Theory NatTrans
section ‹Natural Transformations›
theory NatTrans
imports Functors
begin
locale natural_transformation = two_cats +
fixes F and G and u
assumes "Functor F : AA ⟶ BB"
and "Functor G : AA ⟶ BB"
and "u : ob AA → ar BB"
and "u ∈ extensional (ob AA)"
and "∀A∈Ob. u A ∈ Hom⇘BB⇙ (F⇘𝗈⇙ A) (G⇘𝗈⇙ A)"
and "∀A∈Ob. ∀B∈Ob. ∀f∈Hom A B. (G⇘𝖺⇙ f) ∙⇘BB⇙ (u A) = (u B) ∙⇘BB⇙ (F⇘𝖺⇙ f)"
abbreviation
nt_syn (‹_ : _ ⇒ _ in Func '(_ , _ ')› [81]) where
"u : F ⇒ G in Func(AA, BB) ≡ natural_transformation AA BB F G u"
locale endoNT = natural_transformation + one_cat
theorem (in endoNT) id_restrict_natural:
"(λA∈Ob. Id A) : (id_func AA) ⇒ (id_func AA) in Func(AA,AA)"
proof (intro natural_transformation.intro natural_transformation_axioms.intro
two_cats.intro ballI)
show "(λA∈Ob. Id A) : Ob → Ar"
by (rule funcsetI) auto
show "(λA∈Ob. Id A) ∈ extensional (Ob)"
by (rule restrict_extensional)
fix A
assume A: "A ∈ Ob"
hence "Id A ∈ Hom A A" ..
thus "(λX∈Ob. Id X) A ∈ Hom ((id_func AA)⇘𝗈⇙ A) ((id_func AA)⇘𝗈⇙ A)"
using A by (simp add: id_func_def)
fix B and f
assume B: "B ∈ Ob"
and "f ∈ Hom A B"
hence "f ∈ Ar" and "A = Dom f" and "B = Cod f" and "Dom f ∈ Ob" and "Cod f ∈ Ob"
using A by (simp_all add: hom_def)
thus "(id_func AA)⇘𝖺⇙ f ∙ (λA∈Ob. Id A) A
= (λA∈Ob. Id A) B ∙ (id_func AA)⇘𝖺⇙ f"
by (simp add: id_func_def)
qed (auto intro: id_func_functor, unfold_locales, unfold_locales)
end