Theory HOL-Library.Log_Nat
section ‹Logarithm of Natural Numbers›
theory Log_Nat
imports Complex_Main
begin
subsection ‹Preliminaries›
lemma divide_nat_diff_div_nat_less_one:
"real x / real b - real (x div b) < 1" for x b :: nat
proof (cases "b = 0")
case True
then show ?thesis
by simp
next
case False
then have "real (x div b) + real (x mod b) / real b - real (x div b) < 1"
by (simp add: field_simps)
then show ?thesis
by (metis of_nat_of_nat_div_aux)
qed
subsection ‹Floorlog›
definition floorlog :: "nat ⇒ nat ⇒ nat"
where "floorlog b a = (if a > 0 ∧ b > 1 then nat ⌊log b a⌋ + 1 else 0)"
lemma floorlog_mono: "x ≤ y ⟹ floorlog b x ≤ floorlog b y"
by (auto simp: floorlog_def floor_mono nat_mono)
lemma floorlog_bounds:
"b ^ (floorlog b x - 1) ≤ x ∧ x < b ^ (floorlog b x)" if "x > 0" "b > 1"
proof
show "b ^ (floorlog b x - 1) ≤ x"
proof -
have "b ^ nat ⌊log b x⌋ = b powr ⌊log b x⌋"
using powr_realpow[symmetric, of b "nat ⌊log b x⌋"] ‹x > 0› ‹b > 1›
by simp
also have "… ≤ b powr log b x" using ‹b > 1› by simp
also have "… = real_of_int x" using ‹0 < x› ‹b > 1› by simp
finally have "b ^ nat ⌊log b x⌋ ≤ real_of_int x" by simp
then show ?thesis
using ‹0 < x› ‹b > 1› of_nat_le_iff
by (fastforce simp add: floorlog_def)
qed
show "x < b ^ (floorlog b x)"
proof -
have "x ≤ b powr (log b x)" using ‹x > 0› ‹b > 1› by simp
also have "… < b powr (⌊log b x⌋ + 1)"
using that by (intro powr_less_mono) auto
also have "… = b ^ nat (⌊log b (real_of_int x)⌋ + 1)"
using that by (simp flip: powr_realpow)
finally
have "x < b ^ nat (⌊log b (int x)⌋ + 1)"
by (rule of_nat_less_imp_less)
then show ?thesis
using ‹x > 0› ‹b > 1› by (simp add: floorlog_def nat_add_distrib)
qed
qed
lemma floorlog_power [simp]:
"floorlog b (a * b ^ c) = floorlog b a + c" if "a > 0" "b > 1"
proof -
have "⌊log b a + real c⌋ = ⌊log b a⌋ + c" by arith
then show ?thesis using that
by (auto simp: floorlog_def log_mult powr_realpow[symmetric] nat_add_distrib)
qed
lemma floor_log_add_eqI:
"⌊log b (a + r)⌋ = ⌊log b a⌋" if "b > 1" "a ≥ 1" "0 ≤ r" "r < 1"
for a b :: nat and r :: real
proof (rule floor_eq2)
have "log b a ≤ log b (a + r)" using that by force
then show "⌊log b a⌋ ≤ log b (a + r)" by arith
next
define l::int where "l = int b ^ (nat ⌊log b a⌋ + 1)"
have l_def_real: "l = b powr (⌊log b a⌋ + 1)"
using that by (simp add: l_def powr_add powr_real_of_int)
have "a < l"
proof -
have "a = b powr (log b a)" using that by simp
also have "… < b powr floor ((log b a) + 1)"
using that(1) by auto
also have "… = l"
using that by (simp add: l_def powr_real_of_int powr_add)
finally show ?thesis by simp
qed
then have "a + r < l" using that by simp
then have "log b (a + r) < log b l" using that by simp
also have "… = real_of_int ⌊log b a⌋ + 1"
using that by (simp add: l_def_real)
finally show "log b (a + r) < real_of_int ⌊log b a⌋ + 1" .
qed
lemma floor_log_div:
"⌊log b x⌋ = ⌊log b (x div b)⌋ + 1" if "b > 1" "x > 0" "x div b > 0"
for b x :: nat
proof-
have "⌊log b x⌋ = ⌊log b (x / b * b)⌋" using that by simp
also have "… = ⌊log b (x / b) + log b b⌋"
using that by (subst log_mult) auto
also have "… = ⌊log b (x / b)⌋ + 1" using that by simp
also have "⌊log b (x / b)⌋ = ⌊log b (x div b + (x / b - x div b))⌋" by simp
also have "… = ⌊log b (x div b)⌋"
using that of_nat_div_le_of_nat divide_nat_diff_div_nat_less_one
by (intro floor_log_add_eqI) auto
finally show ?thesis .
qed
lemma compute_floorlog [code]:
"floorlog b x = (if x > 0 ∧ b > 1 then floorlog b (x div b) + 1 else 0)"
by (auto simp: floorlog_def floor_log_div[of b x] div_eq_0_iff nat_add_distrib
intro!: floor_eq2)
lemma floor_log_eq_if:
"⌊log b x⌋ = ⌊log b y⌋" if "x div b = y div b" "b > 1" "x > 0" "x div b ≥ 1"
for b x y :: nat
proof -
have "y > 0" using that by (auto intro: ccontr)
thus ?thesis using that by (simp add: floor_log_div)
qed
lemma floorlog_eq_if:
"floorlog b x = floorlog b y" if "x div b = y div b" "b > 1" "x > 0" "x div b ≥ 1"
for b x y :: nat
proof -
have "y > 0" using that by (auto intro: ccontr)
then show ?thesis using that
by (auto simp add: floorlog_def eq_nat_nat_iff intro: floor_log_eq_if)
qed
lemma floorlog_leD:
"floorlog b x ≤ w ⟹ b > 1 ⟹ x < b ^ w"
by (metis floorlog_bounds leD linorder_neqE_nat order.strict_trans power_strict_increasing_iff
zero_less_one zero_less_power)
lemma floorlog_leI:
"x < b ^ w ⟹ 0 ≤ w ⟹ b > 1 ⟹ floorlog b x ≤ w"
by (drule less_imp_of_nat_less[where 'a=real])
(auto simp: floorlog_def Suc_le_eq nat_less_iff floor_less_iff log_of_power_less)
lemma floorlog_eq_zero_iff:
"floorlog b x = 0 ⟷ b ≤ 1 ∨ x ≤ 0"
by (auto simp: floorlog_def)
lemma floorlog_le_iff:
"floorlog b x ≤ w ⟷ b ≤ 1 ∨ b > 1 ∧ 0 ≤ w ∧ x < b ^ w"
using floorlog_leD[of b x w] floorlog_leI[of x b w]
by (auto simp: floorlog_eq_zero_iff[THEN iffD2])
lemma floorlog_ge_SucI:
"Suc w ≤ floorlog b x" if "b ^ w ≤ x" "b > 1"
using that le_log_of_power[of b w x] power_not_zero
by (force simp: floorlog_def Suc_le_eq powr_realpow not_less Suc_nat_eq_nat_zadd1
zless_nat_eq_int_zless int_add_floor less_floor_iff
simp del: floor_add2)
lemma floorlog_geI:
"w ≤ floorlog b x" if "b ^ (w - 1) ≤ x" "b > 1"
using floorlog_ge_SucI[of b "w - 1" x] that
by auto
lemma floorlog_geD:
"b ^ (w - 1) ≤ x" if "w ≤ floorlog b x" "w > 0"
proof -
have "b > 1" "0 < x"
using that by (auto simp: floorlog_def split: if_splits)
have "b ^ (w - 1) ≤ x" if "b ^ w ≤ x"
proof -
have "b ^ (w - 1) ≤ b ^ w"
using ‹b > 1›
by (auto intro!: power_increasing)
also note that
finally show ?thesis .
qed
moreover have "b ^ nat ⌊log (real b) (real x)⌋ ≤ x" (is "?l ≤ _")
proof -
have "0 ≤ log (real b) (real x)"
using ‹b > 1› ‹0 < x›
by auto
then have "?l ≤ b powr log (real b) (real x)"
using ‹b > 1›
by (auto simp flip: powr_realpow intro!: powr_mono of_nat_floor)
also have "… = x" using ‹b > 1› ‹0 < x›
by auto
finally show ?thesis
unfolding of_nat_le_iff .
qed
ultimately show ?thesis
using that
by (auto simp: floorlog_def le_nat_iff le_floor_iff le_log_iff powr_realpow
split: if_splits elim!: le_SucE)
qed
subsection ‹›
definition ceillog2 :: "nat ⇒ nat" where
"ceillog2 n = (if n = 0 then 0 else nat ⌈log 2 (real n)⌉)"
lemma ceillog2_0 [simp]: "ceillog2 0 = 0"
and ceillog2_Suc_0 [simp]: "ceillog2 (Suc 0) = 0"
and ceillog2_2 [simp]: "ceillog2 2 = 1"
by (auto simp: ceillog2_def)
lemma ceillog2_le1_eq_0 [simp]: "n ≤ 1 ⟹ ceillog2 n = 0"
by (cases n) auto
lemma ceillog2_2_power [simp]: "ceillog2 (2 ^ n) = n"
by (auto simp: ceillog2_def)
lemma ceillog2_ge_log:
assumes "n > 0"
shows "real (ceillog2 n) ≥ log 2 (real n)"
proof -
have "real_of_int ⌈log 2 (real n)⌉ ≥ log 2 (real n)"
by linarith
thus ?thesis
using assms unfolding ceillog2_def by auto
qed
lemma ceillog2_less_log:
assumes "n > 0"
shows "real (ceillog2 n) < log 2 (real n) + 1"
proof -
have "real_of_int ⌈log 2 (real n)⌉ < log 2 (real n) + 1"
by linarith
thus ?thesis
using assms unfolding ceillog2_def by auto
qed
lemma ceillog2_le_iff:
assumes "n > 0"
shows "ceillog2 n ≤ l ⟷ n ≤ 2 ^ l"
proof -
have "ceillog2 n ≤ l ⟷ real n ≤ 2 ^ l"
unfolding ceillog2_def using assms by (auto simp: log_le_iff powr_realpow)
also have "2 ^ l = real (2 ^ l)"
by simp
also have "real n ≤ real (2 ^ l) ⟷ n ≤ 2 ^ l"
by linarith
finally show ?thesis .
qed
lemma ceillog2_ge_iff:
assumes "n > 0"
shows "ceillog2 n ≥ l ⟷ 2 ^ l < 2 * n"
proof -
have "-1 < (0 :: real)"
by auto
also have "… ≤ log 2 (real n)"
using assms by auto
finally have "ceillog2 n ≥ l ⟷ real l - 1 < log 2 (real n)"
unfolding ceillog2_def using assms by (auto simp: le_nat_iff le_ceiling_iff)
also have "… ⟷ real l < log 2 (real (2 * n))"
using assms by (auto simp: log_mult)
also have "… ⟷ 2 ^ l < real (2 * n)"
using assms by (subst less_log_iff) (auto simp: powr_realpow)
also have "2 ^ l = real (2 ^ l)"
by simp
also have "real (2 ^ l) < real (2 * n) ⟷ 2 ^ l < 2 * n"
by linarith
finally show ?thesis .
qed
lemma le_two_power_ceillog2: "n ≤ 2 ^ ceillog2 n"
using neq0_conv ceillog2_le_iff by blast
lemma two_power_ceillog2_gt:
assumes "n > 0"
shows "2 * n > 2 ^ ceillog2 n"
using ceillog2_ge_iff[of n "ceillog2 n"] assms by simp
lemma ceillog2_eqI:
assumes "n ≤ 2 ^ l" "2 ^ l < 2 * n"
shows "ceillog2 n = l"
by (metis Suc_leI assms bot_nat_0.not_eq_extremum ceillog2_ge_iff ceillog2_le_iff le_antisym mult_is_0
not_less_eq_eq)
lemma ceillog2_rec_even:
assumes "k > 0"
shows "ceillog2 (2 * k) = Suc (ceillog2 k)"
by (rule ceillog2_eqI) (auto simp: le_two_power_ceillog2 two_power_ceillog2_gt assms)
lemma ceillog2_mono:
assumes "m ≤ n"
shows "ceillog2 m ≤ ceillog2 n"
proof (cases "m = 0")
case False
have "⌈log 2 (real m)⌉ ≤ ⌈log 2 (real n)⌉"
by (intro ceiling_mono) (use False assms in auto)
hence "nat ⌈log 2 (real m)⌉ ≤ nat ⌈log 2 (real n)⌉"
by linarith
thus ?thesis using False assms
unfolding ceillog2_def by simp
qed auto
lemma ceillog2_rec_odd:
assumes "k > 0"
shows "ceillog2 (Suc (2 * k)) = Suc (ceillog2 (Suc k))"
proof -
have "2 ^ ceillog2 (Suc (2 * k)) > Suc (2 * k)"
by (metis assms diff_Suc_1 dvd_triv_left le_two_power_ceillog2 mult_pos_pos nat_power_eq_Suc_0_iff
order_less_le pos2 semiring_parity_class.even_mask_iff)
then have "ceillog2 (2 * k + 2) ≤ ceillog2 (2 * k + 1)"
by (simp add: ceillog2_le_iff)
moreover have "ceillog2 (2 * k + 2) ≥ ceillog2 (2 * k + 1)"
by (rule ceillog2_mono) auto
ultimately have "ceillog2 (2 * k + 2) = ceillog2 (2 * k + 1)"
by (rule antisym)
also have "2 * k + 2 = 2 * Suc k"
by simp
also have "ceillog2 (2 * Suc k) = Suc (ceillog2 (Suc k))"
by (rule ceillog2_rec_even) auto
finally show ?thesis
by simp
qed
lemma ceillog2_rec:
"ceillog2 n = (if n ≤ 1 then 0 else 1 + ceillog2 ((n + 1) div 2))"
proof (cases "n ≤ 1")
case True
thus ?thesis
by (cases n) auto
next
case False
thus ?thesis
by (cases "even n") (auto elim!: evenE oddE simp: ceillog2_rec_even ceillog2_rec_odd)
qed
lemma funpow_div2_ceillog2_le_1:
"((λn. (n + 1) div 2) ^^ ceillog2 n) n ≤ 1"
proof (induction n rule: less_induct)
case (less n)
show ?case
proof (cases "n ≤ 1")
case True
thus ?thesis by (cases n) auto
next
case False
have "((λn. (n + 1) div 2) ^^ Suc (ceillog2 ((n + 1) div 2))) n ≤ 1"
using less.IH[of "(n+1) div 2"] False by (subst funpow_Suc_right) auto
also have "Suc (ceillog2 ((n + 1) div 2)) = ceillog2 n"
using False by (subst ceillog2_rec[of n]) auto
finally show ?thesis .
qed
qed
fun ceillog2_aux :: "nat ⇒ nat ⇒ nat" where
"ceillog2_aux acc n = (if n ≤ 1 then acc else ceillog2_aux (acc + 1) ((n + 1) div 2))"
lemmas [simp del] = ceillog2_aux.simps
lemma ceillog2_aux_correct: "ceillog2_aux acc n = ceillog2 n + acc"
proof (induction acc n rule: ceillog2_aux.induct)
case (1 acc n)
show ?case
proof (cases "n ≤ 1")
case False
thus ?thesis using ceillog2_rec[of n] "1.IH"
by (auto simp: ceillog2_aux.simps[of acc n])
qed (auto simp: ceillog2_aux.simps[of acc n])
qed
lemma ceillog2_code [code]: "ceillog2 n = ceillog2_aux 0 n"
by (simp add: ceillog2_aux_correct)
subsection ‹Bitlen›
definition bitlen :: "int ⇒ int"
where "bitlen a = floorlog 2 (nat a)"
lemma bitlen_alt_def:
"bitlen a = (if a > 0 then ⌊log 2 a⌋ + 1 else 0)"
by (simp add: bitlen_def floorlog_def)
lemma bitlen_zero [simp]:
"bitlen 0 = 0"
by (auto simp: bitlen_def floorlog_def)
lemma bitlen_nonneg:
"0 ≤ bitlen x"
by (simp add: bitlen_def)
lemma bitlen_bounds:
"2 ^ nat (bitlen x - 1) ≤ x ∧ x < 2 ^ nat (bitlen x)" if "x > 0"
proof -
from that have "bitlen x ≥ 1" by (auto simp: bitlen_alt_def)
with that floorlog_bounds[of "nat x" 2] show ?thesis
by (auto simp add: bitlen_def le_nat_iff nat_less_iff nat_diff_distrib)
qed
lemma bitlen_pow2 [simp]:
"bitlen (b * 2 ^ c) = bitlen b + c" if "b > 0"
using that by (simp add: bitlen_def nat_mult_distrib nat_power_eq)
lemma compute_bitlen [code]:
"bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)"
by (simp add: bitlen_def nat_div_distrib compute_floorlog)
lemma bitlen_eq_zero_iff:
"bitlen x = 0 ⟷ x ≤ 0"
by (auto simp add: bitlen_alt_def)
(metis compute_bitlen add.commute bitlen_alt_def bitlen_nonneg less_add_same_cancel2
not_less zero_less_one)
lemma bitlen_div:
"1 ≤ real_of_int m / 2^nat (bitlen m - 1)"
and "real_of_int m / 2^nat (bitlen m - 1) < 2" if "0 < m"
proof -
let ?B = "2^nat (bitlen m - 1)"
have "?B ≤ m" using bitlen_bounds[OF ‹0 <m›] ..
then have "1 * ?B ≤ real_of_int m"
unfolding of_int_le_iff[symmetric] by auto
then show "1 ≤ real_of_int m / ?B" by auto
from that have "0 ≤ bitlen m - 1" by (auto simp: bitlen_alt_def)
have "m < 2^nat(bitlen m)" using bitlen_bounds[OF that] ..
also from that have "… = 2^nat(bitlen m - 1 + 1)"
by (auto simp: bitlen_def)
also have "… = ?B * 2"
unfolding nat_add_distrib[OF ‹0 ≤ bitlen m - 1› zero_le_one] by auto
finally have "real_of_int m < 2 * ?B"
by (metis (full_types) mult.commute power.simps(2) of_int_less_numeral_power_cancel_iff)
then have "real_of_int m / ?B < 2 * ?B / ?B"
by (rule divide_strict_right_mono) auto
then show "real_of_int m / ?B < 2" by auto
qed
lemma bitlen_le_iff_floorlog:
"bitlen x ≤ w ⟷ w ≥ 0 ∧ floorlog 2 (nat x) ≤ nat w"
by (auto simp: bitlen_def)
lemma bitlen_le_iff_power:
"bitlen x ≤ w ⟷ w ≥ 0 ∧ x < 2 ^ nat w"
by (auto simp: bitlen_le_iff_floorlog floorlog_le_iff)
lemma less_power_nat_iff_bitlen:
"x < 2 ^ w ⟷ bitlen (int x) ≤ w"
using bitlen_le_iff_power[of x w]
by auto
lemma bitlen_ge_iff_power:
"w ≤ bitlen x ⟷ w ≤ 0 ∨ 2 ^ (nat w - 1) ≤ x"
unfolding bitlen_def
by (auto simp flip: nat_le_iff intro: floorlog_geI dest: floorlog_geD)
lemma bitlen_twopow_add_eq:
"bitlen (2 ^ w + b) = w + 1" if "0 ≤ b" "b < 2 ^ w"
by (auto simp: that nat_add_distrib bitlen_le_iff_power bitlen_ge_iff_power intro!: antisym)
end