Theory Preliminaries

section ‹Preliminaries›


theory Preliminaries imports "HOL-Cardinals.Cardinals"
begin

text ‹This section discusses preliminaries on families of items (technically,
partial functions from a type of {\em indexes})
that we call {\em inputs} because they will be inputs to the binding operations.
For inputs, we define some monad-like lifting operators.
We also define simple infinitely branching trees (with no info attached
to the nodes and with branching given by partial functions from
indexes) -- these will be used as ``skeletons'' for terms, giving a size 
on which we can induct.
›

abbreviation regular where "regular  stable"
lemmas regular_UNION = stable_UNION


subsection ‹Trivia›


type_synonym 'a pair = "'a * 'a"

type_synonym 'a triple = "'a * 'a *'a"

type_synonym 'a rel = "'a pair set"


(* Selectors for triples *)

definition fst3 where "fst3 == fst"
definition snd3 where "snd3 == fst o snd"
definition trd3 where "trd3 == snd o snd"


lemma fst3_simp[simp]: "fst3 (a,b,c) = a"
unfolding fst3_def by simp


lemma snd3_simp[simp]: "snd3 (a,b,c) = b"
unfolding snd3_def by simp


lemma trd3_simp[simp]: "trd3 (a,b,c) = c"
unfolding trd3_def by simp


lemma fst3_snd3_trd3: "abc = (fst3 abc, snd3 abc, trd3 abc)"
unfolding fst3_def snd3_def trd3_def by auto


lemma fst3_snd3_trd3_rev[simp]:
"(fst3 abc, snd3 abc, trd3 abc) = abc"
using fst3_snd3_trd3[of abc] by simp


lemma map_id[simp]: "map id l = l"
unfolding id_def by simp


abbreviation max3 where
"max3 x y z == max (max x y) z"

lemmas map_id_cong = map_idI 
 
lemma ext2:
"(f  g) = ( x. f x  g x)"
using ext by auto

lemma not_equals_and_not_equals_not_in:
"(y  x  y  x'  phi) =
 (y  {x,x'}  phi)"
by simp


lemma mp2:
assumes "!! x y. phi x y  chi x y" and "phi x y"
shows "chi x y"
using assms by simp


lemma mp3:
assumes "!! x y z. phi x y z  chi x y z" and "phi x y z"
shows "chi x y z"
using assms by simp

lemma all_lt_Suc:
"( i < Suc n. phi i) = (( i < n. phi i)  phi n)"
using less_Suc_eq by auto

declare hd_map[simp]
lemmas tl_map[simp] = list.map_sel 
declare last_map[simp] 

lemma tl_last[simp]:
assumes "tl L  []"
shows "last (tl L) = last L"
using assms apply - by(induct L, auto)

lemma tl_last_hd:
assumes "L  []" and "tl L = []"
shows "last L = hd L"
using assms apply - by(induct L, auto)



subsection ‹Lexicographic induction›

definition lt2 where
"lt2 == less_than <*lex*> less_than"

definition lt3 where
"lt3 == less_than <*lex*> lt2"

lemma wf_lt2:
"wf lt2"
unfolding lt2_def by auto

lemma wf_lt3:
"wf lt3"
unfolding lt3_def by (auto simp add: wf_lt2)

lemma lt2[intro]:
"!! k1 k2 j1 j2. k1 < j1  ((k1,k2),(j1,j2))  lt2"
"!! k1 k2 j1 j2. k1  j1; k2 < j2  ((k1,k2),(j1,j2))  lt2"
unfolding lt2_def by auto

lemma lt3[intro]:
"!! k1 k2 k3 j1 j2 j3. k1 < j1  ((k1,k2,k3),(j1,j2,j3))  lt3"
"!! k1 k2 k3 j1 j2 j3. k1  j1; k2 < j2  ((k1,k2,k3),(j1,j2,j3))  lt3"
"!! k1 k2 k3 j1 j2 j3. k1  j1; k2  j2; k3 < j3  ((k1,k2,k3),(j1,j2,j3))  lt3"
unfolding lt3_def by auto

lemma measure_lex2_induct:
fixes h1 :: "'a1  nat" and h2 :: "'a2  nat"
assumes
"!! x1 x2.
  (!! y1 y2. h1 y1 < h1 x1  phi y1 y2);
   (!! y1 y2. h1 y1  h1 x1; h2 y2 < h2 x2  phi y1 y2)
   phi x1 x2"
shows "phi x1 x2"
proof-
  let ?chi = "%(n1,n2). ALL x1 x2. h1 x1 = n1  h2 x2 = n2  phi x1 x2"
  {fix n1 n2
   have "?chi (n1,n2)"
   apply(rule wf_induct[of lt2 ?chi]) using wf_lt2 assms by blast+
  }
  thus ?thesis by blast
qed

lemma measure_lex3_induct:
fixes h1 :: "'a1  nat" and h2 :: "'a2  nat" and h3 :: "'a3  nat"
assumes
"!! x1 x2 x3.
  (!! y1 y2 y3. h1 y1 < h1 x1  phi y1 y2 y3);
   (!! y1 y2 y3. h1 y1  h1 x1; h2 y2 < h2 x2  phi y1 y2 y3);
   (!! y1 y2 y3. h1 y1  h1 x1; h2 y2  h2 x2; h3 y3 < h3 x3  phi y1 y2 y3)
   phi x1 x2 x3"
shows "phi x1 x2 x3"
proof-
  let ?chi = "%(n1,n2,n3). ALL x1 x2 x3. h1 x1 = n1  h2 x2 = n2  h3 x3 = n3  phi x1 x2 x3"
  {fix n1 n2 n3
   have "?chi (n1,n2,n3)"
   apply(rule wf_induct[of lt3 ?chi]) using wf_lt3 assms by blast+
  }
  thus ?thesis by blast
qed


subsection ‹Inputs and lifting operators›

type_synonym ('index,'val)input = "'index  'val option"

definition
lift :: "('val1  'val2)  ('index,'val1)input  ('index,'val2)input"
where
"lift h inp == λi. case inp i of None  None
                                |Some v  Some (h v)"

definition
liftAll :: "('val  bool)  ('index,'val)input  bool"
where
"liftAll phi inp ==  i v. inp i = Some v  phi v"

definition
lift2 ::
"('val1'  'val1  'val2)  ('index,'val1')input  ('index,'val1)input  ('index,'val2)input"
where
"lift2 h inp' inp ==
 λi. case (inp' i, inp i) of
   (Some v',Some v)  Some (h v' v)
  |_  None"

definition
sameDom ::  "('index,'val1)input  ('index,'val2)input  bool"
where "sameDom inp1 inp2 ==  i. (inp1 i = None) = (inp2 i = None)"


definition
liftAll2 :: "('val1  'val2  bool)  ('index,'val1)input  ('index,'val2)input  bool"
where
"liftAll2 phi inp1 inp2 == ( i v1 v2. inp1 i = Some v1  inp2 i = Some v2  phi v1 v2)"

lemma lift_None: "(lift h inp i = None) = (inp i = None)"
unfolding lift_def by (cases "inp i", auto)

lemma lift_Some:
"( v. lift h inp i = Some v) = ( v'. inp i = Some v')"
using lift_None[of h inp i] by force

lemma lift_cong[fundef_cong]:
assumes " i v. inp i = Some v   h v = h' v"
shows "lift h inp = lift h' inp"
unfolding lift_def apply(rule ext)+
using assms by (case_tac "inp i", auto)

lemma lift_preserves_inj:
assumes "inj f"
shows "inj (lift f)"
unfolding inj_on_def apply auto proof(rule ext)
  fix inp inp' i assume *: "lift f inp = lift f inp'"
  show "inp i = inp' i"
  proof(cases "inp i")
    assume inp: "inp i = None"
    hence "lift f inp i = None" unfolding lift_def by simp
    hence "lift f inp' i = None" using * by simp
    hence "inp' i = None" by(auto simp add: lift_None)
    thus ?thesis using inp by simp
  next
    fix v assume inp: "inp i = Some v"
    hence "lift f inp i = Some (f v)" unfolding lift_def by simp
    hence "lift f inp' i = Some (f v)" using * by simp
    then obtain v' where inp': "inp' i = Some v'" and "f v' = f v"
    unfolding lift_def by(case_tac "inp' i", auto)
    hence "v = v'" using assms unfolding inj_on_def by simp
    thus ?thesis using inp inp' by simp
  qed
qed

lemma liftAll_cong[fundef_cong]:
assumes " i v. inp i = Some v  phi v = phi' v"
shows "liftAll phi inp = liftAll phi' inp"
unfolding liftAll_def apply((rule iff_allI)+) using assms by simp

lemma liftAll2_cong[fundef_cong]:
assumes " i v1 v2. inp1 i = Some v1; inp2 i = Some v2  phi v1 v2 = phi' v1 v2"
shows "liftAll2 phi inp1 inp2 = liftAll2 phi' inp1 inp2"
unfolding liftAll2_def apply((rule iff_allI)+) using assms by blast

lemma lift_ident: "lift (λv. v) inp = inp"
by(unfold lift_def, rule ext, case_tac "inp i", auto)

lemma lift_id[simp]:
"lift id inp = inp"
unfolding lift_def apply (rule ext) by(case_tac "inp i", auto)

lemma lift_comp: "lift g (lift f inp) = lift (g o f) inp"
by(unfold lift_def o_def, rule ext, case_tac "inp i", auto)

lemma liftAll_mono:
assumes " v. phi v  chi v" and "liftAll phi inp"
shows "liftAll chi inp"
using assms unfolding liftAll_def by blast

lemma liftAll_True: "liftAll (λv. True) inp"
unfolding liftAll_def by auto

lemma liftAll_lift_comp:  "liftAll phi (lift f inp) = liftAll (phi o f) inp"
unfolding liftAll_def o_def  
by (metis (mono_tags, lifting) lift_Some lift_def option.inject option.simps(5))

lemma liftAll_lift_ext:
"liftAll (λ x. f x = g x) inp = (lift f inp = lift g inp)"
unfolding lift_def liftAll_def 
by (auto simp: fun_eq_iff option.case_eq_if)  

lemma liftAll_and:
"liftAll (λ x. phi x  chi x) inp = (liftAll phi inp  liftAll chi inp)"
unfolding liftAll_def by blast

lemma liftAll_mp:
assumes "liftAll (λ v. phi v  chi v) inp" and "liftAll phi inp"
shows "liftAll chi inp"
using assms unfolding liftAll_def by auto

lemma sameDom_refl: "sameDom inp inp"
unfolding sameDom_def by auto

lemma sameDom_sym:
"sameDom inp inp' = sameDom inp' inp"
unfolding sameDom_def by auto

lemma sameDom_trans:
"sameDom inp inp'; sameDom inp' inp''  sameDom inp inp''"
unfolding sameDom_def by auto

lemma sameDom_lift1:
"sameDom inp (lift f inp)"
unfolding sameDom_def lift_def 
by (auto simp: option.case_eq_if) 

lemma sameDom_lift2:
"sameDom (lift f inp) inp"
unfolding sameDom_def lift_def
by (auto simp: option.case_eq_if)  

lemma sameDom_lift_simp1[simp]:
"sameDom inp (lift f inp') = sameDom inp inp'"
unfolding sameDom_def lift_def by (force simp: fun_eq_iff option.case_eq_if) 

lemma sameDom_lift_simp2[simp]:
"sameDom (lift f inp) inp' = sameDom inp inp'"
unfolding sameDom_def lift_def by (force simp: fun_eq_iff option.case_eq_if)

lemma lift_preserves_sameDom:
assumes "sameDom inp inp'"
shows "sameDom (lift f inp) (lift g inp')"
using assms unfolding sameDom_def lift_def 
by (force simp: fun_eq_iff option.case_eq_if)
 
definition comp2 ::
"('b1  'b2  'c)  ('a1  'b1)  ('a2  'b2)  ('a1  'a2  'c)"
(‹_ o2 '(_,_') 55)
where "h o2 (f,g) == λ x y. h (f x) (g y)"

lemma comp2_simp[simp]:
"(h o2 (f,g)) x y = h (f x) (g y)"
unfolding comp2_def by simp

lemma comp2_comp:
"((h o2 (f,g)) o2 (f',g')) = (h o2 (f o f', g o g'))"
unfolding comp_def[abs_def] comp2_def[abs_def] by auto

lemma liftAll_imp_liftAll2:
assumes "liftAll (λv.  v'. phi v v') inp"
shows "liftAll2 phi inp inp'"
using assms unfolding liftAll_def liftAll2_def by auto

lemma liftAll2_mono:
assumes " v v'. phi v v'  chi v v'" and "liftAll2 phi inp inp'"
shows "liftAll2 chi inp inp'"
using assms unfolding liftAll2_def by blast

lemma liftAll2_True: "liftAll2 (λ v v'. True) inp inp'"
unfolding liftAll2_def by auto

lemma liftAll2_lift_comp2:
"liftAll2 phi (lift f1 inp1) (lift f2 inp2) =
 liftAll2 (phi o2 (f1,f2)) inp1 inp2"
unfolding liftAll2_def lift_def 
by (auto simp: fun_eq_iff option.case_eq_if)
 
lemma lift_imp_sameDom:
"lift f inp = lift f inp'  sameDom inp inp'"
unfolding lift_def sameDom_def
by (force simp: fun_eq_iff option.case_eq_if split: if_splits)
 
lemma lift_lift2:
"lift f (lift2 g inp' inp) =
 lift2 (λ v' v. f (g v' v)) inp' inp"
unfolding lift_def lift2_def 
by (force simp: option.case_eq_if split: if_splits) 

lemma lift2_left[simp]:
assumes "sameDom inp' inp"
shows "lift2 (λ v' v. v') inp' inp = inp'"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if) metis
 
lemma lift2_right[simp]:
assumes "sameDom inp' inp"
shows "lift2 (λ v' v. v) inp' inp = inp"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if)  

lemma lift2_preserves_sameDom:
assumes "sameDom inp' inp1'" and "sameDom inp inp1"
shows "sameDom (lift2 f inp' inp) (lift2 g inp1' inp1)"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if)  

lemma sameDom_lift2_1:
assumes "sameDom inp' inp"
shows
"sameDom inp' (lift2 f inp' inp) 
 sameDom inp (lift2 f inp' inp)"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if)  

lemma sameDom_lift2_2:
assumes "sameDom inp' inp"
shows
"sameDom (lift2 f inp' inp) inp' 
 sameDom (lift2 f inp' inp) inp"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if)  

lemma sameDom_lift2_simp1[simp]:
assumes "sameDom inp1' inp1"
shows "sameDom inp (lift2 f inp1' inp1) = sameDom inp inp1'"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if) (metis not_Some_eq)

lemma sameDom_lift2_simp2[simp]:
assumes "sameDom inp' inp"
shows "sameDom (lift2 f inp' inp) inp1 = sameDom inp' inp1"
using assms unfolding sameDom_def lift2_def 
by (simp add: fun_eq_iff option.case_eq_if) (metis not_Some_eq)

lemma liftAll2_lift_ext:
"(sameDom inp inp'  liftAll2 (λ v v'. f v = f v') inp inp') =
 (lift f inp = lift f inp')"
unfolding sameDom_def lift_def liftAll2_def 
by (force simp add: fun_eq_iff option.case_eq_if) 

lemma liftAll2_and:
"liftAll2 (λ v v'. phi v v'  chi v v') inp inp' =
(liftAll2 phi inp inp'  liftAll2 chi inp inp')"
unfolding liftAll2_def by force

lemma liftAll2_mp:
assumes "liftAll2 (λ v v'. phi v v'  chi v v') inp inp'" and "liftAll2 phi inp inp'"
shows "liftAll2 chi inp inp'"
using assms unfolding liftAll2_def by auto

lemma sameDom_and_liftAll2_iff:
"(sameDom inp inp'  liftAll2 phi inp inp') =
 ( i. (inp i = None  inp' i = None) 
         ( v v'. inp i = Some v  inp' i = Some v'  phi v v'))"
unfolding sameDom_def liftAll2_def 
apply (auto simp add: fun_eq_iff option.case_eq_if) 
using option.sel by fastforce

subsection ‹Doubly infinitely-branching trees›

text "These simple infinitary trees shall be used for measuring the sizes
  of possibly infinitary terms."

datatype ('index,'bindex)tree =
  Branch "('index,('index,'bindex)tree) input" "('bindex,('index,'bindex)tree) input"


(* The natural induction principle for (infinitary) trees:  *)
lemma tree_induct:
fixes phi::"('index,'bindex)tree  bool" and T::"('index,'bindex)tree"
assumes
  " inp binp. liftAll phi inp; liftAll phi binp  phi (Branch inp binp)"
shows "phi T"
using assms unfolding liftAll_def  
by (induct T) (simp, metis rangeI) 

definition treeLess :: "('index,'bindex)tree rel"
where
"treeLess ==
 {(T,T').  inp binp i j. T' = Branch inp binp  (inp i = Some T  binp j = Some T)}"

lemma treeLess_induct:
fixes phi::"('index,'bindex)tree  bool" and
      T::"('index,'bindex)tree"
assumes " T'. ( T. (T,T')  treeLess  phi T)  phi T'"
shows "phi T"
apply(induct rule: tree_induct)
using assms unfolding treeLess_def liftAll_def  
by simp (metis tree.inject) 

lemma treeLess_wf: "wf treeLess"
unfolding wf_def using treeLess_induct by blast


subsection ‹Ordering›

lemma Least_Max:
assumes phi: "phi (n::nat)" and fin: "finite {n. phi n}"
shows "(LEAST m.  n. phi n  n  m) =
       Max {n. phi n}" 
using assms Max_in by (intro Least_equality) auto


end