Theory ICF_Test
theory ICF_Test
imports
Collections.Refine_Dflt_ICF
begin
declare [[autoref_trace_failed_id]]
subsection "Array Hash Map Tests"
schematic_goal
"(?f::?'c, [{1::nat} |-> {2::nat}]) ∈ ?R"
by (autoref (keep_goal))
schematic_goal
"(?f::?'c, λm. (m)(1::nat↦2::nat)) ∈ ?R"
apply (autoref (keep_goal))
done
schematic_goal
"(?f::?'c, λm. (m:::⇩r⟨Id,Id⟩dflt_ahm_rel)(1::nat↦2::nat)) ∈ ?R"
apply (autoref (keep_goal))
done
schematic_goal
"(?f::?'c, Map.empty:::⇩r⟨Id,Id⟩dflt_ahm_rel) ∈ ?R"
apply (autoref)
done
schematic_goal
fixes mi m
assumes [autoref_rules]: "(mi,m)∈⟨nat_rel,nat_rel⟩dflt_ahm_rel"
shows "(?f::?'c,
RETURN (card (dom (m:::⇩r⟨nat_rel,nat_rel⟩dflt_ahm_rel)))) ∈ ?R"
apply (autoref_monadic)
done
subsection "List Map Tests"
definition foo::"(nat⇀nat) nres" where "foo ≡
do {
let X = Map.empty;
ASSERT (1 ∉ dom X);
RETURN (X(1 ↦ 2))
}"
schematic_goal list_map_update_dj_test:
"(?f::?'c, foo :::⇩r ⟨⟨Id,Id⟩list_map_rel⟩nres_rel) ∈ ?R"
unfolding foo_def
apply autoref_monadic
done
schematic_goal
"(?f::?'c, [1::nat ↦ 2::nat, 3↦4] :::⇩r ⟨nat_rel,nat_rel⟩list_map_rel) ∈ ?R"
apply autoref
done
schematic_goal list_map_test:
"(?f::?'c, RETURN (([1 ↦ 2, 3::nat ↦ 4::nat]
:::⇩r⟨nat_rel,nat_rel⟩list_map_rel) |`(-{1}))) ∈ ?R"
apply (autoref_monadic)
done
concrete_definition list_map_test uses list_map_test
value list_map_test
schematic_goal
"(?f::?'c, RETURN (card (dom ([1 ↦ 2, 3::nat ↦ 4::nat]
:::⇩r⟨nat_rel,nat_rel⟩list_map_rel)))) ∈ ?R"
apply (autoref_monadic)
done
subsection "Array-Map Tests"
term "{1,2::nat} ∪ {3,4}"
schematic_goal array_set_test_code:
"(?f::?'c, RETURN (({1,2::nat} ∪ {3,4}
:::⇩r ⟨nat_rel⟩iam_set_rel )))∈?R"
by (autoref_monadic (trace))
concrete_definition array_set_test uses array_set_test_code
print_theorems
value [nbe] array_set_test
schematic_goal
"(?f::?'c, RETURN (({1} :::⇩r ⟨nat_rel⟩dflt_rs_rel) = {}))∈?R"
apply (autoref_monadic (trace))
done
schematic_goal
"(?f::?'c, RETURN (card {1,2,3::nat}))∈?R"
apply (autoref_monadic (trace))
done
schematic_goal
"(?f::?'c, RETURN (∀x∈{1,2,3::nat}. x<4))∈?R"
apply (autoref_monadic (trace))
done
schematic_goal
"(?f::?'c, RETURN (∃x∈{1,2,3::nat}. x<4))∈?R"
apply (autoref_monadic (trace))
done
schematic_goal
"(?f::?'c, RETURN (({1} :::⇩r ⟨nat_rel⟩iam_set_rel) = {}))∈?R"
apply (autoref_monadic (trace))
done
schematic_goal
assumes [autoref_rules]: "(f,f')∈nat_rel→Rb"
shows "(?f::?'c,f' 3)∈?R"
by (autoref)
schematic_goal "(?f::?'c,
RETURN (({1,2::nat} × {3,4::nat}) :::⇩r ⟨⟨Id,Id⟩prod_rel⟩dflt_rs_rel)
)∈?R"
by autoref_monadic
schematic_goal "(?f::?'c,
RETURN ({1,2::nat} ∩ ({3,4::nat}) :::⇩r ⟨Id⟩list_set_rel)
)∈?R"
by autoref_monadic
schematic_goal "(?f::?'c,
RETURN ({1,2::nat} ∩ ({3,4::nat}) :::⇩r ⟨Id⟩dflt_rs_rel)
)∈?R"
by autoref_monadic
schematic_goal "(?f::?'c,
RETURN (card (dom ([ 1::nat ↦ True, 2↦False ] :::⇩r ⟨Id,Id⟩dflt_rm_rel )))
)∈?R"
by autoref_monadic
schematic_goal "(?f::?'c,
{1,2::'a::numeral} × {3,4::'a}
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c,
{1,2::'a::{numeral,hashable}} × ({3,4::'a} :::⇩r ⟨Id⟩dflt_ahs_rel)
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c,
{1,2::nat} × {3,4::nat}
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c,
{1,2::nat} ∩ {3,4::nat}
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c,
RETURN (({1,2::nat} × {3,4::nat}) :::⇩r ⟨⟨Id,Id⟩prod_rel⟩dflt_rs_rel)
)∈?R"
by autoref_monadic
schematic_goal
notes [autoref_tyrel] = ty_REL[where 'a = "(nat×nat) set"
and R="⟨⟨Id,Id⟩prod_rel⟩dflt_rs_rel"]
shows "(?f::?'c,
RETURN (({1,2::nat} × {3,4::nat}))
)∈?R"
by autoref_monadic
text ‹We have an optimized version for add on red-black trees›
schematic_goal "(?f::?'c,
[ 1::nat ↦ True, 2::nat ↦ False ] ++ [ 3::nat ↦ True, 4::nat ↦ False ]
)∈?R"
by (autoref (keep_goal))
text ‹The optimized version is also transfered through the map2set converter›
schematic_goal "(?f::?'c,
{1,2::nat} ∪ {3,4}
)∈?R"
by (autoref (keep_goal))
text ‹For list-sets, the generic version is used›
schematic_goal "(?f::?'c,
{1,2::nat} ∪ {3,4} :::⇩r ⟨Id⟩list_set_rel
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c,
({{1::nat}:::⇩r⟨Id⟩ map2set_rel dflt_rm_rel} )
∪ ({{2,3,4,5,5,6,7,8,98,9,0}})
)∈?R"
by (autoref (keep_goal))
text ‹The next two lemmas demonstrate optimization: The insert-operation
is translated by @{term "(#)"}›
schematic_goal "(?f::?'c, {1,2,3,4::nat}:::⇩r⟨Id⟩list_set_rel
)∈?R"
by (autoref (keep_goal))
schematic_goal
"(?f::?'c, {{1},{2},{3},{4::nat}}:::⇩r⟨?R'::(?'d×_) set⟩list_set_rel
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c,
SPEC (λx. x∈({1,2,3::nat}:::⇩r⟨Id⟩dflt_rs_rel))
)∈?R"
apply (autoref (keep_goal))
done
schematic_goal "(?f::?'c,
λs::nat set. {s} ∪ {{1,2,3}} = {{1}}
)∈?R"
apply (autoref (keep_goal))
done
schematic_goal "(?f::?'c,
∀(k,v)∈map_to_set [1::nat↦2::nat]. k>v
)∈?R"
by (autoref (keep_goal))
schematic_goal "(?f::?'c, do {
let s = ({1,2,3::nat}:::⇩r⟨Id⟩dflt_rs_rel);
FOREACH s (λn s. RETURN (n+s)) 0
}
)∈?R"
by autoref_monadic
schematic_goal "(?f::?'c, do {
let s = ({{1,2,3::nat}, {}, {1,2}});
FOREACH s (λn s. RETURN (n ∪ s)) {}
}
)∈?R"
by (autoref_monadic)
schematic_goal "(?f::?'c,
SPEC (λx. x∈({1,2,3::nat}))
)∈?R"
apply (autoref (keep_goal))
done
schematic_goal "(?f::?'c,
λs::nat set. {s} ∪ {{1,2,3}} = {{1}}
)∈?R"
apply (autoref (keep_goal))
done
schematic_goal "(?f::?'c,
∀(k,v)∈map_to_set [1::nat↦2::nat]. k>v
)∈?R"
apply (autoref (keep_goal))
done
schematic_goal "(?f::?'c,
[ 1::nat ↦ [ 2::nat ↦ 3::nat, 1::nat ↦ 3::nat ] ]
)∈?R"
apply (autoref (keep_goal))
done
text ‹Indirect Annotation›
consts
rel_set1 :: rel_name
rel_set2 :: rel_name
definition
"algo ≡ ( {1,2,3::nat}::#⇩rrel_set1, {1,2,3::nat}::#⇩rrel_set2 )"
schematic_goal
notes [autoref_rel_indirect] =
REL_INDIRECT[of rel_set1 "⟨Rk⟩list_set_rel" for Rk]
REL_INDIRECT[of rel_set2 "⟨Rk⟩dflt_rs_rel" for Rk]
shows "(?f::?'c,algo) ∈ ?R"
unfolding algo_def
by (autoref)
schematic_goal
notes [autoref_rel_indirect] =
REL_INDIRECT[of rel_set1 "⟨Rk⟩dflt_rs_rel" for Rk]
REL_INDIRECT[of rel_set2 "⟨Rk⟩dflt_rs_rel" for Rk]
shows "(?f::?'c,algo) ∈ ?R"
unfolding algo_def
by (autoref)
end