Al)"
using ‹length (tl Bl) = length Al› by simp
show "∀i<length (map dim_row (tl Bl)).
map dim_row (tl Bl) ! i = map dim_col Al ! i"
by (metis ‹length (tl Bl) = length Al› dim length_map nth_map)
qed
also have "... = dim_col A" unfolding A_def
by (simp add: dim_diag_block_mat(2))
finally have ba: "dim_row B = dim_col A" .
have "diag_block_mat (a#Al) * (diag_block_mat Bl) =
four_block_diag a A * (four_block_diag (hd Bl) B)"
using diag_block_mat.simps(2) ‹Bl = hd Bl # (tl Bl)›
unfolding Let_def A_def B_def by metis
also have "... = four_block_diag (a * hd Bl) (A * B)"
proof (rule mult_four_block_diag)
show "a∈ carrier_mat (dim_row a) (dim_col a)" by simp
show "hd Bl ∈ carrier_mat (dim_col a) (dim_col (hd Bl))"
using Cons
by (metis ‹0 < length Bl› ‹Bl = hd Bl # tl Bl› carrier_mat_triv nth_Cons_0)
show "A ∈ carrier_mat (dim_row A) (dim_col A)" by simp
show " B ∈ carrier_mat (dim_col A) (dim_col B)" using ba by auto
qed
also have "... = four_block_diag (hd C) (diag_block_mat (tl C))"
unfolding A_def B_def
using C_def ‹hd C = a * hd Bl› ‹length (tl Bl) = length Al›
‹tl C = map2 (*) Al (tl Bl)› dim local.Cons(1)
by presburger
also have "... = diag_block_mat C"
using ‹C = hd C#(tl C)› diag_block_mat.simps(2) unfolding Let_def by metis
finally show ?case unfolding C_def .
qed
lemma real_diag_decomp_block:
fixes Al::"complex Matrix.mat list"
assumes "Al ≠ []"
and "list_all (λA. 0 < dim_row A ∧ hermitian A) Al"
shows "∃ Bl Ul. length Ul = length Al ∧
(∀i < length Al.
Ul!i ∈ carrier_mat (dim_row (Al!i)) (dim_col (Al!i)) ∧ unitary (Ul!i) ∧
Bl!i ∈ carrier_mat (dim_row (Al!i)) (dim_col (Al!i))) ∧
real_diag_decomp (diag_block_mat Al) (diag_block_mat Bl) (diag_block_mat Ul)"
using assms
proof (induct Al)
case Nil
then show ?case by simp
next
case (Cons A Al)
hence "hermitian A" "0 < dim_row A" by auto
hence "A ∈ carrier_mat (dim_row A) (dim_row A)"
by (simp add: hermitian_square)
from this obtain B U where r: "real_diag_decomp A B U"
using hermitian_real_diag_decomp ‹hermitian A› ‹0 < dim_row A› by blast
have bcar: "B ∈ carrier_mat (dim_row A) (dim_col A)"
using real_diag_decompD(1)
by (metis ‹A ∈ carrier_mat (dim_row A) (dim_row A)› carrier_matD(2) r
unitary_diag_carrier(1))
have ucar: "U ∈ carrier_mat (dim_row A) (dim_col A)"
using real_diag_decompD(1)
by (metis ‹A ∈ carrier_mat (dim_row A) (dim_row A)› carrier_matD(2) r
unitary_diag_carrier(2))
have unit: "unitary U"
by (meson r real_diag_decompD(1) unitary_diagD(3))
show ?case
proof (cases "Al = []")
case True
hence "diag_block_mat (Cons A Al) = A" by auto
moreover have "diag_block_mat [B] = B" by auto
moreover have "diag_block_mat [U] = U" by auto
moreover have "unitary U"
using r real_diag_decompD(1) unitary_diagD(3) by blast
ultimately have
"real_diag_decomp (diag_block_mat (Cons A Al))
(diag_block_mat [B]) (diag_block_mat [U])"
using ‹real_diag_decomp A B U› by auto
moreover have "(∀i<length (A # Al).
[U]!i ∈ carrier_mat (dim_row ((A # Al) ! i)) (dim_col ((A # Al) ! i)) ∧
Complex_Matrix.unitary ([U] ! i) ∧ [B] ! i ∈
carrier_mat (dim_row ((A # Al) ! i)) (dim_col ((A # Al) ! i)))" using True
by (simp add: bcar ucar unit)
ultimately show ?thesis
using True ‹Complex_Matrix.unitary U› bcar less_one ucar
by (metis length_list_update list_update_code(2))
next
case False
have "list_all (λA. 0 < dim_row A ∧ hermitian A) Al" using Cons by auto
hence "∃Bl Ul. length Ul = length Al ∧
(∀i<length Al.
Ul ! i ∈ carrier_mat (dim_row (Al ! i)) (dim_col (Al ! i)) ∧
unitary (Ul!i) ∧
Bl ! i ∈ carrier_mat (dim_row (Al ! i)) (dim_col (Al ! i))) ∧
real_diag_decomp (diag_block_mat Al) (diag_block_mat Bl) (diag_block_mat Ul)"
using Cons False by simp
from this obtain Bl Ul where "length Ul =length Al" and
rl: "real_diag_decomp (diag_block_mat Al)
(diag_block_mat Bl) (diag_block_mat Ul)"
and "∀i<length Al.
Ul ! i ∈ carrier_mat (dim_row (Al ! i)) (dim_col (Al ! i)) ∧
unitary (Ul!i) ∧
Bl ! i ∈ carrier_mat (dim_row (Al ! i)) (dim_col (Al ! i))"
by auto note bu = this
have "real_diag_decomp (diag_block_mat (A # Al))
(diag_block_mat (B # Bl)) (diag_block_mat (U # Ul))"
using four_block_real_diag_decomp[OF r rl]
by (metis ‹A ∈ carrier_mat (dim_row A) (dim_row A)›
carrier_matD(2) diag_block_mat.simps(2) hermitian_square
real_diag_decomp_hermitian rl)
moreover have "length (U#Ul) = length (A#Al)" using bu by simp
moreover have "∀i<length (A # Al).
(U#Ul) ! i ∈ carrier_mat (dim_row ((A # Al) ! i)) (dim_col ((A # Al) ! i)) ∧
unitary ((U#Ul)!i) ∧
(B#Bl) ! i ∈ carrier_mat (dim_row ((A # Al) ! i)) (dim_col ((A # Al) ! i))"
proof (intro allI impI)
fix i
assume "i < length (A#Al)"
show "(U # Ul) ! i ∈ carrier_mat (dim_row ((A # Al) ! i))
(dim_col ((A # Al) ! i)) ∧ unitary ((U#Ul)!i) ∧
(B # Bl) ! i ∈ carrier_mat (dim_row ((A # Al) ! i))
(dim_col ((A # Al) ! i))"
proof (cases "i = 0")
case True
then show ?thesis by (simp add: bcar ucar unit)
next
case False
hence "∃j. i = Suc j" by (simp add: not0_implies_Suc)
from this obtain j where j: "i = Suc j" by auto
hence "j < length Al" using ‹i < length (A#Al)› by simp
have "(A#Al)!i = Al!j" "(U # Ul) ! i = Ul!j" "(B#Bl) ! i = Bl!j"
using j by auto
then show ?thesis using Cons ‹j < length Al› bu(3) by presburger
qed
qed
ultimately show ?thesis by blast
qed
qed
lemma diag_block_mat_adjoint:
shows "Complex_Matrix.adjoint (diag_block_mat Al) =
diag_block_mat (map Complex_Matrix.adjoint Al)"
proof (induct Al)
case Nil
then show ?case using zero_adjoint by simp
next
case (Cons a Al)
have "Complex_Matrix.adjoint (diag_block_mat (a # Al)) =
Complex_Matrix.adjoint (four_block_diag a (diag_block_mat Al))"
using diag_block_mat.simps(2)[of a] unfolding Let_def by simp
also have "... = four_block_diag (Complex_Matrix.adjoint a)
(Complex_Matrix.adjoint (diag_block_mat Al))"
using four_block_diag_adjoint[of a] by simp
also have "... = four_block_diag (Complex_Matrix.adjoint a)
(diag_block_mat (map Complex_Matrix.adjoint Al))" using Cons by simp
also have "... = diag_block_mat (map Complex_Matrix.adjoint (a#Al))"
using diag_block_mat.simps(2) unfolding Let_def
by (metis (no_types) diag_block_mat.simps(2) list.map(2))
finally show ?case .
qed
lemma diag_block_mat_mat_conj:
assumes "length Al = length Bl"
and "∀i < length Al. dim_col (Al!i) = dim_row (Bl!i)"
and "∀i < length Al. dim_row (Bl!i) = dim_col (Bl!i)"
shows "mat_conj (diag_block_mat Al) (diag_block_mat Bl) =
diag_block_mat (map2 mat_conj Al Bl)"
proof -
have "mat_conj (diag_block_mat Al) (diag_block_mat Bl) =
diag_block_mat Al * diag_block_mat Bl *
diag_block_mat (map Complex_Matrix.adjoint Al)"
using diag_block_mat_adjoint[of Al] unfolding mat_conj_def by simp
also have "... = diag_block_mat (map2 (*) Al Bl) *
diag_block_mat (map Complex_Matrix.adjoint Al)"
using diag_block_mat_mult[OF assms(1) assms(2)] by simp
also have "... = diag_block_mat (map2 (*) (map2 (*) Al Bl)
(map Complex_Matrix.adjoint Al))"
proof (rule diag_block_mat_mult)
show "length (map2 (*) Al Bl) = length (map Complex_Matrix.adjoint Al)"
by (simp add: assms(1))
show "∀i<length (map2 (*) Al Bl). dim_col (map2 (*) Al Bl ! i) =
dim_row (map Complex_Matrix.adjoint Al ! i)"
by (simp add: assms(2) assms(3))
qed
also have "... = diag_block_mat (map2 mat_conj Al Bl)"
using map2_mat_conj_exp[OF assms(1)] by simp
finally show ?thesis .
qed
lemma diag_block_mat_commute:
assumes "length Al = length Bl"
and "∀i < length Al. Al!i * (Bl!i) = Bl!i * (Al!i)"
and "∀i<length Al. dim_col (Al ! i) = dim_row (Bl ! i)"
and "∀i<length Al. dim_col (Bl ! i) = dim_row (Al ! i)"
shows "diag_block_mat Al * (diag_block_mat Bl) =
diag_block_mat Bl * (diag_block_mat Al)"
proof -
have "diag_block_mat Al * diag_block_mat Bl =
diag_block_mat (map2 (*) Al Bl)"
using diag_block_mat_mult[of Al Bl] assms by simp
also have "... = diag_block_mat (map2 (*) Bl Al)"
proof -
have "map2 (*) Al Bl = map2 (*) Bl Al"
by (rule map2_commute, auto simp add: assms)
thus ?thesis by simp
qed
also have "... = diag_block_mat Bl * (diag_block_mat Al)"
using diag_block_mat_mult[of Bl Al] assms by simp
finally show ?thesis .
qed
lemma diag_block_mat_length_1:
assumes "length Al = 1"
shows "diag_block_mat Al = Al!0"
proof -
have "Al = [Al!0]" using assms
by (metis One_nat_def length_0_conv length_Suc_conv nth_Cons_0)
thus ?thesis
by (metis diag_block_mat_singleton)
qed
lemma diag_block_mat_cong_hd:
assumes "0 < length Al"
and "length Al = length Bl"
and "dim_row (hd Al) = dim_row (hd Bl)"
and "dim_col (hd Al) = dim_col (hd Bl)"
and "diag_block_mat Al = diag_block_mat Bl"
shows "hd Al = hd Bl"
proof -
have "Al ≠ []" using assms by blast
hence "Al = hd Al#(tl Al)" by simp
hence da:"diag_block_mat Al =
four_block_diag (hd Al) (diag_block_mat (tl Al))"
using diag_block_mat.simps(2)[of "hd Al" "tl Al"] unfolding Let_def by simp
have "Bl ≠ []" using assms by simp
hence "Bl = hd Bl#(tl Bl)" by simp
hence "diag_block_mat Bl = four_block_diag (hd Bl) (diag_block_mat (tl Bl))"
using diag_block_mat.simps(2)[of "hd Bl" "tl Bl"] unfolding Let_def by simp
hence "four_block_diag (hd Al) (diag_block_mat (tl Al)) =
four_block_diag (hd Bl) (diag_block_mat (tl Bl))" using da assms by simp
thus ?thesis using four_block_diag_cong_comp assms by metis
qed
lemma diag_block_mat_cong_tl:
assumes "0 < length Al"
and "length Al = length Bl"
and "dim_row (hd Al) = dim_row (hd Bl)"
and "dim_col (hd Al) = dim_col (hd Bl)"
and "diag_block_mat Al = diag_block_mat Bl"
shows "diag_block_mat (tl Al) = diag_block_mat (tl Bl)"
proof -
have "Al ≠ []" using assms by blast
hence "Al = hd Al#(tl Al)" by simp
hence da:"diag_block_mat Al =
four_block_diag (hd Al) (diag_block_mat (tl Al))"
using diag_block_mat.simps(2)[of "hd Al" "tl Al"] unfolding Let_def by simp
have "Bl ≠ []" using assms by simp
hence "Bl = hd Bl#(tl Bl)" by simp
hence "diag_block_mat Bl = four_block_diag (hd Bl) (diag_block_mat (tl Bl))"
using diag_block_mat.simps(2)[of "hd Bl" "tl Bl"] unfolding Let_def by simp
hence "four_block_diag (hd Al) (diag_block_mat (tl Al)) =
four_block_diag (hd Bl) (diag_block_mat (tl Bl))" using da assms by simp
thus ?thesis using four_block_diag_cong_comp' assms by metis
qed
lemma diag_block_mat_cong_comp:
assumes "length Al = length Bl"
and "∀i<length Al. dim_row (Al ! i) = dim_row (Bl ! i)"
and "∀i<length Al. dim_col (Al ! i) = dim_col (Bl ! i)"
and "diag_block_mat Al = diag_block_mat Bl"
and "j < length Al"
shows "Al!j = Bl!j" using assms
proof (induct Al arbitrary: Bl j)
case Nil
then show ?case by simp
next
case (Cons a Al)
hence "0 <length Bl" by linarith
hence "Bl = hd Bl#(tl Bl)" by simp
then show ?case
proof (cases "j = 0")
case True
hence "(a#Al)!j = hd(a#Al)" by simp
have "Bl!j= hd Bl" using ‹j = 0›
by (metis ‹Bl = hd Bl # tl Bl› nth_Cons_0)
have da: "diag_block_mat (a#Al) = four_block_diag a (diag_block_mat Al)"
using diag_block_mat.simps(2)[of a Al] unfolding Let_def by simp
have db: "diag_block_mat (hd Bl#(tl Bl)) =
four_block_diag (hd Bl) (diag_block_mat (tl Bl))"
using diag_block_mat.simps(2)[of "hd Bl" "tl Bl"]
unfolding Let_def by simp
have "hd (a#Al) = hd Bl"
proof (rule diag_block_mat_cong_hd)
show "0 < length (a # Al)" by simp
show "length (a # Al) = length Bl" using Cons by simp
show "diag_block_mat (a # Al) = diag_block_mat Bl" using Cons by simp
show "dim_row (hd (a # Al)) = dim_row (hd Bl)"
by (metis True ‹0 < length Bl› ‹Bl ! j = hd Bl› list.sel(1) Cons(2)
Cons(3) nth_Cons_0)
show "dim_col (hd (a # Al)) = dim_col (hd Bl)"
by (metis True ‹0 < length Bl› ‹Bl ! j = hd Bl› list.sel(1) Cons(2)
Cons(4) nth_Cons_0)
qed
thus "(a # Al) ! j = Bl ! j" using ‹j = 0› ‹Bl ! j = hd Bl› by fastforce
next
case False
hence "∃k. j = Suc k" by (simp add: not0_implies_Suc)
from this obtain k where "j = Suc k" by auto
hence "(a#Al)!j = Al!k" by simp
have "Bl!j = (tl Bl)!k" using ‹j = Suc k› ‹Bl = hd Bl#(tl Bl)›
by (metis nth_Cons_Suc)
have "Al!k = (tl Bl)!k"
proof (rule Cons(1))
show "length Al = length (tl Bl)" using Cons
by (metis diff_Suc_1 length_Cons length_tl)
show "k < length Al"
by (metis Cons.prems(5) Suc_less_SucD ‹j = Suc k› length_Cons)
show "∀i<length Al. dim_row (Al ! i) = dim_row (tl Bl ! i)"
by (metis Suc_less_eq ‹length Al = length (tl Bl)› length_Cons
local.Cons(3) nth_Cons_Suc nth_tl)
show "∀i<length Al. dim_col (Al ! i) = dim_col (tl Bl ! i)"
by (metis Suc_mono ‹Bl = hd Bl # tl Bl› length_Cons local.Cons(4)
nth_Cons_Suc)
have "diag_block_mat (tl (a#Al)) = diag_block_mat (tl Bl)"
proof (rule diag_block_mat_cong_tl)
show "length (a # Al) = length Bl" using Cons by simp
show "dim_row (hd (a # Al)) = dim_row (hd Bl)"
by (metis ‹Bl = hd Bl # tl Bl› length_Cons list.sel(1) local.Cons(3)
nth_Cons_0 zero_less_Suc)
show "dim_col (hd (a # Al)) = dim_col (hd Bl)"
by (metis ‹0 < length Bl› ‹Bl = hd Bl # tl Bl› list.sel(1)
local.Cons(2) local.Cons(4) nth_Cons_0)
show "diag_block_mat (a # Al) = diag_block_mat Bl" using Cons by simp
show "0 < length (a#Al)" by simp
qed
thus "diag_block_mat Al = diag_block_mat (tl Bl)" by simp
qed
then show ?thesis
by (simp add: ‹(a # Al) ! j = Al ! k› ‹Bl ! j = tl Bl ! k›)
qed
qed
lemma diag_block_mat_commute_comp:
assumes "length Al = length Bl"
and "∀i<length Al. dim_row (Al ! i) = dim_col (Al ! i)"
and "∀i<length Al. dim_row (Al ! i) = dim_row (Bl ! i)"
and "∀i<length Al. dim_col (Al ! i) = dim_col (Bl ! i)"
and "diag_block_mat Al * (diag_block_mat Bl) =
diag_block_mat Bl * (diag_block_mat Al)"
and "i < length Al"
shows "Al!i * Bl!i = Bl!i * Al!i"
proof -
have "diag_block_mat (map2 (*) Al Bl)=diag_block_mat Al * diag_block_mat Bl"
using diag_block_mat_mult[of Al] assms by simp
also have "... = diag_block_mat Bl * diag_block_mat Al" using assms by simp
also have "... = diag_block_mat (map2 (*) Bl Al)"
using diag_block_mat_mult[of Bl] assms by simp
finally have eq: "diag_block_mat (map2 (*) Al Bl) =
diag_block_mat (map2 (*) Bl Al)" .
have "(map2 (*) Al Bl)!i = (map2 (*) Bl Al)!i"
proof (rule diag_block_mat_cong_comp)
show "length (map2 (*) Al Bl) = length (map2 (*) Bl Al)"
using map2_length assms by metis
show "i < length (map2 (*) Al Bl)" using map2_length assms by metis
show "diag_block_mat (map2 (*) Al Bl) = diag_block_mat (map2 (*) Bl Al)"
using eq .
show "∀i<length (map2 (*) Al Bl). dim_row (map2 (*) Al Bl ! i) =
dim_row (map2 (*) Bl Al ! i)"
by (simp add: assms(3))
show "∀i<length (map2 (*) Al Bl). dim_col (map2 (*) Al Bl ! i) =
dim_col (map2 (*) Bl Al ! i)"
by (simp add: assms(4))
qed
moreover have "(map2 (*) Al Bl)!i = Al!i * Bl!i" using assms by simp
moreover have "(map2 (*) Bl Al)!i = Bl!i * Al!i" using assms by simp
ultimately show ?thesis by simp
qed
lemma diag_block_mat_dim_row_cong:
assumes "length Ul = length Bl"
and "∀i < length Bl. dim_row (Bl!i) = dim_row (Ul!i)"
shows "dim_row (diag_block_mat Ul) = dim_row (diag_block_mat Bl)"
proof -
have "dim_row (diag_block_mat Ul) = sum_list (map dim_row Ul)"
by (simp add: dim_diag_block_mat(1))
also have "... = sum_list (map dim_row Bl)" using assms
by (metis nth_map_conv)
also have "... = dim_row (diag_block_mat Bl)"
by (simp add: dim_diag_block_mat(1))
finally show ?thesis .
qed
lemma diag_block_mat_dim_col_cong:
assumes "length Ul = length Bl"
and "∀i < length Bl. dim_col (Bl!i) = dim_col (Ul!i)"
shows "dim_col (diag_block_mat Ul) = dim_col (diag_block_mat Bl)"
proof -
have "dim_col (diag_block_mat Ul) = sum_list (map dim_col Ul)"
by (simp add: dim_diag_block_mat(2))
also have "... = sum_list (map dim_col Bl)" using assms
by (metis nth_map_conv)
also have "... = dim_col (diag_block_mat Bl)"
by (simp add: dim_diag_block_mat(2))
finally show ?thesis .
qed
lemma diag_block_mat_dim_row_col_eq:
assumes "∀i < length Al. dim_row (Al!i) = dim_col (Al!i)"
shows "dim_row (diag_block_mat Al) = dim_col (diag_block_mat Al)"
proof -
have "dim_row (diag_block_mat Al) = sum_list (map dim_row Al)"
by (simp add:dim_diag_block_mat(1))
also have "... = sum_list (map dim_col Al)" using assms
by (metis nth_map_conv)
also have "... = dim_col (diag_block_mat Al)"
by (simp add:dim_diag_block_mat(2))
finally show ?thesis .
qed
section ‹Block matrix decomposition›
subsection ‹Subdiagonal extraction›
text ‹\verb+extract_subdiags+ returns a list of diagonal sub-blocks, the sizes of which are
specified by the list of integers provided as parameters.›
where
"extract_subdiags B [] = []"
| "extract_subdiags B (x#xs) =
(let (B1, B2, B3, B4) = (split_block B x x) in
B1 # (extract_subdiags B4 xs))"
lemma :
fixes x::nat and l::"nat list"
assumes "(B1, B2, B3, B4) = (split_block B x x)"
shows "hd (extract_subdiags B (x#l)) = B1"
"tl (extract_subdiags B (x#l)) = extract_subdiags B4 l"
proof -
show "hd (extract_subdiags B (x#l)) = B1" unfolding Let_def
by (metis (no_types) assms extract_subdiags.simps(2) list.sel(1) split_conv)
show "tl (extract_subdiags B (x # l)) = extract_subdiags B4 l"
using assms extract_subdiags.simps(2) unfolding Let_def
by (metis (no_types, lifting) list.sel(3) split_conv)
qed
lemma :
shows "extract_subdiags B (a#l) ≠ []"
using extract_subdiags.simps(2)[of B]
unfolding Let_def split_block_def by simp
lemma :
shows "length (extract_subdiags B l) = length l"
proof (induct l arbitrary: B)
case Nil
then show ?case by simp
next
case (Cons a l)
define B1 where "B1 = fst (split_block B a a)"
define B2 where "B2 = fst (snd (split_block B a a))"
define B3 where "B3 = fst (snd (snd (split_block B a a)))"
define B4 where "B4 = snd (snd (snd (split_block B a a)))"
have sp: "split_block B a a = (B1, B2, B3, B4)" using fst_conv snd_conv
unfolding B1_def B2_def B3_def B4_def by simp
then show ?case using Cons extract_subdiags.simps(2)[of B a l]
unfolding Let_def by simp
qed
lemma :
assumes "i < length l"
shows "(extract_subdiags B l)!i ∈ carrier_mat (l!i) (l!i)" using assms
proof (induct i arbitrary: l B)
case 0
define B1 where "B1 = fst (split_block B (hd l) (hd l))"
define B2 where "B2 = fst (snd (split_block B (hd l) (hd l)))"
define B3 where "B3 = fst (snd (snd (split_block B (hd l) (hd l))))"
define B4 where "B4 = snd (snd (snd (split_block B (hd l) (hd l))))"
have sp: "split_block B (hd l) (hd l) = (B1, B2, B3, B4)" using fst_conv snd_conv
unfolding B1_def B2_def B3_def B4_def by simp
have "l = hd l # (tl l)" using 0 by auto
have "(extract_subdiags B l)!0 = B1"
using extract_subdiags.simps(2)[of B "hd l" "tl l"] ‹l = hd l # tl l› sp
unfolding Let_def by auto
also have "... ∈ carrier_mat (hd l) (hd l)"
unfolding B1_def split_block_def Let_def by simp
finally show ?case
by (metis ‹l = hd l # tl l› hd_conv_nth list.sel(2) not_Cons_self)
next
case (Suc i)
define B1 where "B1 = fst (split_block B (hd l) (hd l))"
define B2 where "B2 = fst (snd (split_block B (hd l) (hd l)))"
define B3 where "B3 = fst (snd (snd (split_block B (hd l) (hd l))))"
define B4 where "B4 = snd (snd (snd (split_block B (hd l) (hd l))))"
have sp: "split_block B (hd l) (hd l) = (B1, B2, B3, B4)" using fst_conv snd_conv
unfolding B1_def B2_def B3_def B4_def by simp
have "l = hd l # (tl l)" using Suc
by (metis Cons_nth_drop_Suc drop_Nil list.exhaust_sel not_Cons_self)
hence "l! Suc i = (tl l)!i" by (metis nth_Cons_Suc)
have "tl (extract_subdiags B l) = extract_subdiags B4 (tl l)"
using extract_subdiags_not_emp(2)[OF sp[symmetric]] ‹l = hd l # (tl l)›
by metis
hence "extract_subdiags B l = B1 # extract_subdiags B4 (tl l)"
using extract_subdiags_not_emp(1)[OF sp[symmetric]]
by (metis ‹l = hd l # tl l› extract_subdiags_neq_Nil list.exhaust_sel)
hence "extract_subdiags B l ! Suc i = (extract_subdiags B4 (tl l))!i"
using nth_Cons_Suc by simp
also have "... ∈ carrier_mat (tl l!i) (tl l!i)" using Suc
by (metis ‹l = hd l # tl l› length_Cons not_less_eq)
also have "... = carrier_mat (l!Suc i) (l! Suc i)"
using nth_Cons_Suc[of "hd l" "tl l" i] ‹l = hd l # tl l› by simp
finally show ?case .
qed
lemma :
assumes "diagonal_mat B"
and "B ∈ carrier_mat n n"
and "l ≠ []"
and "sum_list l ≤ n"
and "i < length l"
shows "diagonal_mat ((extract_subdiags B l)!i)" using assms
proof (induct i arbitrary: l B n)
case 0
define a where "a = hd l"
have "l = a#(tl l)" unfolding a_def using 0 by simp
have "a ≤ n" using 0 unfolding a_def
by (metis a_def dual_order.strict_trans2 elem_le_sum_list
hd_conv_nth less_le_not_le nat_le_linear)
define B1 where "B1 = fst (split_block B a a)"
define B2 where "B2 = fst (snd (split_block B a a))"
define B3 where "B3 = fst (snd (snd (split_block B a a)))"
define B4 where "B4 = snd (snd (snd (split_block B a a)))"
have sp: "split_block B a a = (B1, B2, B3, B4)" using fst_conv snd_conv
unfolding B1_def B2_def B3_def B4_def by simp
hence "extract_subdiags B l!0 = B1" unfolding a_def
using hd_conv_nth 0
by (metis ‹l = a # tl l› sp extract_subdiags_neq_Nil
extract_subdiags_not_emp(1))
moreover have "diagonal_mat B1" using sp split_block_diagonal assms ‹a ≤ n› 0
by blast
ultimately show ?case by simp
next
case (Suc i)
show ?case
proof (cases "length l = 1")
case True
hence "Suc i = 0" using Suc by presburger
then show ?thesis by simp
next
case False
define a where "a = hd l"
have "l = a#(tl l)" unfolding a_def using Suc by simp
have "a ≤ n" using Suc unfolding a_def
by (metis dual_order.trans elem_le_sum_list hd_conv_nth
length_greater_0_conv)
define B1 where "B1 = fst (split_block B a a)"
define B2 where "B2 = fst (snd (split_block B a a))"
define B3 where "B3 = fst (snd (snd (split_block B a a)))"
define B4 where "B4 = snd (snd (snd (split_block B a a)))"
have sp: "split_block B a a = (B1, B2, B3, B4)" using fst_conv snd_conv
unfolding B1_def B2_def B3_def B4_def by simp
have "extract_subdiags B l ! Suc i =
extract_subdiags B4 (tl l)! i" using sp
by (metis Suc(6) Suc_less_SucD ‹l = a # tl l› length_Cons nth_tl
extract_subdiags_length extract_subdiags_not_emp(2))
moreover have "diagonal_mat (extract_subdiags B4 (tl l)! i)"
proof (rule Suc(1))
show "tl l ≠ []" using False Suc
by (metis ‹l = a # tl l› length_Cons list.size(3) numeral_nat(7))
show "i < length (tl l)" using False Suc
by (metis Suc_lessD ‹l = a # tl l› le_neq_implies_less length_Cons
less_Suc_eq_le)
show "B4 ∈ carrier_mat (n-a) (n-a)"
using sp split_block_diag_carrier(2) Suc(3) ‹a ≤ n› by blast
show "diagonal_mat B4"
using split_block_diagonal sp Suc ‹a ≤ n› by blast
show "sum_list (tl l) ≤ n - a" using Suc(5) ‹a ≤ n› sum_list_tl_leq
by (simp add: Suc(4) a_def)
qed
ultimately show ?thesis by simp
qed
qed
lemma :
fixes B::"complex Matrix.mat"
assumes "B∈ carrier_mat n n"
and "0 < n"
and "l ≠ []"
and "i < length l"
and "j< l!i"
and "sum_list l ≤ n"
and "∀j < length l. 0 < l!j"
shows "extract_subdiags B l!i $$ (j,j) =
diag_mat B!(n_sum i l + j)" using assms
proof (induct i arbitrary: l B n)
case 0
define a where "a = hd l"
have "l = a#(tl l)" unfolding a_def using 0 by simp
have "a ≤ n" using 0 unfolding a_def
by (metis a_def dual_order.strict_trans2 elem_le_sum_list
hd_conv_nth less_le_not_le nat_le_linear)
define B1 where "B1 = fst (split_block B a a)"
define B2 where "B2 = fst (snd (split_block B a a))"
define B3 where "B3 = fst (snd (snd (split_block B a a)))"
define B4 where "B4 = snd (snd