Theory CZH_SMC_Small_Semifunctor
section‹Smallness for semifunctors›
theory CZH_SMC_Small_Semifunctor
imports
CZH_DG_Small_DGHM
CZH_SMC_Semifunctor
CZH_SMC_Small_Semicategory
begin
subsection‹Semifunctor with tiny maps›
subsubsection‹Definition and elementary properties›
locale is_tm_semifunctor = is_semifunctor α 𝔄 𝔅 𝔉 for α 𝔄 𝔅 𝔉 +
assumes tm_smcf_is_tm_dghm[slicing_intros]:
"smcf_dghm 𝔉 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg 𝔅"
syntax "_is_tm_semifunctor" :: "V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ ↦↦⇩S⇩M⇩C⇩.⇩t⇩mı _)› [51, 51, 51] 51)
syntax_consts "_is_tm_semifunctor" ⇌ is_tm_semifunctor
translations "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅" ⇌ "CONST is_tm_semifunctor α 𝔄 𝔅 𝔉"
abbreviation (input) is_cn_tm_semifunctor :: "V ⇒ V ⇒ V ⇒ V ⇒ bool"
where "is_cn_tm_semifunctor α 𝔄 𝔅 𝔉 ≡ 𝔉 : op_dg 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
syntax "_is_cn_tm_semifunctor" :: "V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ ⇩S⇩M⇩C⇩.⇩t⇩m↦↦ı _)› [51, 51, 51] 51)
syntax_consts "_is_cn_tm_semifunctor" ⇌ is_cn_tm_semifunctor
translations "𝔉 : 𝔄 ⇩S⇩M⇩C⇩.⇩t⇩m↦↦⇘α⇙ 𝔅" ⇀ "CONST is_cn_tm_semifunctor α 𝔄 𝔅 𝔉"
abbreviation all_tm_smcfs :: "V ⇒ V"
where "all_tm_smcfs α ≡ set {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
abbreviation small_tm_smcfs :: "V ⇒ V ⇒ V ⇒ V"
where "small_tm_smcfs α 𝔄 𝔅 ≡ set {𝔉. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
lemma (in is_tm_semifunctor) tm_smcf_is_tm_dghm':
assumes "α' = α"
and "𝔄' = smc_dg 𝔄"
and "𝔅' = smc_dg 𝔅"
shows "smcf_dghm 𝔉 : 𝔄' ↦↦⇩D⇩G⇩.⇩t⇩m⇘α'⇙ 𝔅'"
unfolding assms by (rule tm_smcf_is_tm_dghm)
lemmas [slicing_intros] = is_tm_semifunctor.tm_smcf_is_tm_dghm'
text‹Rules.›
lemma (in is_tm_semifunctor) is_tm_semifunctor_axioms'[smc_small_cs_intros]:
assumes "α' = α" and "𝔄' = 𝔄" and "𝔅' = 𝔅"
shows "𝔉 : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α'⇙ 𝔅'"
unfolding assms by (rule is_tm_semifunctor_axioms)
mk_ide rf is_tm_semifunctor_def[unfolded is_tm_semifunctor_axioms_def]
|intro is_tm_semifunctorI|
|dest is_tm_semifunctorD[dest]|
|elim is_tm_semifunctorE[elim]|
lemmas [smc_small_cs_intros] = is_tm_semifunctorD(1)
text‹Slicing.›
context is_tm_semifunctor
begin
interpretation dghm: is_tm_dghm α ‹smc_dg 𝔄› ‹smc_dg 𝔅› ‹smcf_dghm 𝔉›
by (rule tm_smcf_is_tm_dghm)
lemmas_with [unfolded slicing_simps]:
tm_smcf_ObjMap_in_Vset[smc_small_cs_intros] = dghm.tm_dghm_ObjMap_in_Vset
and tm_smcf_ArrMap_in_Vset[smc_small_cs_intros] = dghm.tm_dghm_ArrMap_in_Vset
end
text‹Elementary properties.›
sublocale is_tm_semifunctor ⊆ HomDom: tiny_semicategory α 𝔄
proof(rule tiny_semicategoryI')
show "𝔄⦇Obj⦈ ∈⇩∘ Vset α"
by (rule vdomain_in_VsetI[OF tm_smcf_ObjMap_in_Vset, unfolded smc_cs_simps])
show "𝔄⦇Arr⦈ ∈⇩∘ Vset α"
by (rule vdomain_in_VsetI[OF tm_smcf_ArrMap_in_Vset, unfolded smc_cs_simps])
qed (simp add: smc_cs_intros)
text‹Further rules.›
lemma is_tm_semifunctorI':
assumes [simp]: "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and [simp]: "𝔉⦇ObjMap⦈ ∈⇩∘ Vset α"
and [simp]: "𝔉⦇ArrMap⦈ ∈⇩∘ Vset α"
and [simp]: "semicategory α 𝔅"
shows "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
proof(intro is_tm_semifunctorI)
interpret is_semifunctor α 𝔄 𝔅 𝔉 by (rule assms(1))
show "smcf_dghm 𝔉 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg 𝔅"
by (intro is_tm_dghmI', unfold slicing_simps) (auto simp: slicing_intros)
qed simp_all
lemma is_tm_semifunctorD':
assumes "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "semicategory α 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉⦇ObjMap⦈ ∈⇩∘ Vset α"
and "𝔉⦇ArrMap⦈ ∈⇩∘ Vset α"
proof-
interpret is_tm_semifunctor α 𝔄 𝔅 𝔉 by (rule assms(1))
show "semicategory α 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉⦇ObjMap⦈ ∈⇩∘ Vset α"
and "𝔉⦇ArrMap⦈ ∈⇩∘ Vset α"
by (auto intro: smc_cs_intros smc_small_cs_intros)
qed
lemmas [smc_small_cs_intros] = is_tm_semifunctorD'(1)
lemma is_tm_semifunctorE':
assumes "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
obtains "semicategory α 𝔅"
and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "𝔉⦇ObjMap⦈ ∈⇩∘ Vset α"
and "𝔉⦇ArrMap⦈ ∈⇩∘ Vset α"
using is_tm_semifunctorD'[OF assms] by simp
text‹Size.›
lemma small_all_tm_smcfs[simp]: "small {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅}"
proof(rule down)
show
"{𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅} ⊆
elts (set {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅})"
proof
(
simp only: elts_of_set small_all_smcfs if_True,
rule subsetI,
unfold mem_Collect_eq
)
fix 𝔉 assume "∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
then obtain 𝔄 𝔅 where "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅" by clarsimp
then interpret is_tm_semifunctor α 𝔄 𝔅 𝔉 by simp
show "∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅" by (auto intro: is_semifunctor_axioms)
qed
qed
subsubsection‹Opposite semifunctor with tiny maps›
lemma (in is_tm_semifunctor) is_tm_semifunctor_op:
"op_smcf 𝔉 : op_smc 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ op_smc 𝔅"
by (intro is_tm_semifunctorI', unfold smc_op_simps)
(cs_concl cs_intro: smc_cs_intros smc_op_intros smc_small_cs_intros)
lemma (in is_tm_semifunctor) is_tm_semifunctor_op'[smc_op_intros]:
assumes "𝔄' = op_smc 𝔄" and "𝔅' = op_smc 𝔅" and "α' = α"
shows "op_smcf 𝔉 : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α'⇙ 𝔅'"
unfolding assms by (rule is_tm_semifunctor_op)
lemmas is_tm_semifunctor_op[smc_op_intros] = is_tm_semifunctor.is_tm_semifunctor_op'
subsubsection‹Composition of semifunctors with tiny maps›
lemma smcf_comp_is_tm_semifunctor[smc_small_cs_intros]:
assumes "𝔊 : 𝔅 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ" and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
shows "𝔊 ∘⇩S⇩M⇩C⇩F 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ ℭ"
proof(rule is_tm_semifunctorI)
interpret 𝔉: is_tm_semifunctor α 𝔄 𝔅 𝔉 by (rule assms(2))
interpret 𝔊: is_tm_semifunctor α 𝔅 ℭ 𝔊 by (rule assms(1))
show "smcf_dghm (𝔊 ∘⇩S⇩M⇩C⇩F 𝔉) : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg ℭ"
unfolding slicing_commute[symmetric]
using 𝔉.tm_smcf_is_tm_dghm 𝔊.tm_smcf_is_tm_dghm
by (auto simp: dg_small_cs_intros)
show "𝔊 ∘⇩S⇩M⇩C⇩F 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ ℭ" by (auto intro: smc_cs_intros)
qed
subsubsection‹Finite semicategories and semifunctors with tiny maps›
lemma (in is_semifunctor) smcf_is_tm_semifunctor_if_HomDom_finite_semicategory:
assumes "finite_semicategory α 𝔄"
shows "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔅"
proof(intro is_tm_semifunctorI)
interpret 𝔄: finite_semicategory α 𝔄 by (rule assms(1))
show "smcf_dghm 𝔉 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg 𝔅"
by
(
rule is_dghm.dghm_is_tm_dghm_if_HomDom_finite_digraph[
OF smcf_is_dghm 𝔄.fin_smc_finite_digraph
]
)
qed (auto intro: smc_cs_intros)
subsubsection‹Constant semifunctor with tiny maps›
lemma smcf_const_is_tm_semifunctor:
assumes "tiny_semicategory α ℭ"
and "semicategory α 𝔇"
and "f : a ↦⇘𝔇⇙ a"
and "f ∘⇩A⇘𝔇⇙ f = f"
shows "smcf_const ℭ 𝔇 a f : ℭ ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔇"
proof(intro is_tm_semifunctorI)
interpret ℭ: tiny_semicategory α ℭ by (rule assms(1))
interpret 𝔇: semicategory α 𝔇 by (rule assms(2))
show "smcf_dghm (smcf_const ℭ 𝔇 a f) : smc_dg ℭ ↦↦⇩D⇩G⇩.⇩t⇩m⇘α⇙ smc_dg 𝔇"
unfolding slicing_commute[symmetric]
by (rule dghm_const_is_tm_dghm)
(auto simp: slicing_simps ℭ.tiny_smc_tiny_digraph assms(3) 𝔇.smc_digraph)
from assms show "smcf_const ℭ 𝔇 a f : ℭ ↦↦⇩S⇩M⇩C⇘α⇙ 𝔇"
by (cs_concl cs_shallow cs_simp: smc_cs_simps cs_intro: smc_cs_intros)
qed
lemma smcf_const_is_tm_semifunctor':
assumes "tiny_semicategory α ℭ"
and "semicategory α 𝔇"
and "f : a ↦⇘𝔇⇙ a"
and "f ∘⇩A⇘𝔇⇙ f = f"
and "ℭ' = ℭ"
and "𝔇' = 𝔇"
shows "smcf_const ℭ 𝔇 a f : ℭ' ↦↦⇩S⇩M⇩C⇩.⇩t⇩m⇘α⇙ 𝔇'"
using assms(1-4) unfolding assms(5,6) by (rule smcf_const_is_tm_semifunctor)
lemmas [smc_small_cs_intros] = smcf_const_is_tm_semifunctor'
subsection‹Tiny semifunctor›
subsubsection‹Definition and elementary properties›
locale is_tiny_semifunctor = is_semifunctor α 𝔄 𝔅 𝔉 for α 𝔄 𝔅 𝔉 +
assumes tiny_smcf_is_tiny_dghm[slicing_intros]:
"smcf_dghm 𝔉 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩i⇩n⇩y⇘α⇙ smc_dg 𝔅"
syntax "_is_tiny_semifunctor" :: "V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩yı _)› [51, 51, 51] 51)
syntax_consts "_is_tiny_semifunctor" ⇌ is_tiny_semifunctor
translations "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅" ⇌ "CONST is_tiny_semifunctor α 𝔄 𝔅 𝔉"
abbreviation (input) is_cn_tiny_smcf :: "V ⇒ V ⇒ V ⇒ V ⇒ bool"
where "is_cn_tiny_smcf α 𝔄 𝔅 𝔉 ≡ 𝔉 : op_smc 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
syntax "_is_cn_tiny_smcf" :: "V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ ⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y↦↦ı _)› [51, 51, 51] 51)
syntax_consts "_is_cn_tiny_smcf" ⇌ is_cn_tiny_smcf
translations "𝔉 : 𝔄 ⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y↦↦⇘α⇙ 𝔅" ⇀ "CONST is_cn_tiny_smcf α 𝔄 𝔅 𝔉"
abbreviation all_tiny_smcfs :: "V ⇒ V"
where "all_tiny_smcfs α ≡ set {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
abbreviation tiny_smcfs :: "V ⇒ V ⇒ V ⇒ V"
where "tiny_smcfs α 𝔄 𝔅 ≡ set {𝔉. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
lemmas [slicing_intros] = is_tiny_semifunctor.tiny_smcf_is_tiny_dghm
text‹Rules.›
lemma (in is_tiny_semifunctor) is_tiny_semifunctor_axioms'[smc_small_cs_intros]:
assumes "α' = α" and "𝔄' = 𝔄" and "𝔅' = 𝔅"
shows "𝔉 : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α'⇙ 𝔅'"
unfolding assms by (rule is_tiny_semifunctor_axioms)
mk_ide rf is_tiny_semifunctor_def[unfolded is_tiny_semifunctor_axioms_def]
|intro is_tiny_semifunctorI|
|dest is_tiny_semifunctorD[dest]|
|elim is_tiny_semifunctorE[elim]|
lemmas [smc_small_cs_intros] = is_tiny_semifunctorD(1)
text‹Elementary properties.›
sublocale is_tiny_semifunctor ⊆ HomDom: tiny_semicategory α 𝔄
proof(intro tiny_semicategoryI')
interpret dghm: is_tiny_dghm α ‹smc_dg 𝔄› ‹smc_dg 𝔅› ‹smcf_dghm 𝔉›
by (rule tiny_smcf_is_tiny_dghm)
show "𝔄⦇Obj⦈ ∈⇩∘ Vset α"
by (rule dghm.HomDom.tiny_dg_Obj_in_Vset[unfolded slicing_simps])
show "𝔄⦇Arr⦈ ∈⇩∘ Vset α"
by (rule dghm.HomDom.tiny_dg_Arr_in_Vset[unfolded slicing_simps])
qed (auto simp: smc_cs_intros)
sublocale is_tiny_semifunctor ⊆ HomCod: tiny_semicategory α 𝔅
proof(intro tiny_semicategoryI')
interpret dghm: is_tiny_dghm α ‹smc_dg 𝔄› ‹smc_dg 𝔅› ‹smcf_dghm 𝔉›
by (rule tiny_smcf_is_tiny_dghm)
show "𝔅⦇Obj⦈ ∈⇩∘ Vset α"
by (rule dghm.HomCod.tiny_dg_Obj_in_Vset[unfolded slicing_simps])
show "𝔅⦇Arr⦈ ∈⇩∘ Vset α"
by (rule dghm.HomCod.tiny_dg_Arr_in_Vset[unfolded slicing_simps])
qed (auto simp: smc_cs_intros)
sublocale is_tiny_semifunctor ⊆ is_tm_semifunctor
proof(intro is_tm_semifunctorI')
interpret dghm: is_tiny_dghm α ‹smc_dg 𝔄› ‹smc_dg 𝔅› ‹smcf_dghm 𝔉›
by (rule tiny_smcf_is_tiny_dghm)
note Vset[unfolded slicing_simps] =
dghm.tiny_dghm_ObjMap_in_Vset
dghm.tiny_dghm_ArrMap_in_Vset
show "𝔉⦇ObjMap⦈ ∈⇩∘ Vset α" "𝔉⦇ArrMap⦈ ∈⇩∘ Vset α" by (intro Vset)+
qed (auto simp: smc_cs_intros)
text‹Further rules.›
lemma is_tiny_semifunctorI':
assumes "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "tiny_semicategory α 𝔄"
and "tiny_semicategory α 𝔅"
shows "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
using assms
by
(
auto simp:
smc_cs_simps
smc_cs_intros
is_semifunctor.smcf_is_dghm
is_tiny_dghm.intro
is_tiny_semifunctorI
tiny_semicategory.tiny_smc_tiny_digraph
)
lemma is_tiny_semifunctorD':
assumes "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
shows "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "tiny_semicategory α 𝔄"
and "tiny_semicategory α 𝔅"
proof-
interpret is_tiny_semifunctor α 𝔄 𝔅 𝔉 by (rule assms(1))
show "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "tiny_semicategory α 𝔄"
and "tiny_semicategory α 𝔅"
by (auto intro: smc_small_cs_intros)
qed
lemmas [smc_small_cs_intros] = is_tiny_semifunctorD'(2,3)
lemma is_tiny_semifunctorE':
assumes "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
obtains "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅"
and "tiny_semicategory α 𝔄"
and "tiny_semicategory α 𝔅"
using is_tiny_semifunctorD'[OF assms] by auto
lemma is_tiny_semifunctor_iff:
"𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅 ⟷
(𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅 ∧ tiny_semicategory α 𝔄 ∧ tiny_semicategory α 𝔅)"
by (auto intro: is_tiny_semifunctorI' dest: is_tiny_semifunctorD'(2,3))
text‹Size.›
lemma (in is_tiny_semifunctor) tiny_smcf_in_Vset: "𝔉 ∈⇩∘ Vset α"
proof-
note [smc_cs_intros] =
tm_smcf_ObjMap_in_Vset
tm_smcf_ArrMap_in_Vset
HomDom.tiny_smc_in_Vset
HomCod.tiny_smc_in_Vset
show ?thesis
by (subst smcf_def)
(
cs_concl cs_shallow
cs_simp: smc_cs_simps cs_intro: smc_cs_intros V_cs_intros
)
qed
lemma small_all_tiny_smcfs[simp]: "small {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅}"
proof(rule down)
show
"{𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅} ⊆
elts (set {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅})"
proof
(
simp only: elts_of_set small_all_smcfs if_True,
rule subsetI,
unfold mem_Collect_eq
)
fix 𝔉 assume "∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
then obtain 𝔄 𝔅 where "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅" by clarsimp
then interpret is_tiny_semifunctor α 𝔄 𝔅 𝔉 by simp
show "∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇘α⇙ 𝔅" using is_semifunctor_axioms by auto
qed
qed
lemma tiny_smcfs_vsubset_Vset[simp]:
"set {𝔉. ∃𝔄 𝔅. 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅} ⊆⇩∘ Vset α"
proof(rule vsubsetI)
fix 𝔉 assume "𝔉 ∈⇩∘ all_tiny_smcfs α"
then obtain 𝔄 𝔅 where 𝔉: "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅" by clarsimp
then show "𝔉 ∈⇩∘ Vset α" by (auto simp: is_tiny_semifunctor.tiny_smcf_in_Vset)
qed
lemma (in is_semifunctor) smcf_is_tiny_semifunctor_if_ge_Limit:
assumes "𝒵 β" and "α ∈⇩∘ β"
shows "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘β⇙ 𝔅"
proof(intro is_tiny_semifunctorI)
show "smcf_dghm 𝔉 : smc_dg 𝔄 ↦↦⇩D⇩G⇩.⇩t⇩i⇩n⇩y⇘β⇙ smc_dg 𝔅"
by
(
rule is_dghm.dghm_is_tiny_dghm_if_ge_Limit,
rule smcf_is_dghm;
intro assms
)
qed (simp add: smcf_is_semifunctor_if_ge_Limit assms)
subsubsection‹Opposite tiny semifunctor›
lemma (in is_tiny_semifunctor) is_tiny_semifunctor_op:
"op_smcf 𝔉 : op_smc 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ op_smc 𝔅"
by (intro is_tiny_semifunctorI')
(cs_concl cs_shallow cs_intro: smc_small_cs_intros smc_op_intros)+
lemma (in is_tiny_semifunctor) is_tiny_semifunctor_op'[smc_op_intros]:
assumes "𝔄' = op_smc 𝔄" and "𝔅' = op_smc 𝔅" and "α' = α"
shows "op_smcf 𝔉 : 𝔄' ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α'⇙ 𝔅'"
unfolding assms by (rule is_tiny_semifunctor_op)
lemmas is_tiny_semifunctor_op[smc_op_intros] =
is_tiny_semifunctor.is_tiny_semifunctor_op'
subsubsection‹Composition of tiny semifunctors›
lemma smcf_comp_is_tiny_semifunctor[smc_small_cs_intros]:
assumes "𝔊 : 𝔅 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ ℭ" and "𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔅"
shows "𝔊 ∘⇩S⇩M⇩C⇩F 𝔉 : 𝔄 ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ ℭ"
proof-
interpret 𝔉: is_tiny_semifunctor α 𝔄 𝔅 𝔉 by (rule assms(2))
interpret 𝔊: is_tiny_semifunctor α 𝔅 ℭ 𝔊 by (rule assms(1))
show ?thesis
by (rule is_tiny_semifunctorI')
(cs_concl cs_intro: smc_cs_intros smc_small_cs_intros)
qed
subsubsection‹Tiny constant semifunctor›
lemma smcf_const_is_tiny_semifunctor:
assumes "tiny_semicategory α ℭ"
and "tiny_semicategory α 𝔇"
and "f : a ↦⇘𝔇⇙ a"
and "f ∘⇩A⇘𝔇⇙ f = f"
shows "smcf_const ℭ 𝔇 a f : ℭ ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔇"
proof(intro is_tiny_semifunctorI')
from assms show "smcf_const ℭ 𝔇 a f : ℭ ↦↦⇩S⇩M⇩C⇘α⇙ 𝔇"
by (cs_concl cs_simp: smc_cs_simps cs_intro: smc_small_cs_intros)
qed (auto simp: assms(1,2))
lemma smcf_const_is_tiny_semifunctor'[smc_small_cs_intros]:
assumes "tiny_semicategory α ℭ"
and "tiny_semicategory α 𝔇"
and "f : a ↦⇘𝔇⇙ a"
and "f ∘⇩A⇘𝔇⇙ f = f"
and "ℭ' = ℭ"
and "𝔇' = 𝔇"
shows "smcf_const ℭ 𝔇 a f : ℭ' ↦↦⇩S⇩M⇩C⇩.⇩t⇩i⇩n⇩y⇘α⇙ 𝔇'"
using assms(1-4) unfolding assms(5,6) by (rule smcf_const_is_tiny_semifunctor)
text‹\newpage›
end