Theory NatTrans
section "Natural Transformation"
theory NatTrans
imports Functors
begin
record ('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans =
NTDom :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) Functor"
NTCod :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) Functor"
NatTransMap :: "'o1 ⇒ 'm2"
abbreviation
NatTransApp :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans ⇒ 'o1 ⇒ 'm2" (infixr ‹$$› 70) where
"NatTransApp η X ≡ (NatTransMap η) X"
definition "NTCatDom η ≡ CatDom (NTDom η)"
definition "NTCatCod η ≡ CatCod (NTCod η)"
locale NatTransExt =
fixes η :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans" (structure)
assumes NTExt : "NatTransMap η ∈ extensional (Obj (NTCatDom η))"
locale NatTransP =
fixes η :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans" (structure)
assumes NatTransFtor: "Functor (NTDom η)"
and NatTransFtor2: "Functor (NTCod η)"
and NatTransFtorDom: "NTCatDom η = CatDom (NTCod η)"
and NatTransFtorCod: "NTCatCod η = CatCod (NTDom η)"
and NatTransMapsTo: "X ∈ obj⇘NTCatDom η⇙ ⟹
(η $$ X) maps⇘NTCatCod η⇙ ((NTDom η) @@ X) to ((NTCod η) @@ X)"
and NatTrans: "f maps⇘NTCatDom η⇙ X to Y ⟹
((NTDom η) ## f) ;;⇘NTCatCod η⇙ (η $$ Y) = (η $$ X) ;;⇘NTCatCod η⇙ ((NTCod η) ## f)"
locale NatTrans = NatTransP + NatTransExt
lemma [simp]: "NatTrans η ⟹ NatTransP η"
by(simp add: NatTrans_def)
definition MakeNT :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans ⇒ ('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans" where
"MakeNT η ≡ ⦇
NTDom = NTDom η ,
NTCod = NTCod η ,
NatTransMap = restrict (NatTransMap η) (Obj (NTCatDom η))
⦈"
definition
nt_abbrev (‹NT _ : _ ⟹ _› [81]) where
"NT f : F ⟹ G ≡ (NatTrans f) ∧ (NTDom f = F) ∧ (NTCod f = G)"
lemma nt_abbrevE[elim]: "⟦NT f : F ⟹ G ; ⟦(NatTrans f) ; (NTDom f = F) ; (NTCod f = G)⟧ ⟹ R⟧ ⟹ R"
by (auto simp add: nt_abbrev_def)
lemma MakeNT: "NatTransP η ⟹ NatTrans (MakeNT η)"
by(auto simp add: NatTransP_def NatTrans_def MakeNT_def NTCatDom_def NTCatCod_def Category.MapsToObj
NatTransExt_def)
lemma MakeNT_comp: "X ∈ Obj (NTCatDom f) ⟹ (MakeNT f) $$ X = f $$ X"
by (simp add: MakeNT_def)
lemma MakeNT_dom: "NTCatDom f = NTCatDom (MakeNT f)"
by (simp add: NTCatDom_def MakeNT_def)
lemma MakeNT_cod: "NTCatCod f = NTCatCod (MakeNT f)"
by (simp add: NTCatCod_def MakeNT_def)
lemma MakeNTApp: "X ∈ Obj (NTCatDom (MakeNT f)) ⟹ f $$ X = (MakeNT f) $$ X"
by(simp add: MakeNT_def NTCatDom_def)
lemma NatTransMapsTo:
assumes "NT η : F ⟹ G" and "X ∈ Obj (CatDom F)"
shows "η $$ X maps⇘CatCod G ⇙(F @@ X) to (G @@ X)"
proof-
have NTP: "NatTransP η" using assms by auto
have NTC: "NTCatCod η = CatCod G" using assms by (auto simp add: NTCatCod_def)
have NTD: "NTCatDom η = CatDom F" using assms by (auto simp add: NTCatDom_def)
hence Obj: "X ∈ Obj (NTCatDom η)" using assms by simp
have DF: "NTDom η = F" and CG: "NTCod η = G" using assms by auto
have NTmapsTo: "η $$ X maps⇘NTCatCod η ⇙((NTDom η) @@ X) to ((NTCod η) @@ X)"
using NTP Obj by (simp add: NatTransP.NatTransMapsTo)
thus ?thesis using NTC NTD DF CG by simp
qed
definition
NTCompDefined :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans
⇒ ('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans ⇒ bool" (infixl ‹≈>∙› 65) where
"NTCompDefined η1 η2 ≡ NatTrans η1 ∧ NatTrans η2 ∧ NTCatDom η2 = NTCatDom η1 ∧
NTCatCod η2 = NTCatCod η1 ∧ NTCod η1 = NTDom η2"
lemma NTCompDefinedE[elim]: "⟦η1 ≈>∙ η2 ; ⟦NatTrans η1 ; NatTrans η2 ; NTCatDom η2 = NTCatDom η1 ;
NTCatCod η2 = NTCatCod η1 ; NTCod η1 = NTDom η2⟧ ⟹ R⟧ ⟹ R"
by (simp add: NTCompDefined_def)
lemma NTCompDefinedI: "⟦NatTrans η1 ; NatTrans η2 ; NTCatDom η2 = NTCatDom η1 ;
NTCatCod η2 = NTCatCod η1 ; NTCod η1 = NTDom η2⟧ ⟹ η1 ≈>∙ η2"
by (simp add: NTCompDefined_def)
lemma NatTransExt0:
assumes "NTDom η1 = NTDom η2" and "NTCod η1 = NTCod η2"
and "⋀X . X ∈ Obj (NTCatDom η1) ⟹ η1 $$ X = η2 $$ X"
and "NatTransMap η1 ∈ extensional (Obj (NTCatDom η1))"
and "NatTransMap η2 ∈ extensional (Obj (NTCatDom η2))"
shows "η1 = η2"
proof-
have "NatTransMap η1 = NatTransMap η2"
proof(rule extensionalityI [of "NatTransMap η1" "Obj (NTCatDom η1)"])
show "NatTransMap η1 ∈ extensional (Obj (NTCatDom η1))" using assms by simp
have "NTCatDom η1 = NTCatDom η2" using assms by (simp add: NTCatDom_def)
moreover have "NatTransMap η2 ∈ extensional (Obj (NTCatDom η2))" using assms by simp
ultimately show "NatTransMap η2 ∈ extensional (Obj (NTCatDom η1))" by simp
{fix X assume "X ∈ Obj (NTCatDom η1)" thus "η1 $$ X = η2 $$ X" using assms by simp}
qed
thus ?thesis using assms by (simp)
qed
lemma NatTransExt':
assumes "NTDom η1' = NTDom η2'" and "NTCod η1' = NTCod η2'"
and "⋀X . X ∈ Obj (NTCatDom η1') ⟹ η1' $$ X = η2' $$ X"
shows "MakeNT η1' = MakeNT η2'"
proof(rule NatTransExt0)
show "NatTransMap (MakeNT η1') ∈ extensional (Obj (NTCatDom (MakeNT η1')))" and
"NatTransMap (MakeNT η2') ∈ extensional (Obj (NTCatDom (MakeNT η2')))" using assms
by(simp add: MakeNT_def NTCatDom_def NTCatCod_def NatTransExt_def)+
show "NTDom (MakeNT η1') = NTDom (MakeNT η2')" and
"NTCod (MakeNT η1') = NTCod (MakeNT η2')" using assms by (simp add: MakeNT_def)+
{
fix X assume 1: "X ∈ Obj (NTCatDom (MakeNT η1'))"
show "(MakeNT η1') $$ X = (MakeNT η2') $$ X"
proof-
have "NTCatDom (MakeNT η1') = NTCatDom (MakeNT η2')" using assms by(simp add: NTCatDom_def MakeNT_def)
hence 2: "X ∈ Obj (NTCatDom (MakeNT η2'))" using 1 by simp
have "(NTCatDom η1') = (NTCatDom (MakeNT η1'))" by (rule MakeNT_dom)
hence "X ∈ Obj (NTCatDom η1')" using 1 assms by simp
hence "η1' $$ X = η2' $$ X" using assms by simp
moreover have "η1' $$ X = (MakeNT η1') $$ X" using 1 assms by (simp add: MakeNTApp)
moreover have "η2' $$ X = (MakeNT η2') $$ X" using 2 assms by (simp add: MakeNTApp)
ultimately have "(MakeNT η1') $$ X = (MakeNT η2') $$ X" by simp
thus ?thesis using assms by simp
qed
}
qed
lemma NatTransExt:
assumes "NatTrans η1" and "NatTrans η2" and "NTDom η1 = NTDom η2" and "NTCod η1 = NTCod η2"
and "⋀X . X ∈ Obj (NTCatDom η1) ⟹ η1 $$ X = η2 $$ X"
shows "η1 = η2"
proof-
have "NatTransMap η1 ∈ extensional (Obj (NTCatDom η1))" and
"NatTransMap η2 ∈ extensional (Obj (NTCatDom η2))" using assms
by(simp only: NatTransExt_def NatTrans_def)+
thus ?thesis using assms by (simp add: NatTransExt0)
qed
definition
IdNatTrans' :: "('o1, 'o2, 'm1, 'm2, 'a1, 'a2) Functor ⇒ ('o1, 'o2, 'm1, 'm2, 'a1, 'a2) NatTrans" where
"IdNatTrans' F ≡ ⦇
NTDom = F ,
NTCod = F ,
NatTransMap = λ X . id⇘CatCod F⇙ (F @@ X)
⦈"
definition "IdNatTrans F ≡ MakeNT(IdNatTrans' F)"
lemma IdNatTrans_map: "X ∈ obj⇘CatDom F⇙ ⟹ (IdNatTrans F) $$ X = id⇘CatCod F⇙ (F @@ X)"
by(auto simp add: IdNatTrans_def IdNatTrans'_def MakeNT_comp MakeNT_def NTCatDom_def)
lemmas IdNatTrans_defs = IdNatTrans_def IdNatTrans'_def MakeNT_def IdNatTrans_map NTCatCod_def NTCatDom_def
lemma IdNatTransNatTrans': "Functor F ⟹ NatTransP(IdNatTrans' F)"
proof(auto simp add:NatTransP_def IdNatTrans'_def NTCatDom_def NTCatCod_def Category.Simps
PreFunctor.FunctorId2 functor_simps Functor.FunctorMapsTo)
{
fix f X Y
assume a: "Functor F" and b: "f maps⇘CatDom F⇙ X to Y"
show "(F ## f) ;;⇘CatCod F⇙ (id⇘CatCod F⇙ (F @@ Y)) = (id⇘CatCod F⇙ (F @@ X)) ;;⇘CatCod F⇙ (F ## f)"
proof-
have 1: "Category (CatCod F)" using a by simp
have "F ## f maps⇘CatCod F⇙ (F @@ X) to (F @@ Y)" using a b by (auto simp add: Functor.FunctorMapsTo)
hence 2: "F ## f ∈ mor⇘CatCod F⇙" and 3: "cod⇘CatCod F⇙ (F ## f) = (F @@ Y)"
and 4: "dom⇘CatCod F⇙ (F ## f) = (F @@ X)" by auto
have "(F ## f) ;;⇘CatCod F⇙ (id⇘CatCod F⇙ (F @@ Y)) = (F ## f) ;;⇘CatCod F⇙ (id⇘CatCod F⇙ (cod⇘CatCod F⇙ (F ## f)))"
using 3 by simp
also have "... = F ## f" using 1 2 by (auto simp add: Category.Cidr)
also have "... = (id⇘CatCod F⇙ (dom⇘CatCod F⇙ (F ## f))) ;;⇘CatCod F⇙ (F ## f)"
using 1 2 by (auto simp add: Category.Cidl)
also have "... = (id⇘CatCod F⇙ (F @@ X)) ;;⇘CatCod F⇙ (F ## f)" using 4 by simp
finally show ?thesis .
qed
}
qed
lemma IdNatTransNatTrans: "Functor F ⟹ NatTrans (IdNatTrans F)"
by (simp add: IdNatTransNatTrans' IdNatTrans_def MakeNT)
definition
NatTransComp' :: "('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans ⇒
('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans ⇒
('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans" (infixl ‹∙1› 75) where
"NatTransComp' η1 η2 = ⦇
NTDom = NTDom η1 ,
NTCod = NTCod η2 ,
NatTransMap = λ X . (η1 $$ X) ;;⇘NTCatCod η1⇙ (η2 $$ X)
⦈"
definition NatTransComp (infixl ‹∙› 75) where "η1 ∙ η2 ≡ MakeNT(η1 ∙1 η2)"
lemma NatTransComp_Comp1: "⟦x ∈ Obj (NTCatDom f) ; f ≈>∙ g⟧ ⟹ (f ∙ g) $$ x = (f $$ x) ;;⇘NTCatCod g⇙ (g $$ x)"
by(auto simp add: NatTransComp_def NatTransComp'_def MakeNT_def NTCatCod_def NTCatDom_def)
lemma NatTransComp_Comp2: "⟦x ∈ Obj (NTCatDom f) ; f ≈>∙ g⟧ ⟹ (f ∙ g) $$ x = (f $$ x) ;;⇘NTCatCod f⇙ (g $$ x)"
by(auto simp add: NatTransComp_def NatTransComp'_def MakeNT_def NTCatCod_def NTCatDom_def)
lemmas NatTransComp_defs = NatTransComp_def NatTransComp'_def MakeNT_def
NatTransComp_Comp1 NTCatCod_def NTCatDom_def
lemma [simp]: "η1 ≈>∙ η2 ⟹ NatTrans η1" by auto
lemma [simp]: "η1 ≈>∙ η2 ⟹ NatTrans η2" by auto
lemma NTCatDom: "η1 ≈>∙ η2 ⟹ NTCatDom η1 = NTCatDom η2" by auto
lemma NTCatCod: "η1 ≈>∙ η2 ⟹ NTCatCod η1 = NTCatCod η2" by auto
lemma [simp]: "η1 ≈>∙ η2 ⟹ NTCatDom (η1 ∙1 η2) = NTCatDom η1" by (auto simp add: NatTransComp'_def NTCatDom_def)
lemma [simp]: "η1 ≈>∙ η2 ⟹ NTCatCod (η1 ∙1 η2) = NTCatCod η1" by (auto simp add: NatTransComp'_def NTCatCod_def)
lemma [simp]: "η1 ≈>∙ η2 ⟹ NTCatDom (η1 ∙ η2) = NTCatDom η1" by (auto simp add: NatTransComp_defs)
lemma [simp]: "η1 ≈>∙ η2 ⟹ NTCatCod (η1 ∙ η2) = NTCatCod η1" by (auto simp add: NatTransComp_defs)
lemma [simp]: "NatTrans η ⟹ Category(NTCatDom η)" by (simp add: NatTransP.NatTransFtor NTCatDom_def)
lemma [simp]: "NatTrans η ⟹ Category(NTCatCod η)" by (simp add: NatTransP.NatTransFtor2 NTCatCod_def)
lemma DDDC: assumes "NatTrans f" shows "CatDom (NTDom f) = CatDom (NTCod f)"
proof-
have "CatDom (NTDom f) = NTCatDom f" by (simp add: NTCatDom_def)
thus ?thesis using assms by (simp add: NatTransP.NatTransFtorDom)
qed
lemma CCCD: assumes "NatTrans f" shows "CatCod (NTCod f) = CatCod (NTDom f)"
proof-
have "CatCod (NTCod f) = NTCatCod f" by (simp add: NTCatCod_def)
thus ?thesis using assms by (simp add: NatTransP.NatTransFtorCod)
qed
lemma IdNatTransCompDefDom: "NatTrans f ⟹ (IdNatTrans (NTDom f)) ≈>∙ f"
apply(rule NTCompDefinedI)
apply(simp_all add: IdNatTransNatTrans NatTransP.NatTransFtor)
apply(simp_all add: IdNatTrans_defs CCCD)
done
lemma IdNatTransCompDefCod: "NatTrans f ⟹ f ≈>∙ (IdNatTrans (NTCod f))"
apply(rule NTCompDefinedI)
apply(simp_all add: IdNatTransNatTrans NatTransP.NatTransFtor2)
apply(simp_all add: IdNatTrans_defs DDDC)
done
lemma NatTransCompDefCod:
assumes "NatTrans η" and "f maps⇘NTCatDom η⇙ X to Y"
shows "(η $$ X) ≈>⇘NTCatCod η⇙ (NTCod η ## f)"
proof(rule CompDefinedI)
have b: "X ∈ obj⇘NTCatDom η⇙" and c: "Y ∈ obj⇘NTCatDom η⇙" using assms by (auto simp add: Category.MapsToObj)
have d: "(η $$ X) maps⇘NTCatCod η⇙ ((NTDom η) @@ X) to ((NTCod η) @@ X)" using assms b
by (simp add: NatTransP.NatTransMapsTo)
thus "η $$ X ∈ mor⇘NTCatCod η⇙" by auto
have "f maps⇘CatDom (NTCod η)⇙ X to Y" using assms by (simp add: NatTransP.NatTransFtorDom)
hence e: "NTCod η ## f maps⇘CatCod (NTCod η)⇙ (NTCod η @@ X) to (NTCod η @@ Y)" using assms
by (simp add: FunctorM.FunctorCompM NatTransP.NatTransFtor2)
thus "NTCod η ## f ∈ mor⇘NTCatCod η⇙" by (auto simp add: NTCatCod_def)
have "cod⇘NTCatCod η⇙ (η $$ X) = (NTCod η @@ X)" using d by auto
also have "... = dom⇘CatCod (NTCod η)⇙ (NTCod η ## f)" using e by auto
finally show "cod⇘NTCatCod η⇙ (η $$ X) = dom⇘NTCatCod η⇙ (NTCod η ## f)" by (auto simp add: NTCatCod_def)
qed
lemma NatTransCompDefDom:
assumes "NatTrans η" and "f maps⇘NTCatDom η⇙ X to Y"
shows "(NTDom η ## f) ≈>⇘NTCatCod η⇙ (η $$ Y)"
proof(rule CompDefinedI)
have b: "X ∈ obj⇘NTCatDom η⇙" and c: "Y ∈ obj⇘NTCatDom η⇙" using assms by (auto simp add: Category.MapsToObj)
have d: "(η $$ Y) maps⇘NTCatCod η⇙ ((NTDom η) @@ Y) to ((NTCod η) @@ Y)" using assms c
by (simp add: NatTransP.NatTransMapsTo)
thus "η $$ Y ∈ mor⇘NTCatCod η⇙" by auto
have "f maps⇘CatDom (NTDom η)⇙ X to Y" using assms by (simp add: NTCatDom_def)
hence e: "NTDom η ## f maps⇘CatCod (NTDom η)⇙ (NTDom η @@ X) to (NTDom η @@ Y)" using assms
by (simp add: FunctorM.FunctorCompM NatTransP.NatTransFtor)
thus "NTDom η ## f ∈ mor⇘NTCatCod η⇙" using assms by (auto simp add: NatTransP.NatTransFtorCod)
have "dom⇘NTCatCod η⇙ (η $$ Y) = (NTDom η @@ Y)" using d by auto
also have "... = cod⇘CatCod (NTDom η)⇙ (NTDom η ## f)" using e by auto
finally show "cod⇘NTCatCod η⇙ (NTDom η ## f) = dom⇘NTCatCod η⇙ (η $$ Y)"
using assms by (auto simp add: NatTransP.NatTransFtorCod)
qed
lemma NatTransCompCompDef:
assumes "η1 ≈>∙ η2" and "X ∈ obj⇘NTCatDom η1⇙"
shows "(η1 $$ X) ≈>⇘NTCatCod η1⇙ (η2 $$ X)"
proof(rule CompDefinedI)
have 1: "(η1 $$ X) maps⇘NTCatCod η1⇙ ((NTDom η1) @@ X) to ((NTCod η1) @@ X)" using assms
by (simp add: NatTransP.NatTransMapsTo)
have "NTCatCod η1 = NTCatCod η2" using assms by auto
hence 2: "(η2 $$ X) maps⇘NTCatCod η1⇙ ((NTDom η2) @@ X) to ((NTCod η2) @@ X)" using assms
by (simp add: NatTransP.NatTransMapsTo NTCatDom)
show "η1 $$ X ∈ mor⇘NTCatCod η1⇙"
and "η2 $$ X ∈ mor⇘NTCatCod η1⇙" using 1 2 by auto
have "cod⇘NTCatCod η1⇙ (η1 $$ X) = ((NTCod η1) @@ X)" using 1 by auto
also have "... = ((NTDom η2) @@ X)" using assms by auto
finally show "cod⇘NTCatCod η1⇙ (η1 $$ X) = dom⇘NTCatCod η1⇙ (η2 $$ X)" using 2 by auto
qed
lemma NatTransCompNatTrans':
assumes "η1 ≈>∙ η2"
shows "NatTransP (η1 ∙1 η2)"
proof(auto simp add: NatTransP_def)
show "Functor (NTDom (η1 ∙1 η2))" and "Functor (NTCod (η1 ∙1 η2))" using assms
by (auto simp add: NatTransComp'_def NatTransP.NatTransFtor NatTransP.NatTransFtor2)
show "NTCatDom (η1 ∙1 η2) = CatDom (NTCod (η1 ∙1 η2))" and
"NTCatCod (η1 ∙1 η2) = CatCod (NTDom (η1 ∙1 η2))"
proof (auto simp add: NatTransComp'_def NTCatCod_def NTCatDom_def)
have "CatDom (NTDom η1) = NTCatDom η1" by (simp add: NTCatDom_def)
thus "CatDom (NTDom η1) = CatDom (NTCod η2)" using assms by (auto simp add: NatTransP.NatTransFtorDom)
have "CatCod (NTCod η2) = NTCatCod η2" by (simp add: NTCatCod_def)
thus "CatCod (NTCod η2) = CatCod (NTDom η1)" using assms by (auto simp add: NatTransP.NatTransFtorCod)
qed
{
fix X assume aa: "X ∈ obj⇘NTCatDom (η1 ∙1 η2)⇙"
show "(η1 ∙1 η2) $$ X maps⇘NTCatCod (η1 ∙1 η2)⇙ NTDom (η1 ∙1 η2) @@ X to NTCod (η1 ∙1 η2) @@ X"
proof-
have "X ∈ obj⇘NTCatDom η1⇙" and "NatTrans η1" using assms aa by simp+
hence "(η1 $$ X) maps⇘NTCatCod η1⇙ ((NTDom η1) @@ X) to ((NTCod η1) @@ X)"
by (simp add: NatTransP.NatTransMapsTo)
moreover have "(η2 $$ X) maps⇘NTCatCod η1⇙ ((NTCod η1) @@ X) to ((NTCod η2) @@ X)"
proof-
have "X ∈ obj⇘NTCatDom η2⇙" and "NatTrans η2" using assms aa by auto
hence "(η2 $$ X) maps⇘NTCatCod η2⇙ ((NTDom η2) @@ X) to ((NTCod η2) @@ X)"
by (simp add: NatTransP.NatTransMapsTo)
thus ?thesis using assms by auto
qed
ultimately have "(η1 $$ X) ;;⇘NTCatCod η1⇙ (η2 $$ X) maps⇘NTCatCod η1⇙ ((NTDom η1) @@ X) to ((NTCod η2) @@ X)"
using assms by (simp add: Category.Ccompt)
thus ?thesis using assms by (auto simp add: NatTransComp'_def NTCatCod_def)
qed
}
{
fix f X Y assume a: "f maps⇘(NTCatDom (η1 ∙1 η2))⇙ X to Y"
show "(NTDom (η1 ∙1 η2) ## f) ;;⇘NTCatCod (η1 ∙1 η2)⇙ (η1 ∙1 η2 $$ Y) =
((η1 ∙1 η2) $$ X) ;;⇘NTCatCod (η1 ∙1 η2)⇙ (NTCod (η1 ∙1 η2) ## f)"
proof-
have b: "X ∈ obj⇘NTCatDom η1⇙" and c: "Y ∈ obj⇘NTCatDom η1⇙" using assms a by (auto simp add: Category.MapsToObj)
have "((NTDom η1) ## f) ;;⇘NTCatCod η1⇙ ((η1 $$ Y) ;;⇘NTCatCod η1⇙ (η2 $$ Y)) =
(((NTDom η1) ## f) ;;⇘NTCatCod η1⇙ (η1 $$ Y)) ;;⇘NTCatCod η1⇙ (η2 $$ Y)"
proof-
have "((NTDom η1) ## f) ≈>⇘NTCatCod η1⇙ (η1 $$ Y)" using assms a by (auto simp add: NatTransCompDefDom)
moreover have "(η1 $$ Y) ≈>⇘NTCatCod η1⇙ (η2 $$ Y)" using assms by (simp add: NatTransCompCompDef c)
ultimately show ?thesis using assms by (simp add: Category.Cassoc)
qed
also have "... = ((η1 $$ X) ;;⇘NTCatCod η1⇙ ((NTDom η2) ## f)) ;;⇘NTCatCod η1⇙ (η2 $$ Y)"
using assms a by (auto simp add: NatTransP.NatTrans)
also have "... = (η1 $$ X) ;;⇘NTCatCod η1⇙ (((NTDom η2) ## f) ;;⇘NTCatCod η1⇙ (η2 $$ Y))"
proof-
have "(η1 $$ X) ≈>⇘NTCatCod η1⇙ ((NTCod η1) ## f)" using assms a by (simp add: NatTransCompDefCod)
moreover have "((NTDom η2) ## f) ≈>⇘NTCatCod η1⇙ (η2 $$ Y)" using assms a
by (simp add: NatTransCompDefDom NTCatDom NTCatCod)
ultimately show ?thesis using assms by (auto simp add: Category.Cassoc)
qed
also have "... = (η1 $$ X) ;;⇘NTCatCod η1⇙ ((η2 $$ X) ;;⇘NTCatCod η1⇙ ((NTCod η2) ## f))"
using assms a by (simp add: NatTransP.NatTrans NTCatDom NTCatCod)
also have "... = (η1 $$ X) ;;⇘NTCatCod η1⇙ (η2 $$ X) ;;⇘NTCatCod η1⇙ ((NTCod η2) ## f)"
proof-
have "(η1 $$ X) ≈>⇘NTCatCod η1⇙ (η2 $$ X)" using assms by (simp add: NatTransCompCompDef b)
moreover have "(η2 $$ X) ≈>⇘NTCatCod η1⇙ ((NTCod η2) ## f)" using assms a
by (simp add: NatTransCompDefCod NTCatCod NTCatDom)
ultimately show ?thesis using assms by (simp add: Category.Cassoc)
qed
finally show ?thesis using assms by (auto simp add: NatTransComp'_def NTCatCod_def)
qed
}
qed
lemma NatTransCompNatTrans: "η1 ≈>∙ η2 ⟹ NatTrans (η1 ∙ η2)"
by (simp add: NatTransCompNatTrans' NatTransComp_def MakeNT)
definition
CatExp' :: "('o1,'m1,'a) Category_scheme ⇒ ('o2,'m2,'b) Category_scheme ⇒
(('o1, 'o2, 'm1, 'm2, 'a, 'b) Functor,
('o1, 'o2, 'm1, 'm2, 'a, 'b) NatTrans) Category" where
"CatExp' A B ≡ ⦇
Category.Obj = {F . Ftor F : A ⟶ B} ,
Category.Mor = {η . NatTrans η ∧ NTCatDom η = A ∧ NTCatCod η = B} ,
Category.Dom = NTDom ,
Category.Cod = NTCod ,
Category.Id = IdNatTrans ,
Category.Comp = λf g. (f ∙ g)
⦈"
definition "CatExp A B ≡ MakeCat(CatExp' A B)"
lemma IdNatTransMapL:
assumes NT: "NatTrans f"
shows "IdNatTrans (NTDom f) ∙ f = f"
proof(rule NatTransExt)
show "NatTrans f" using assms .
show "NatTrans (IdNatTrans (NTDom f) ∙ f)" using NT
by (simp add: NatTransP.NatTransFtor IdNatTransNatTrans IdNatTransCompDefDom NatTransCompNatTrans)
show "NTDom (IdNatTrans (NTDom f) ∙ f) = NTDom f" and
"NTCod (IdNatTrans (NTDom f) ∙ f) = NTCod f" by (simp add: IdNatTrans_defs NatTransComp_defs)+
{
fix x assume aa: "x ∈ Obj (NTCatDom (IdNatTrans (NTDom f) ∙ f))"
show "(IdNatTrans (NTDom f) ∙ f) $$ x = f $$ x"
proof-
have XObj: "x ∈ Obj(NTCatDom f)" using aa by (simp add: IdNatTrans_defs NatTransComp_defs)
have fMap: "f $$ x maps⇘NTCatCod f⇙ NTDom f @@ x to NTCod f @@ x" using NT XObj
by (simp add: NatTransP.NatTransMapsTo)
have "(IdNatTrans (NTDom f) ∙ f) $$ x = (IdNatTrans (NTDom f) $$ x) ;;⇘NTCatCod f ⇙(f $$ x)"
proof(rule NatTransComp_Comp1)
show "x ∈ obj⇘NTCatDom (IdNatTrans (NTDom f))⇙" using XObj by (simp add: IdNatTrans_defs)
show "IdNatTrans (NTDom f) ≈>∙ f" using NT by (simp add: IdNatTransCompDefDom)
qed
also have "... = id⇘NTCatCod f⇙ (dom⇘NTCatCod f⇙ (f $$ x)) ;;⇘NTCatCod f ⇙(f $$ x)"
using XObj NT fMap by (auto simp add: IdNatTrans_map NTCatDom_def CCCD NTCatCod_def)
also have "... = f $$ x"
proof-
have "f $$ x ∈ mor⇘NTCatCod f⇙" using fMap by (auto)
thus ?thesis using NT by (simp add: Category.Cidl)
qed
finally show ?thesis .
qed
}
qed
lemma IdNatTransMapR:
assumes NT: "NatTrans f"
shows "f ∙ IdNatTrans (NTCod f) = f"
proof(rule NatTransExt)
show "NatTrans f" using assms .
show "NatTrans (f ∙ IdNatTrans (NTCod f))" using NT
by (simp add: NatTransP.NatTransFtor IdNatTransNatTrans IdNatTransCompDefCod NatTransCompNatTrans)
show "NTDom (f ∙ IdNatTrans (NTCod f)) = NTDom f" and
"NTCod (f ∙ IdNatTrans (NTCod f)) = NTCod f" by (simp add: IdNatTrans_defs NatTransComp_defs)+
{
fix x assume aa: "x ∈ Obj (NTCatDom (f ∙ IdNatTrans (NTCod f)))"
show "(f ∙ IdNatTrans (NTCod f)) $$ x = f $$ x"
proof-
have XObj: "x ∈ Obj(NTCatDom f)" using aa by (simp add: NatTransComp_defs)
have fMap: "f $$ x maps⇘NTCatCod f⇙ NTDom f @@ x to NTCod f @@ x" using NT XObj
by (simp add: NatTransP.NatTransMapsTo)
have "(f ∙ IdNatTrans (NTCod f)) $$ x = (f $$ x) ;;⇘NTCatCod f⇙ (IdNatTrans (NTCod f) $$ x)"
using XObj NT by (auto simp add: NatTransComp_Comp2 IdNatTransCompDefCod)
also have "... = (f $$ x) ;;⇘NTCatCod f⇙ (id⇘NTCatCod f⇙ (cod⇘NTCatCod f⇙ (f $$ x)))"
proof-
have "x ∈ obj⇘CatDom (NTCod f)⇙" using XObj NT by (simp add: IdNatTrans_defs DDDC)
moreover have "(cod⇘NTCatCod f⇙ (f $$ x)) = (NTCod f) @@ x" using fMap by auto
ultimately have "(IdNatTrans (NTCod f) $$ x) = (id⇘NTCatCod f⇙ (cod⇘NTCatCod f⇙ (f $$ x)))"
by (simp add: IdNatTrans_map NTCatCod_def)
thus ?thesis by simp
qed
also have "... = f $$ x"
proof-
have "f $$ x ∈ mor⇘NTCatCod f⇙" using fMap by (auto)
thus ?thesis using NT by (simp add: Category.Cidr)
qed
finally show ?thesis .
qed
}
qed
lemma NatTransCompDefined:
assumes "f ≈>∙ g" and "g ≈>∙ h"
shows "(f ∙ g) ≈>∙ h" and "f ≈>∙ (g ∙ h)"
proof-
show "(f ∙ g) ≈>∙ h"
proof(rule NTCompDefinedI)
show "NatTrans (f ∙ g)" and "NatTrans h" using assms by (auto simp add: NatTransCompNatTrans)
have "NTCatDom f = NTCatDom h" using assms by (simp add: NTCatDom)
thus "NTCatDom h = NTCatDom (f ∙ g)" by (simp add: NatTransComp_defs)
have "NTCatCod h = NTCatCod g" using assms by (simp add: NTCatCod)
thus "NTCatCod h = NTCatCod (f ∙ g)" by ( simp add: NatTransComp_defs)
show "NTCod (f ∙ g) = NTDom h" using assms by (auto simp add: NatTransComp_defs)
qed
show "f ≈>∙ (g ∙ h)"
proof(rule NTCompDefinedI)
show "NatTrans f" and "NatTrans (g ∙ h)" using assms by (auto simp add: NatTransCompNatTrans)
have "NTCatDom f = NTCatDom g" using assms by (simp add: NTCatDom)
thus "NTCatDom (g ∙ h) = NTCatDom f" by (simp add: NatTransComp_defs)
have "NTCatCod h = NTCatCod f" using assms by (simp add: NTCatCod)
thus "NTCatCod (g ∙ h) = NTCatCod f" by ( simp add: NatTransComp_defs)
show "NTCod f = NTDom (g ∙ h)" using assms by (auto simp add: NatTransComp_defs)
qed
qed
lemma NatTransCompAssoc:
assumes "f ≈>∙ g" and "g ≈>∙ h"
shows "(f ∙ g) ∙ h = f ∙ (g ∙ h)"
proof(rule NatTransExt)
show "NatTrans ((f ∙ g) ∙ h)" using assms by (simp add: NatTransCompNatTrans NatTransCompDefined)
show "NatTrans (f ∙ (g ∙ h))" using assms by (simp add: NatTransCompNatTrans NatTransCompDefined)
show "NTDom (f ∙ g ∙ h) = NTDom (f ∙ (g ∙ h))" and "NTCod (f ∙ g ∙ h) = NTCod (f ∙ (g ∙ h))"
by(simp add: NatTransComp_defs)+
{
fix x assume aa: "x ∈ obj⇘NTCatDom (f ∙ g ∙ h)⇙" show "((f ∙ g) ∙ h) $$ x = (f ∙ (g ∙ h)) $$ x"
proof-
have ntd1: "NTCatDom (f ∙ g) = NTCatDom (f ∙ g ∙ h)" and ntd2: "NTCatDom f = NTCatDom (f ∙ g ∙ h)"
using assms by (simp add: NatTransCompDefined)+
have obj1: "x ∈ Obj (NTCatDom f)" using aa ntd2 by simp
have 1: "(f ∙ g) $$ x = (f $$ x) ;;⇘NTCatCod h⇙ (g $$ x)" and
2: "(g ∙ h) $$ x = (g $$ x) ;;⇘NTCatCod h⇙ (h $$ x)" using obj1
using assms by (auto simp add: NatTransComp_Comp1)
have "((f ∙ g) ∙ h) $$ x = ((f ∙ g) $$ x) ;;⇘NTCatCod h⇙ (h $$ x)"
proof(rule NatTransComp_Comp1)
show "x ∈ obj⇘NTCatDom (f ∙ g)⇙" using aa ntd1 by simp
show "f ∙ g ≈>∙ h" using assms by (simp add: NatTransCompDefined)
qed
also have "... = ((f $$ x) ;;⇘NTCatCod h⇙ (g $$ x)) ;;⇘NTCatCod h⇙ (h $$ x)" using 1 by simp
also have "... = (f $$ x) ;;⇘NTCatCod h⇙ ((g $$ x) ;;⇘NTCatCod h⇙ (h $$ x))"
proof-
have 1: "NTCatCod h = NTCatCod f" and 2: "NTCatCod h = NTCatCod g" using assms by (simp add: NTCatCod)+
hence "(f $$ x) ≈>⇘NTCatCod h⇙ (g $$ x)" using obj1 assms by (simp add: NatTransCompCompDef)
moreover have "(g $$ x) ≈>⇘NTCatCod h⇙ (h $$ x)" using obj1 assms 2 by (simp add: NatTransCompCompDef NTCatDom)
moreover have "Category (NTCatCod h)" using assms by auto
ultimately show ?thesis by (simp add: Category.Cassoc)
qed
also have "... = (f $$ x) ;;⇘NTCatCod h⇙ ((g ∙ h) $$ x)" using 2 by simp
also have "... = (f ∙ (g ∙ h)) $$ x"
proof-
have "NTCatCod f = NTCatCod h" using assms by (simp add: NTCatCod)
moreover have "(f ∙ (g ∙ h)) $$ x = (f $$ x) ;;⇘NTCatCod f⇙ ((g ∙ h) $$ x)"
proof(rule NatTransComp_Comp2)
show "x ∈ obj⇘NTCatDom f⇙" using obj1 assms by (simp add: NTCatDom)
show "f ≈>∙ g ∙ h" using assms by (simp add: NatTransCompDefined)
qed
ultimately show ?thesis by simp
qed
finally show ?thesis .
qed
}
qed
lemma CatExpCatAx:
assumes "Category A" and "Category B"
shows "Category_axioms (CatExp' A B)"
proof(auto simp add: Category_axioms_def)
{
fix f assume "f ∈ mor⇘CatExp' A B⇙"
thus "dom⇘CatExp' A B⇙ f ∈ obj⇘CatExp' A B⇙" and
"cod⇘CatExp' A B⇙ f ∈ obj⇘CatExp' A B⇙"
by(auto simp add: CatExp'_def NatTransP.NatTransFtor
NatTransP.NatTransFtor2 NatTransP.NatTransFtorDom NatTransP.NatTransFtorCod DDDC CCCD functor_abbrev_def)
}
{
fix F assume a: "F ∈ obj⇘CatExp' A B⇙"
show "id⇘CatExp' A B⇙ F maps⇘CatExp' A B⇙ F to F"
proof(rule MapsToI)
have "Ftor F : A ⟶ B" using a by (simp add: CatExp'_def)
thus "id⇘CatExp' A B⇙ F ∈ mor⇘CatExp' A B⇙"
apply(simp add: CatExp'_def NTCatDom_def NTCatCod_def IdNatTransNatTrans functor_abbrev_def)
apply(simp add: IdNatTrans_defs)
done
show "dom⇘CatExp' A B⇙ (id⇘CatExp' A B⇙ F) = F" by (simp add: CatExp'_def IdNatTrans_defs)
show "cod⇘CatExp' A B⇙ (id⇘CatExp' A B⇙ F) = F" by (simp add: CatExp'_def IdNatTrans_defs)
qed
}
{
fix f assume a: "f ∈ mor⇘CatExp' A B⇙"
show "(id⇘CatExp' A B⇙ (dom⇘CatExp' A B⇙ f)) ;;⇘CatExp' A B⇙ f = f" and
"f ;;⇘CatExp' A B⇙ (id⇘CatExp' A B⇙ (cod⇘CatExp' A B⇙ f)) = f"
proof(simp_all add: CatExp'_def)
have NT: "NatTrans f" using a by (simp add: CatExp'_def)
show "IdNatTrans (NTDom f) ∙ f = f" using NT by (simp add:IdNatTransMapL)
show "f ∙ IdNatTrans (NTCod f) = f" using NT by (simp add:IdNatTransMapR)
qed
}
{
fix f g h assume aa: "f ≈>⇘CatExp' A B⇙ g" and bb: "g ≈>⇘CatExp' A B⇙ h"
{
fix f g assume "f ≈>⇘CatExp' A B⇙ g" hence "f ≈>∙ g"
apply(simp only: NTCompDefined_def)
by (auto simp add: CatExp'_def)
}
hence "f ≈>∙ g" and "g ≈>∙ h" using aa bb by auto
thus "f ;;⇘CatExp' A B⇙ g ;;⇘CatExp' A B⇙ h = f ;;⇘CatExp' A B⇙ (g ;;⇘CatExp' A B⇙ h)"
by(simp add: CatExp'_def NatTransCompAssoc)
}
{
fix f g X Y Z assume a: "f maps⇘CatExp' A B⇙ X to Y" and b: "g maps⇘CatExp' A B⇙ Y to Z"
show "f ;;⇘CatExp' A B⇙ g maps⇘CatExp' A B⇙ X to Z"
proof(rule MapsToI, auto simp add: CatExp'_def)
have nt1: "NatTrans f" and cd1: "NTCatDom f = A"
and cc1: "NTCatCod f = B" and d1: "NTDom f = X" and c1: "NTCod f = Y"
using a by (auto simp add: CatExp'_def)
moreover have nt2: "NatTrans g" and cd2: "NTCatDom g = A"
and cc2: "NTCatCod g = B" and d2: "NTDom g = Y" and c2: "NTCod g = Z"
using b by (auto simp add: CatExp'_def)
ultimately have Comp: "f ≈>∙ g" by(auto intro: NTCompDefinedI)
thus "NatTrans (f ∙ g)" by (simp add: NatTransCompNatTrans)
show "NTCatDom (f ∙ g) = A" using Comp cd1 by (simp add: NTCatDom)
show "NTCatCod (f ∙ g) = B" using Comp cc2 by (simp add: NTCatCod)
show "NTDom (f ∙ g) = X" using d1 by (simp add: NatTransComp_defs)
show "NTCod (f ∙ g) = Z" using c2 by (simp add: NatTransComp_defs)
qed
}
qed
lemma CatExpCat: "⟦Category A ; Category B⟧ ⟹ Category (CatExp A B)"
by(simp add: CatExpCatAx CatExp_def MakeCat)
lemmas CatExp_defs = CatExp_def CatExp'_def MakeCat_def
lemma CatExpDom: "f ∈ Mor (CatExp A B) ⟹ dom⇘CatExp A B⇙ f = NTDom f"
by (simp add: CatExp_defs)
lemma CatExpCod: "f ∈ Mor (CatExp A B) ⟹ cod⇘CatExp A B⇙ f = NTCod f"
by (simp add: CatExp_defs)
lemma CatExpId: "X ∈ Obj (CatExp A B) ⟹ Id (CatExp A B) X = IdNatTrans X"
by (simp add: CatExp_defs)
lemma CatExpNatTransCompDef: assumes "f ≈>⇘CatExp A B⇙ g" shows "f ≈>∙ g"
proof-
have 1: "f ≈>⇘CatExp' A B⇙ g" using assms by (simp add: CatExp_def MakeCatCompDef)
show "f ≈>∙ g"
proof(rule NTCompDefinedI)
show "NatTrans f" using 1 by (auto simp add: CatExp'_def)
show "NatTrans g" using 1 by (auto simp add: CatExp'_def)
show "NTCatDom g = NTCatDom f" using 1 by (auto simp add: CatExp'_def)
show "NTCatCod g = NTCatCod f" using 1 by (auto simp add: CatExp'_def)
show "NTCod f = NTDom g" using 1 by (auto simp add: CatExp'_def)
qed
qed
lemma CatExpDist:
assumes "X ∈ Obj A" and "f ≈>⇘CatExp A B⇙ g"
shows "(f ;;⇘CatExp A B⇙ g) $$ X = (f $$ X) ;;⇘B⇙ (g $$ X)"
proof-
have "f ∈ Mor (CatExp' A B)" using assms by (auto simp add: CatExp_def MakeCatMor)
hence 1: "NTCatDom f = A" and 2: "NTCatCod f = B" by (simp add: CatExp'_def)+
hence 4: "X ∈ Obj (NTCatDom f)" using assms by simp
have 3: "f ≈>∙ g" using assms(2) by (simp add: CatExpNatTransCompDef)
have "(f ;;⇘CatExp A B⇙ g) $$ X = (f ;;⇘CatExp' A B⇙ g) $$ X" using assms(2) by (simp add: CatExp_def MakeCatComp2)
also have "... = (f ∙ g) $$ X" by (simp add: CatExp'_def)
also have "... = (f $$ X) ;;⇘B⇙ (g $$ X)" using 4 2 3 by (simp add: NatTransComp_Comp2[of X f g])
finally show ?thesis .
qed
lemma CatExpMorNT: "f ∈ Mor (CatExp A B) ⟹ NatTrans f"
by (simp add: CatExp_defs)
end