Theory Post_Unwinding_Helper_RECEIVER
theory Post_Unwinding_Helper_RECEIVER
imports Post_Observation_Setup_RECEIVER
begin
subsubsection ‹Unwinding helper definitions and lemmas›
locale Receiver_State_Equivalence_Up_To_PID = Fixed_PID + Fixed_AID
begin
definition eeqButPID where
"eeqButPID psts psts1 ≡
∀ aid pid. if aid = AID ∧ pid = PID then True
else psts aid pid = psts1 aid pid"
lemmas eeqButPID_intro = eeqButPID_def[THEN meta_eq_to_obj_eq, THEN iffD2]
lemma eeqButPID_eeq[simp,intro!]: "eeqButPID psts psts"
unfolding eeqButPID_def by auto
lemma eeqButPID_sym:
assumes "eeqButPID psts psts1" shows "eeqButPID psts1 psts"
using assms unfolding eeqButPID_def by auto
lemma eeqButPID_trans:
assumes "eeqButPID psts psts1" and "eeqButPID psts1 psts2" shows "eeqButPID psts psts2"
using assms unfolding eeqButPID_def by (auto split: if_splits)
lemma eeqButPID_cong:
assumes "eeqButPID psts psts1"
and "aid = AID ⟹ pid = PID ⟹ eqButT uu uu1"
and "aid ≠ AID ∨ pid ≠ PID ⟹ uu = uu1"
shows "eeqButPID (fun_upd2 psts aid pid uu) (fun_upd2 psts1 aid pid uu1)"
using assms unfolding eeqButPID_def fun_upd2_def by (auto split: if_splits)
lemma eeqButPID_not_PID:
"⟦eeqButPID psts psts1; aid ≠ AID ∨ pid ≠ PID⟧ ⟹ psts aid pid = psts1 aid pid"
unfolding eeqButPID_def by (auto split: if_splits)
lemma eeqButPID_toEq:
assumes "eeqButPID psts psts1"
shows "fun_upd2 psts AID PID pst =
fun_upd2 psts1 AID PID pst"
using eeqButPID_not_PID[OF assms]
unfolding fun_upd2_def by (auto split: if_splits intro!: ext)
lemma eeqButPID_update_post:
assumes "eeqButPID psts psts1"
shows "eeqButPID (fun_upd2 psts aid pid pst) (fun_upd2 psts1 aid pid pst)"
using eeqButPID_not_PID[OF assms]
unfolding fun_upd2_def
using assms unfolding eeqButPID_def by auto
fun eqButF :: "(apiID × bool) list ⇒ (apiID × bool) list ⇒ bool" where
"eqButF aID_bl aID_bl1 = (map fst aID_bl = map fst aID_bl1)"
lemma eqButF_eq[simp,intro!]: "eqButF aID_bl aID_bl"
by auto
lemma eqButF_sym:
assumes "eqButF aID_bl aID_bl1"
shows "eqButF aID_bl1 aID_bl"
using assms by auto
lemma eqButF_trans:
assumes "eqButF aID_bl aID_bl1" and "eqButF aID_bl1 aID_bl2"
shows "eqButF aID_bl aID_bl2"
using assms by auto
lemma eqButF_insert2:
"eqButF aID_bl aID_bl1 ⟹
eqButF (insert2 aID b aID_bl) (insert2 aID b aID_bl1)"
unfolding insert2_def
by simp (smt comp_apply fst_conv map_eq_conv split_def)
definition eqButPID :: "state ⇒ state ⇒ bool" where
"eqButPID s s1 ≡
admin s = admin s1 ∧
pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧
pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s = friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧ recvOuterFriendIDs s = recvOuterFriendIDs s1 ∧
postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1 ∧
pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧
eeqButPID (outerPost s) (outerPost s1) ∧
outerOwner s = outerOwner s1 ∧
outerVis s = outerVis s1 ∧
pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1"
lemmas eqButPID_intro = eqButPID_def[THEN meta_eq_to_obj_eq, THEN iffD2]
lemma eqButPID_refl[simp,intro!]: "eqButPID s s"
unfolding eqButPID_def by auto
lemma eqButPID_sym:
assumes "eqButPID s s1" shows "eqButPID s1 s"
using assms eeqButPID_sym unfolding eqButPID_def by auto
lemma eqButPID_trans:
assumes "eqButPID s s1" and "eqButPID s1 s2" shows "eqButPID s s2"
using assms eeqButPID_trans unfolding eqButPID_def
by simp blast
lemma eqButPID_stateSelectors:
"eqButPID s s1 ⟹
admin s = admin s1 ∧
pendingUReqs s = pendingUReqs s1 ∧ userReq s = userReq s1 ∧
userIDs s = userIDs s1 ∧ user s = user s1 ∧ pass s = pass s1 ∧
pendingFReqs s = pendingFReqs s1 ∧ friendReq s = friendReq s1 ∧ friendIDs s = friendIDs s1 ∧
sentOuterFriendIDs s = sentOuterFriendIDs s1 ∧ recvOuterFriendIDs s = recvOuterFriendIDs s1 ∧
postIDs s = postIDs s1 ∧ admin s = admin s1 ∧
post s = post s1 ∧
owner s = owner s1 ∧
vis s = vis s1 ∧
pendingSApiReqs s = pendingSApiReqs s1 ∧ sApiReq s = sApiReq s1 ∧
serverApiIDs s = serverApiIDs s1 ∧ serverPass s = serverPass s1 ∧
outerPostIDs s = outerPostIDs s1 ∧
eeqButPID (outerPost s) (outerPost s1) ∧
outerOwner s = outerOwner s1 ∧
outerVis s = outerVis s1 ∧
pendingCApiReqs s = pendingCApiReqs s1 ∧ cApiReq s = cApiReq s1 ∧
clientApiIDs s = clientApiIDs s1 ∧ clientPass s = clientPass s1 ∧
sharedWith s = sharedWith s1 ∧
IDsOK s = IDsOK s1"
unfolding eqButPID_def IDsOK_def[abs_def] by auto
lemma eqButPID_not_PID:
"eqButPID s s1 ⟹ aid ≠ AID ∨ pid ≠ PID ⟹ outerPost s aid pid = outerPost s1 aid pid"
unfolding eqButPID_def using eeqButPID_not_PID by auto
lemma eqButPID_actions:
assumes "eqButPID s s1"
shows "listInnerPosts s uid p = listInnerPosts s1 uid p"
and "listOuterPosts s uid p = listOuterPosts s1 uid p"
using eqButPID_stateSelectors[OF assms]
by (auto simp: l_defs intro!: arg_cong2[of _ _ _ _ cmap])
lemma eqButPID_update:
assumes "eqButPID s s1"
shows "fun_upd2 (outerPost s) AID PID pst = fun_upd2 (outerPost s1) AID PID pst"
using assms unfolding eqButPID_def using eeqButPID_toEq by (metis fun_upd2_absorb)
lemma eqButPID_update_post:
assumes "eqButPID s s1"
shows "eeqButPID (fun_upd2 (outerPost s) aid pid pst) (fun_upd2 (outerPost s1) aid pid pst)"
using assms unfolding eqButPID_def using eeqButPID_update_post by auto
lemma eqButPID_cong[simp, intro]:
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇admin := uu1⦈) (s1 ⦇admin := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇pendingUReqs := uu1⦈) (s1 ⦇pendingUReqs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇userReq := uu1⦈) (s1 ⦇userReq := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇userIDs := uu1⦈) (s1 ⦇userIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇user := uu1⦈) (s1 ⦇user := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇pass := uu1⦈) (s1 ⦇pass := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇postIDs := uu1⦈) (s1 ⦇postIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇post := uu1⦈) (s1 ⦇post := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇owner := uu1⦈) (s1 ⦇owner := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇vis := uu1⦈) (s1 ⦇vis := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇pendingFReqs := uu1⦈) (s1 ⦇pendingFReqs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇friendReq := uu1⦈) (s1 ⦇friendReq := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇friendIDs := uu1⦈) (s1 ⦇friendIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇sentOuterFriendIDs := uu1⦈) (s1 ⦇sentOuterFriendIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇recvOuterFriendIDs := uu1⦈) (s1 ⦇recvOuterFriendIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇pendingSApiReqs := uu1⦈) (s1 ⦇pendingSApiReqs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇sApiReq := uu1⦈) (s1 ⦇sApiReq := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇serverApiIDs := uu1⦈) (s1 ⦇serverApiIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇serverPass := uu1⦈) (s1 ⦇serverPass := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇outerPostIDs := uu1⦈) (s1 ⦇outerPostIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ eeqButPID uu1 uu2 ⟹ eqButPID (s ⦇outerPost := uu1⦈) (s1 ⦇outerPost := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇outerVis := uu1⦈) (s1 ⦇outerVis := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇outerOwner := uu1⦈) (s1 ⦇outerOwner := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇pendingCApiReqs := uu1⦈) (s1 ⦇pendingCApiReqs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇cApiReq := uu1⦈) (s1 ⦇cApiReq := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇clientApiIDs := uu1⦈) (s1 ⦇clientApiIDs := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇clientPass := uu1⦈) (s1 ⦇clientPass := uu2⦈)"
"⋀ uu1 uu2. eqButPID s s1 ⟹ uu1 = uu2 ⟹ eqButPID (s ⦇sharedWith := uu1⦈) (s1 ⦇sharedWith:= uu2⦈)"
unfolding eqButPID_def by auto
lemma comReceivePost_step_eqButPID:
assumes a: "a = COMact (comReceivePost AID sp PID pst uid vs)"
and a1: "a1 = COMact (comReceivePost AID sp PID pst1 uid vs)"
and "step s a = (ou,s')" and "step s1 a1 = (ou1,s1')"
and "eqButPID s s1"
shows "eqButPID s' s1'"
using assms unfolding eqButPID_def eeqButPID_def
unfolding a a1 by (fastforce simp: com_defs fun_upd2_def)
lemma eqButPID_step:
assumes ss1: "eqButPID s s1"
and step: "step s a = (ou,s')"
and step1: "step s1 a = (ou1,s1')"
shows "eqButPID s' s1'"
proof -
note [simp] = all_defs
note * = step step1 ss1 eqButPID_stateSelectors[OF ss1] eqButPID_update_post[OF ss1]
then show ?thesis
proof (cases a)
case (Sact x1)
with * show ?thesis by (cases x1) auto
next
case (Cact x2)
with * show ?thesis by (cases x2) auto
next
case (Dact x3)
with * show ?thesis by (cases x3) auto
next
case (Uact x4)
with * show ?thesis by (cases x4) auto
next
case (COMact x7)
with * show ?thesis by (cases x7) auto
qed auto
qed
end
end