Theory Abs_Qr
theory Abs_Qr
imports Mod_Plus_Minus
Kyber_spec
begin
text ‹Auxiliary lemmas›
lemma finite_range_plus:
assumes "finite (range f)"
"finite (range g)"
shows "finite (range (λx. f x + g x))"
proof -
have subs: "range (λx. (f x, g x)) ⊆ range f × range g" by auto
have cart: "finite (range f × range g)" using assms by auto
have finite: "finite (range (λx. (f x, g x)))"
using rev_finite_subset[OF cart subs] .
have "range (λx. f x + g x) = (λ(a,b). a+b) ` range (λx. (f x, g x))"
using range_composition[of "(λ(a,b). a+b)" "(λx. (f x, g x))"]
by auto
then show ?thesis
using finite finite_image_set[where f = "(λ(a,b). a+b)"]
by auto
qed
lemma all_impl_Max:
assumes "∀x. f x ≥ (a::int)"
"finite (range f)"
shows "(MAX x. f x) ≥ a"
by (simp add: Max_ge_iff assms(1) assms(2))
lemma Max_mono':
assumes "∀x. f x ≤ g x"
"finite (range f)"
"finite (range g)"
shows "(MAX x. f x) ≤ (MAX x. g x)"
using assms
by (metis (no_types, lifting) Max_ge_iff Max_in UNIV_not_empty
image_is_empty rangeE rangeI)
lemma Max_mono_plus:
assumes "finite (range (f::_⇒_::ordered_ab_semigroup_add))"
"finite (range g)"
shows "(MAX x. f x + g x) ≤ (MAX x. f x) + (MAX x. g x)"
proof -
obtain xmax where xmax_def: "f xmax + g xmax = (MAX x. f x + g x)"
using finite_range_plus[OF assms] Max_in by fastforce
have "(MAX x. f x + g x) = f xmax + g xmax" using xmax_def by auto
also have "… ≤ (MAX x. f x) + g xmax"
using Max_ge[OF assms(1), of "f xmax"]
by (auto simp add: add_right_mono[of "f xmax"])
also have "… ≤ (MAX x. f x) + (MAX x. g x)"
using Max_ge[OF assms(2), of "g xmax"]
by (auto simp add: add_left_mono[of "g xmax"])
finally show ?thesis by auto
qed
text ‹Lemmas for porting to ‹qr›.›
lemma of_qr_mult:
"of_qr (a * b) = of_qr a * of_qr b mod qr_poly"
by (metis of_qr_to_qr to_qr_mult to_qr_of_qr)
lemma of_qr_scale:
"of_qr (to_module s * b) =
Polynomial.smult (of_int_mod_ring s) (of_qr b)"
unfolding to_module_def
by (auto simp add: of_qr_mult[of "to_qr [:of_int_mod_ring s:]" "b"]
of_qr_to_qr) (simp add: mod_mult_left_eq mod_smult_left of_qr.rep_eq)
lemma to_module_mult:
"poly.coeff (of_qr (to_module s * a)) x1 =
of_int_mod_ring (s) * poly.coeff (of_qr a) x1"
using of_qr_scale[of s a] by simp
text ‹Lemmas on ‹round› and ‹floor›.›
lemma odd_round_up:
assumes "odd x"
shows "round (real_of_int x / 2) = (x + 1) div 2"
proof -
from assms have ‹odd (x + 2)›
by simp
then have ‹⌊real_of_int (x + 2) / 2⌋ = (x + 2 - 1) div 2›
by (rule odd_half_floor)
from this [symmetric] show ?thesis
by (simp add: round_def ac_simps) linarith
qed
lemma floor_unique:
assumes "real_of_int a ≤ x" "x < a+1"
shows "floor x = a"
using assms(1) assms(2) by linarith
lemma same_floor:
assumes "real_of_int a ≤ x" "real_of_int a ≤ y"
"x < a+1" "y < a+1"
shows "floor x = floor y"
using assms floor_unique by presburger
lemma one_mod_four_round:
assumes "x mod 4 = 1"
shows "round (real_of_int x / 4) = (x-1) div 4"
proof -
have leq: "(x-1) div 4 ≤ real_of_int x / 4 + 1 / 2"
using assms by linarith
have gr: "real_of_int x / 4 + 1 / 2 < (x-1) div 4 + 1"
proof -
have "x+2 < 4 * ((x-1) div 4 + 1)"
proof -
have *: "(x-1) div 4 + 1 = (x+3) div 4" by auto
have "4 dvd x + 3" using assms by presburger
then have "4 * ((x+3) div 4) = x+3"
by (subst dvd_imp_mult_div_cancel_left, auto)
then show ?thesis unfolding * by auto
qed
then show ?thesis by auto
qed
show "round (real_of_int x / 4) = (x-1) div 4"
using floor_unique[OF leq gr] unfolding round_def by auto
qed
section ‹Re-centered "Norm" Function›
context module_spec
begin
text ‹We want to show that ‹abs_infty_q› is a function induced by the
Euclidean norm on the ‹mod_ring› using a re-centered representative via ‹mod+-›.
‹abs_infty_poly› is the induced norm by ‹abs_infty_q› on polynomials over the polynomial
ring over the ‹mod_ring›.
Unfortunately this is not a norm per se, as the homogeneity only holds in
inequality, not equality. Still, it fulfils its purpose, since we only
need the triangular inequality.›
definition abs_infty_q :: "('a mod_ring) ⇒ int" where
"abs_infty_q p = abs ((to_int_mod_ring p) mod+- q)"
definition abs_infty_poly :: "'a qr ⇒ int" where
"abs_infty_poly p = Max (range (abs_infty_q ∘ poly.coeff (of_qr p)))"
text ‹Helping lemmas and properties of ‹Max›, ‹range› and ‹finite›.›
lemma to_int_mod_ring_range:
"range (to_int_mod_ring :: 'a mod_ring ⇒ int) = {0 ..< q}"
using CARD_a by (simp add: range_to_int_mod_ring)
lemma finite_Max:
"finite (range (λxa. abs_infty_q (poly.coeff (of_qr x) xa)))"
proof -
have finite_range: "finite (range (λxa. (poly.coeff (of_qr x) xa)))"
using MOST_coeff_eq_0[of "of_qr x"] by auto
have "range (λxa. ¦to_int_mod_ring (poly.coeff (of_qr x) xa) mod+- q¦)
= (λz. ¦to_int_mod_ring z mod+- q¦) ` range (poly.coeff (of_qr x))"
using range_composition[of "(λz. abs (to_int_mod_ring z mod+- q))"
"poly.coeff (of_qr x)"] by auto
then show ?thesis
using finite_range finite_image_set[where
f = "(λz. abs (to_int_mod_ring z) mod+- q)"]
by (auto simp add: abs_infty_q_def)
qed
lemma finite_Max_scale:
"finite (range (λxa. abs_infty_q (of_int_mod_ring s *
poly.coeff (of_qr x) xa)))"
proof -
have "of_int_mod_ring s * poly.coeff (of_qr x) xa =
poly.coeff (of_qr (to_module s * x)) xa" for xa
by (metis coeff_smult of_qr_to_qr_smult to_qr_of_qr
to_qr_smult_to_module to_module_def)
then show ?thesis
using finite_Max by presburger
qed
lemma finite_Max_sum:
"finite (range (λxa. abs_infty_q
(poly.coeff (of_qr x) xa + poly.coeff (of_qr y) xa)))"
proof -
have finite_range: "finite (range (λxa. (poly.coeff (of_qr x) xa +
poly.coeff (of_qr y) xa)))"
using MOST_coeff_eq_0[of "of_qr x"] by auto
have "range (λxa. ¦to_int_mod_ring (poly.coeff (of_qr x) xa +
poly.coeff (of_qr y) xa) mod+- q¦) =
(λz. ¦to_int_mod_ring z mod+- q¦) `
range (λxa. poly.coeff (of_qr x) xa + poly.coeff (of_qr y) xa)"
using range_composition[of "(λz. abs (to_int_mod_ring z mod+- q))"
"(λxa. poly.coeff (of_qr x) xa + poly.coeff (of_qr y) xa)"]
by auto
then show ?thesis
using finite_range finite_image_set[where
f = "(λz. abs (to_int_mod_ring z) mod+- q)" ]
by (auto simp add: abs_infty_q_def)
qed
lemma finite_Max_sum':
"finite (range
(λxa. abs_infty_q (poly.coeff (of_qr x) xa) +
abs_infty_q (poly.coeff (of_qr y) xa)))"
proof -
have finite_range_x:
"finite (range (λxa. abs_infty_q (poly.coeff (of_qr x) xa)))"
using finite_Max[of x] by auto
have finite_range_y:
"finite (range (λxa. abs_infty_q (poly.coeff (of_qr y) xa)))"
using finite_Max[of y] by auto
show ?thesis
using finite_range_plus[OF finite_range_x finite_range_y] by auto
qed
lemma Max_scale:
"(MAX xa. ¦s¦ * abs_infty_q (poly.coeff (of_qr x) xa)) =
¦s¦ * (MAX xa. abs_infty_q (poly.coeff (of_qr x) xa))"
proof -
have "(MAX xa. ¦s¦ * abs_infty_q (poly.coeff (of_qr x) xa)) =
(Max (range (λxa. ¦s¦ * abs_infty_q (poly.coeff (of_qr x) xa))))"
by auto
moreover have "… = (Max ((λa. ¦s¦ * a) `
(range (λxa. abs_infty_q (poly.coeff (of_qr x) xa)))))"
by (metis range_composition)
moreover have "… = ¦s¦ * (Max (range
(λxa. abs_infty_q (poly.coeff (of_qr x) xa))))"
by (subst mono_Max_commute[symmetric])
(auto simp add: finite_Max Rings.mono_mult)
moreover have "… = ¦s¦ *
(MAX xa. abs_infty_q (poly.coeff (of_qr x) xa))"
by auto
ultimately show ?thesis by auto
qed
text ‹Show that ‹abs_infty_q› is definite, positive and fulfils the triangle inequality.›
lemma abs_infty_q_definite:
"abs_infty_q x = 0 ⟷ x = 0"
proof (auto simp add: abs_infty_q_def
mod_plus_minus_zero'[OF q_gt_zero q_odd])
assume "to_int_mod_ring x mod+- q = 0"
then have "to_int_mod_ring x mod q = 0"
using mod_plus_minus_zero[of "to_int_mod_ring x" q]
by auto
then have "to_int_mod_ring x = 0"
using to_int_mod_ring_range CARD_a
by (metis mod_rangeE range_eqI)
then show "x = 0" by force
qed
lemma abs_infty_q_pos:
"abs_infty_q x ≥ 0"
by (auto simp add: abs_infty_q_def)
lemma abs_infty_q_minus:
"abs_infty_q (- x) = abs_infty_q x"
proof (cases "x=0")
case True
then show ?thesis by auto
next
case False
have minus_x: "to_int_mod_ring (-x) = q - to_int_mod_ring x"
proof -
have "to_int_mod_ring (-x) = to_int_mod_ring (-x) mod q"
by (metis CARD_a Rep_mod_ring_mod to_int_mod_ring.rep_eq)
also have "… = (- to_int_mod_ring x) mod q"
by (metis (no_types, opaque_lifting) CARD_a diff_eq_eq
mod_add_right_eq plus_mod_ring.rep_eq to_int_mod_ring.rep_eq
uminus_add_conv_diff)
also have "… = q - to_int_mod_ring x"
proof -
have "- to_int_mod_ring x ∈ {-q<..<0}"
using CARD_a range_to_int_mod_ring False
by (smt (verit, best) Rep_mod_ring_mod greaterThanLessThan_iff
q_gt_zero to_int_mod_ring.rep_eq to_int_mod_ring_hom.eq_iff
to_int_mod_ring_hom.hom_zero zmod_trivial_iff)
then have "q-to_int_mod_ring x∈{0<..<q}" by auto
then show ?thesis
using minus_mod_self1 mod_rangeE
by (simp add: to_int_mod_ring.rep_eq zmod_zminus1_eq_if)
qed
finally show ?thesis by auto
qed
then have "¦to_int_mod_ring (- x) mod+- q¦ =
¦(q - (to_int_mod_ring x)) mod+- q¦"
by auto
also have "… = ¦ (- to_int_mod_ring x) mod+- q¦"
unfolding mod_plus_minus_def by (smt (z3) mod_add_self2)
also have "… = ¦ - (to_int_mod_ring x mod+- q)¦"
using neg_mod_plus_minus[OF q_odd q_gt_zero,
of "to_int_mod_ring x"] by simp
also have "… = ¦to_int_mod_ring x mod+- q¦" by auto
finally show ?thesis unfolding abs_infty_q_def by auto
qed
lemma to_int_mod_ring_mult:
"to_int_mod_ring (a*b) = to_int_mod_ring (a::'a mod_ring) *
to_int_mod_ring (b::'a mod_ring) mod q"
by (metis (no_types, lifting) CARD_a of_int_hom.hom_mult
of_int_mod_ring.rep_eq of_int_mod_ring_to_int_mod_ring
of_int_of_int_mod_ring to_int_mod_ring.rep_eq)
text ‹Scaling only with inequality not equality! This causes a problem in proof of the
Kyber scheme. Needed to add $q\equiv 1 \mod 4$ to change proof.›
lemma mod_plus_minus_leq_mod:
"¦x mod+- q¦ ≤ ¦x¦"
by (smt (verit, best) atLeastAtMost_iff mod_plus_minus_range_odd
mod_plus_minus_rangeE q_gt_zero q_odd)
lemma abs_infty_q_scale_pos:
assumes "s≥0"
shows "abs_infty_q ((of_int_mod_ring s :: 'a mod_ring) * x) ≤
¦s¦ * (abs_infty_q x)"
proof -
have "¦to_int_mod_ring (of_int_mod_ring s * x) mod+- q¦ =
¦(to_int_mod_ring (of_int_mod_ring s ::'a mod_ring) *
to_int_mod_ring x mod q) mod+- q¦"
using to_int_mod_ring_mult[of "of_int_mod_ring s" x] by simp
also have "… = ¦(s mod q * to_int_mod_ring x) mod+- q¦"
by (simp add: CARD_a mod_plus_minus_def of_int_mod_ring.rep_eq to_int_mod_ring.rep_eq)
also have "… ≤ ¦s mod q¦ * ¦to_int_mod_ring x mod+- q¦"
proof -
have "¦s mod q * to_int_mod_ring x mod+- q¦ =
¦(s mod q mod+- q) * (to_int_mod_ring x mod+- q) mod+- q¦"
using mod_plus_minus_mult by auto
also have "… ≤ ¦(s mod q mod+- q) * (to_int_mod_ring x mod+- q)¦"
using mod_plus_minus_leq_mod by blast
also have "… ≤ ¦s mod q mod+- q¦ * ¦(to_int_mod_ring x mod+- q)¦"
by (simp add: abs_mult)
also have "… ≤ ¦s mod q¦ * ¦(to_int_mod_ring x mod+- q)¦"
using mod_plus_minus_leq_mod[of "s mod q"]
by (simp add: mult_right_mono)
finally show ?thesis by auto
qed
also have "… ≤ ¦s¦ * ¦to_int_mod_ring x mod+- q¦" using assms
by (simp add: mult_mono' q_gt_zero zmod_le_nonneg_dividend)
finally show ?thesis unfolding abs_infty_q_def by auto
qed
lemma abs_infty_q_scale_neg:
assumes "s<0"
shows "abs_infty_q ((of_int_mod_ring s :: 'a mod_ring) * x) ≤
¦s¦ * (abs_infty_q x)"
using abs_infty_q_minus abs_infty_q_scale_pos
by (smt (verit, best) mult_minus_left of_int_minus of_int_of_int_mod_ring)
lemma abs_infty_q_scale:
"abs_infty_q ((of_int_mod_ring s :: 'a mod_ring) * x) ≤
¦s¦ * (abs_infty_q x)"
apply (cases "s≥0")
using abs_infty_q_scale_pos apply presburger
using abs_infty_q_scale_neg by force
text ‹Triangle inequality for ‹abs_infty_q›.›
lemma abs_infty_q_triangle_ineq:
"abs_infty_q (x+y) ≤ abs_infty_q x + abs_infty_q y"
proof -
have "to_int_mod_ring (x + y) mod+- q =
(to_int_mod_ring x + to_int_mod_ring y) mod q mod+-q"
by (simp add: to_int_mod_ring_def CARD_a plus_mod_ring.rep_eq)
also have "… = (to_int_mod_ring x + to_int_mod_ring y) mod+-q"
unfolding mod_plus_minus_def by auto
also have "… = (to_int_mod_ring x mod+- q +
to_int_mod_ring y mod+- q) mod+- q"
unfolding mod_plus_minus_def
by (smt (verit, ccfv_threshold) minus_mod_self2 mod_add_eq)
finally have rewrite:"to_int_mod_ring (x + y) mod+- q =
(to_int_mod_ring x mod+- q + to_int_mod_ring y mod+- q) mod+- q" .
then have "¦to_int_mod_ring (x + y) mod+- q¦
≤ ¦to_int_mod_ring x mod+- q¦ + ¦to_int_mod_ring y mod+- q¦"
proof (cases
"(to_int_mod_ring x mod+- q + to_int_mod_ring y mod+- q) ∈
{-⌊real_of_int q/2⌋..<⌊real_of_int q/2⌋}")
case True
then have True': "to_int_mod_ring x mod+- q + to_int_mod_ring y mod+- q
∈ {- ⌊real_of_int q / 2⌋..⌊real_of_int q / 2⌋}" by auto
then have "(to_int_mod_ring x mod+- q +
to_int_mod_ring y mod+- q) mod+- q
= to_int_mod_ring x mod+- q + to_int_mod_ring y mod+- q"
using mod_plus_minus_rangeE[OF True' q_odd q_gt_zero] by auto
then show ?thesis by (simp add: rewrite)
next
case False
then have "¦(to_int_mod_ring x mod+- q +
to_int_mod_ring y mod+- q)¦ ≥ ⌊real_of_int q /2⌋"
by auto
then have "¦(to_int_mod_ring x mod+- q +
to_int_mod_ring y mod+- q)¦ ≥ ¦(to_int_mod_ring x mod+- q +
to_int_mod_ring y mod+- q) mod+- q¦"
using mod_plus_minus_range_odd[OF q_gt_zero q_odd,
of "(to_int_mod_ring x mod+- q + to_int_mod_ring y mod+- q)"]
by auto
then show ?thesis by (simp add: rewrite)
qed
then show ?thesis
by (auto simp add: abs_infty_q_def mod_plus_minus_def)
qed
text ‹Show that ‹abs_infty_poly› is definite, positive and fulfils the triangle inequality.›
lemma abs_infty_poly_definite:
"abs_infty_poly x = 0 ⟷ x = 0"
proof (auto simp add: abs_infty_poly_def abs_infty_q_definite)
assume "(MAX xa. abs_infty_q (poly.coeff (of_qr x) xa)) = 0"
then have abs_le_zero: "abs_infty_q (poly.coeff (of_qr x) xa) ≤ 0"
for xa
using Max_ge[OF finite_Max[of x],
of "abs_infty_q (poly.coeff (of_qr x) xa)"]
by (auto simp add: Max_ge[OF finite_Max])
have "abs_infty_q (poly.coeff (of_qr x) xa) = 0" for xa
using abs_infty_q_pos[of "poly.coeff (of_qr x) xa"]
abs_le_zero[of xa] by auto
then have "poly.coeff (of_qr x) xa = 0" for xa
by (auto simp add: abs_infty_q_definite)
then show "x = 0"
using leading_coeff_0_iff of_qr_eq_0_iff by blast
qed
lemma abs_infty_poly_pos:
"abs_infty_poly x ≥ 0"
proof (auto simp add: abs_infty_poly_def)
have f_ge_zero: "∀xa. abs_infty_q (poly.coeff (of_qr x) xa) ≥ 0"
by (auto simp add: abs_infty_q_pos)
then show " 0 ≤ (MAX xa. abs_infty_q (poly.coeff (of_qr x) xa))"
using all_impl_Max[OF f_ge_zero finite_Max] by auto
qed
text ‹Again, homogeneity is only true for inequality not necessarily equality!
Need to add $q\equiv 1\mod 4$ such that proof of crypto scheme works out.›
lemma abs_infty_poly_scale:
"abs_infty_poly ((to_module s) * x) ≤ (abs s) * (abs_infty_poly x)"
proof -
have fin1: "finite (range (λxa. abs_infty_q (of_int_mod_ring s *
poly.coeff (of_qr x) xa)))"
using finite_Max_scale by auto
have fin2: "finite (range (λxa. ¦s¦ *
abs_infty_q (poly.coeff (of_qr x) xa)))"
by (metis finite_Max finite_imageI range_composition)
have "abs_infty_poly (to_module s * x) =
(MAX xa. abs_infty_q
((of_int_mod_ring s) * poly.coeff (of_qr x) xa))"
using abs_infty_poly_def to_module_mult
by (metis (mono_tags, lifting) comp_apply image_cong)
also have "… ≤ (MAX xa. ¦s¦ * abs_infty_q (poly.coeff (of_qr x) xa))"
using abs_infty_q_scale fin1 fin2 by (subst Max_mono', auto)
also have "… = ¦s¦ * abs_infty_poly x"
unfolding abs_infty_poly_def comp_def using Max_scale by auto
finally show ?thesis by blast
qed
text ‹Triangle inequality for ‹abs_infty_poly›.›
lemma abs_infty_poly_triangle_ineq:
"abs_infty_poly (x+y) ≤ abs_infty_poly x + abs_infty_poly y"
proof -
have "abs_infty_q (poly.coeff (of_qr x) xa +
poly.coeff (of_qr y) xa) ≤
abs_infty_q (poly.coeff (of_qr x) xa) +
abs_infty_q (poly.coeff (of_qr y) xa)"
for xa
using abs_infty_q_triangle_ineq[of
"poly.coeff (of_qr x) xa" "poly.coeff (of_qr y) xa"]
by auto
then have abs_q_triang: "∀xa.
abs_infty_q (poly.coeff (of_qr x) xa + poly.coeff (of_qr y) xa) ≤
abs_infty_q (poly.coeff (of_qr x) xa) +
abs_infty_q (poly.coeff (of_qr y) xa)"
by auto
have "(MAX xa. abs_infty_q (poly.coeff (of_qr x) xa +
poly.coeff (of_qr y) xa))
≤ (MAX xa. abs_infty_q (poly.coeff (of_qr x) xa) +
abs_infty_q (poly.coeff (of_qr y) xa))"
using Max_mono'[OF abs_q_triang finite_Max_sum finite_Max_sum']
by auto
also have "… ≤ (MAX xa. abs_infty_q (poly.coeff (of_qr x) xa)) +
(MAX xb. abs_infty_q (poly.coeff (of_qr y) xb))"
using Max_mono_plus[OF finite_Max[of x] finite_Max[of y]]
by auto
finally have "(MAX xa. abs_infty_q (poly.coeff (of_qr x) xa +
poly.coeff (of_qr y) xa))
≤ (MAX xa. abs_infty_q (poly.coeff (of_qr x) xa)) +
(MAX xb. abs_infty_q (poly.coeff (of_qr y) xb))"
by auto
then show ?thesis
by (auto simp add: abs_infty_poly_def)
qed
end
text ‹Estimation inequality using message bit.›
lemma(in kyber_spec) abs_infty_poly_ineq_pm_1:
assumes "∃x. poly.coeff (of_qr a) x ∈ {of_int_mod_ring (-1),1}"
shows "abs_infty_poly (to_module (round((real_of_int q)/2)) * a) ≥
2 * round (real_of_int q / 4)"
proof -
let ?x = "to_module (round((real_of_int q)/2)) * a"
obtain x1 where x1_def:
"poly.coeff (of_qr a) x1 ∈ {of_int_mod_ring(-1),1}"
using assms by auto
have "abs_infty_poly (to_module (round((real_of_int q)/2)) * a)
≥ abs_infty_q (poly.coeff (of_qr (to_module
(round (real_of_int q / 2)) * a)) x1)"
unfolding abs_infty_poly_def using x1_def
by (simp add: finite_Max)
also have "abs_infty_q (poly.coeff (of_qr (to_module
(round (real_of_int q / 2)) * a)) x1)
= abs_infty_q (of_int_mod_ring (round (real_of_int q / 2))
* (poly.coeff (of_qr a) x1))"
using to_module_mult[of "round (real_of_int q / 2)" a]
by simp
also have "… = abs_infty_q (of_int_mod_ring
(round (real_of_int q / 2)))"
proof -
consider "poly.coeff (of_qr a) x1=1" |
"poly.coeff (of_qr a) x1 = of_int_mod_ring (-1)"
using x1_def by auto
then show ?thesis
proof (cases)
case 2
then show ?thesis
by (metis abs_infty_q_minus mult.right_neutral mult_minus_right
of_int_hom.hom_one of_int_minus of_int_of_int_mod_ring)
qed (auto)
qed
also have "… = ¦round (real_of_int q / 2) mod+- q¦"
unfolding abs_infty_q_def
using to_int_mod_ring_of_int_mod_ring
by (simp add: CARD_a mod_add_left_eq mod_plus_minus_def
of_int_mod_ring.rep_eq to_int_mod_ring.rep_eq)
also have "… = ¦((q + 1) div 2) mod+- q¦"
using odd_round_up[OF q_odd] by auto
also have "… = ¦((2 * q) div 2) mod q - (q - 1) div 2¦"
proof -
have "(q + 1) div 2 mod q = (q + 1) div 2" using q_gt_two by auto
moreover have "(q + 1) div 2 - q = - ((q - 1) div 2)" by (simp add: q_odd)
ultimately show ?thesis
unfolding mod_plus_minus_def odd_half_floor[OF q_odd]
by (split if_splits) simp
qed
also have "… = ¦(q-1) div 2¦" using q_odd
by (subst nonzero_mult_div_cancel_left[of 2 q], simp)
(simp add: abs_div abs_minus_commute)
also have "… = 2 * ((q-1) div 4)"
proof -
from q_gt_two have "(q-1) div 2 > 0" by simp
then have "¦(q-1) div 2¦ = (q-1) div 2" by auto
also have "… = 2 * ((q-1) div 4)"
by (subst div_mult_swap) (use q_mod_4 in
‹metis dvd_minus_mod›, force)
finally show ?thesis by blast
qed
also have "… = 2 * round (real_of_int q / 4)"
unfolding odd_round_up[OF q_odd] one_mod_four_round[OF q_mod_4]
by (simp add: round_def)
finally show ?thesis unfolding abs_infty_poly_def by simp
qed
end