Theory Functors

(*  Title:       Category theory using Isar and Locales
    Author:      Greg O'Keefe, June, July, August 2003
    License: LGPL

Functors: Define functors and prove a trivial example.
*)

section ‹Functors›

theory Functors
imports Cat
begin

subsection ‹Definitions›

record ('o1,'a1,'o2,'a2) "functor" =
  om :: "'o1  'o2"
  am :: "'a1  'a2"

abbreviation
  om_syn  (‹_ 𝗈 [81]) where
  "F𝗈  om F"

abbreviation
  am_syn  (‹_ 𝖺 [81]) where
  "F𝖺  am F"

locale two_cats = AA?: category AA + BB?: category BB
    for AA :: "('o1,'a1,'m1)category_scheme" (structure)
    and BB :: "('o2,'a2,'m2)category_scheme" (structure) + 
  fixes preserves_dom  ::  "('o1,'a1,'o2,'a2)functor  bool"
    and preserves_cod  ::  "('o1,'a1,'o2,'a2)functor  bool"
    and preserves_id  ::  "('o1,'a1,'o2,'a2)functor  bool"
    and preserves_comp  ::  "('o1,'a1,'o2,'a2)functor  bool"
  defines "preserves_dom G  fArAA. G𝗈 (DomAAf) = DomBB(G𝖺 f)"
    and "preserves_cod G  fArAA. G𝗈 (CodAAf) = CodBB(G𝖺 f)"
    and "preserves_id G  AObAA. G𝖺 (IdAAA) = IdBB(G𝗈 A)"
    and "preserves_comp G 
      fArAA. gArAA. CodAAf = DomAAg  G𝖺 (g AAf) = (G𝖺 g) BB(G𝖺 f)"

locale "functor" = two_cats +
  fixes F (structure)
  assumes F_preserves_arrows: "F𝖺 : ArAA ArBB⇙"
    and F_preserves_objects: "F𝗈 : ObAA ObBB⇙"
    and F_preserves_dom: "preserves_dom F"
    and F_preserves_cod: "preserves_cod F"
    and F_preserves_id: "preserves_id F"
    and F_preserves_comp: "preserves_comp F"
begin

lemmas F_axioms = F_preserves_arrows F_preserves_objects F_preserves_dom 
  F_preserves_cod F_preserves_id F_preserves_comp

lemmas func_pred_defs = preserves_dom_def preserves_cod_def preserves_id_def preserves_comp_def

end

text ‹This gives us nicer notation for asserting that things are functors.›

abbreviation
  Functor  (Functor _ : _  _› [81]) where
  "Functor F : AA  BB  functor AA BB F"


subsection ‹Simple Lemmas›

text ‹For example:›

lemma (in "functor") "Functor F : AA  BB" ..


lemma functors_preserve_arrows [intro]:
  assumes "Functor F : AA  BB"
    and "f  ar AA"
  shows "F𝖺 f  ar BB"
proof-
  from Functor F : AA  BB
  have "F𝖺 : ar AA  ar BB"
    by (simp add: functor_def functor_axioms_def)
  from this and f  ar AA
  show ?thesis by (rule funcset_mem)
qed


lemma (in "functor") functors_preserve_homsets:
  assumes 1: "A  ObAA⇙"
  and 2: "B  ObAA⇙"
  and 3: "f  HomAAA B"
  shows "F𝖺 f  HomBB(F𝗈 A) (F𝗈 B)"
proof-
  from 3 
  have 4: "f  Ar" 
    by (simp add: hom_def)
  with F_preserves_arrows 
  have 5: "F𝖺 f  ArBB⇙" 
    by (rule funcset_mem)
  from 4 and F_preserves_dom 
  have "DomBB(F𝖺 f) = F𝗈 (DomAAf)"
    by (simp add: preserves_dom_def)
  also from 3 have " = F𝗈 A"
    by (simp add: hom_def)
  finally have 6: "DomBB(F𝖺 f) = F𝗈 A" .
  from 4 and F_preserves_cod 
  have "CodBB(F𝖺 f) = F𝗈 (CodAAf)"
    by (simp add: preserves_cod_def)
  also from 3 have " = F𝗈 B"
    by (simp add: hom_def)
  finally have 7: "CodBB(F𝖺 f) = F𝗈 B" .
  from 5 and 6 and 7
  show ?thesis
    by (simp add: hom_def)
qed
    

lemma functors_preserve_objects [intro]:
  assumes "Functor F : AA  BB"
    and "A  ob AA"
  shows "F𝗈 A  ob BB"
proof-
  from Functor F : AA  BB
  have "F𝗈 : ob AA  ob BB"
    by (simp add: functor_def functor_axioms_def)
  from this and A  ob AA
  show ?thesis by (rule funcset_mem)
qed


subsection ‹Identity Functor›

definition
  id_func :: "('o,'a,'m) category_scheme  ('o,'a,'o,'a) functor" where
  "id_func CC = om=(λAob CC. A), am=(λfar CC. f)"

locale one_cat = two_cats +
  assumes endo: "BB = AA"

lemma (in one_cat) id_func_preserves_arrows:
  shows "(id_func AA)𝖺 : Ar  Ar"
  by (unfold id_func_def, rule funcsetI, simp)


lemma (in one_cat) id_func_preserves_objects:
  shows "(id_func AA)𝗈 : Ob  Ob"
  by (unfold id_func_def, rule funcsetI, simp)


lemma (in one_cat) id_func_preserves_dom:
  shows  "preserves_dom (id_func AA)"
unfolding preserves_dom_def endo
proof
  fix f
  assume f: "f  Ar"
  hence lhs: "(id_func AA)𝗈 (Dom f) = Dom f"
    by (simp add: id_func_def) auto
  have "(id_func AA)𝖺 f = f"
    using f by (simp add: id_func_def)
  hence rhs: "Dom (id_func AA)𝖺 f = Dom f"
    by simp
  from lhs and rhs show "(id_func AA)𝗈 (Dom f) = Dom (id_func AA)𝖺 f"
    by simp
qed

lemma (in one_cat) id_func_preserves_cod:
  "preserves_cod (id_func AA)"
apply (unfold preserves_cod_def, simp only: endo)
proof
  fix f
  assume f: "f  Ar"
  hence lhs: "(id_func AA)𝗈 (Cod f) = Cod f"
    by (simp add: id_func_def) auto
  have "(id_func AA)𝖺 f = f"
    using f by (simp add: id_func_def)
  hence rhs: "Cod (id_func AA)𝖺 f = Cod f"
    by simp
  from lhs and rhs show "(id_func AA)𝗈 (Cod f) = Cod (id_func AA)𝖺 f"
    by simp
qed


lemma (in one_cat) id_func_preserves_id:
  "preserves_id (id_func AA)"
unfolding preserves_id_def endo
proof
  fix A
  assume A: "A  Ob"
  hence lhs: "(id_func AA)𝖺 (Id A) = Id A"
    by (simp add: id_func_def) auto
  have "(id_func AA)𝗈 A = A"
    using A by (simp add: id_func_def)
  hence rhs: "Id ((id_func AA)𝗈 A) = Id A"
    by simp
  from lhs and rhs show "(id_func AA)𝖺 (Id A) = Id ((id_func AA)𝗈 A)"
    by simp
qed


lemma (in one_cat) id_func_preserves_comp:
  "preserves_comp (id_func AA)"
unfolding preserves_comp_def endo
proof (intro ballI impI)
  fix f and g
  assume f: "f  Ar" and g: "g  Ar" and "Cod f = Dom g"
  then have "g  f  Ar" ..
  hence lhs: "(id_func AA)𝖺 (g  f) = g  f"
    by (simp add: id_func_def)
  have id_f: "(id_func AA)𝖺 f = f"
    using f by (simp add: id_func_def)
  have id_g: "(id_func AA)𝖺 g = g"
    using g by (simp add: id_func_def)
  hence rhs: "(id_func AA)𝖺 g  (id_func AA)𝖺 f = g  f"
    by (simp add: id_f id_g)
  from lhs and rhs 
  show "(id_func AA)𝖺 (g  f) = (id_func AA)𝖺 g  (id_func AA)𝖺 f"
    by simp
qed

theorem (in one_cat) id_func_functor:
  "Functor (id_func AA) : AA  AA"
proof-
  from id_func_preserves_arrows
    and id_func_preserves_objects
    and id_func_preserves_dom
    and id_func_preserves_cod
    and id_func_preserves_id
    and id_func_preserves_comp
  show ?thesis
    by unfold_locales (simp_all add: endo preserves_dom_def
      preserves_cod_def preserves_id_def preserves_comp_def)
qed

end