Theory AutoCorres2.AutoCorres
theory AutoCorres
imports
LocalVarExtract
AutoCorresSimpset
Polish
Runs_To_VCG_StackPointer
keywords
"autocorres"
"init-autocorres"
"final-autocorres":: thy_decl
begin
no_syntax "_Lab":: "'a bexp ⇒ ('a,'p,'f) com ⇒ bdy"
(‹_∙/_› [1000,71] 81)
declare word_neq_0_conv [simp del]
declare neq0_conv [simp del]
declare fun_upd_apply[simp del]
declare fun_upd_same [simp add]
lemma o_const_simp[simp]: "(λx. C) ∘ f = (λx. C)"
by (simp add: o_def)
lemma corresTA_trivial: "corresTA (λ_. True) (λx. x) (λx. x) A A"
apply (auto intro: corresXF_I simp add: corresTA_def)
done
lemma L2Tcorres_trivial_from_in_out_parameters:
"IOcorres P Q st rx ex A C ⟹ L2Tcorres id A A"
by (rule L2Tcorres_id)
lemma :
"L2corres st rx ex P A C ⟹ L2Tcorres id A A"
by (rule L2Tcorres_id)
lemma corresTA_trivial_from_heap_lift:
"L2Tcorres st A C ⟹ corresTA (λ_. True) (λx. x) (λx. x) A A"
by (rule corresTA_trivial)
lemma corresXF_from_L2_call:
"L2_call c_WA emb ns = A ⟹ corresXF (λs. s) (λrv s. rv) (λr t. emb r) (λ_. True) A c_WA"
unfolding L2_call_def corresXF_refines_conv
apply (auto simp add: refines_def_old reaches_map_value map_exn_def split: xval_splits)[1]
by (smt (z3) Exn_neq_Result Result_eq_Result the_Exn_Exn(1))
definition "ac_corres' exn st check_termination AF Γ rx ex G ≡
λA B. ∀s. (G s ∧ succeeds A (st s)) ⟶
(∀t. Γ ⊢ ⟨B, Normal s⟩ ⇒ t ⟶
(case t of
Normal s' ⇒ (Result (rx s'), st s') ∈ outcomes (run A (st s))
| Abrupt s' ⇒ (exn (ex s'), st s') ∈ outcomes (run A (st s))
| Fault e ⇒ e ∈ AF
| _ ⇒ False))
∧ (check_termination ⟶ Γ ⊢ B ↓ Normal s)"
lemma ac_corres'_nd_monad:
assumes ac: "ac_corres st check_termination AF Γ rx ex G B C"
assumes refines: "⋀s. refines B A s s (rel_prod rel_liftE (=))"
shows "ac_corres' (λ_. Exception (default::unit)) st check_termination AF Γ rx ex G A C"
apply (simp add: ac_corres'_def)[1]
apply (intro conjI allI impI)
subgoal
using assms
apply (auto simp add: ac_corres_def refines_def_old split: xstate.splits) [1]
apply (metis reaches_def rel_liftE_Result_Result_iff)
by (metis Exn_neq_Result rel_liftE_def)
apply (elim conjE)
subgoal premises prems for s
proof -
from refines [simplified refines_def_old, rule_format, OF prems (3)] have "succeeds B (st s)" by blast
with prems(2) have "G s ∧ succeeds B (st s)"
by (auto simp add: succeeds_def)
from ac [simplified ac_corres_def, rule_format, OF this] prems(1)
show ?thesis
by blast
qed
done
lemma refines_spec_rel_Nonlocal_conv:
shows "refines f g s t (rel_prod (rel_xval rel_Nonlocal (=)) (=))
⟷ refines f (map_value (map_exn Nonlocal) g) s t (rel_prod (=) (=))"
apply (simp add: refines_def_old reaches_map_value rel_xval.simps map_exn_def
split: xval_splits)
apply (intro iffI)
apply (metis Exn_eq_Exn Result_eq_Result Result_neq_Exn rel_Nonlocal_conv)
apply (simp add: rel_Nonlocal_def)
apply clarsimp
subgoal for r s
apply (erule_tac x=r in allE)
apply (erule_tac x=s in allE)
by (smt (verit, best) Exn_def c_exntype.case(5) default_option_def
exception_or_result_cases not_Some_eq)
done
lemmas refines_eq_convs = refines_spec_rel_Nonlocal_conv sum.rel_eq rel_xval_eq Relation.eq_OO
lemma ac_corres'_exception_monad:
assumes ac: "ac_corres st check_termination AF Γ rx ex G B C"
assumes refines: "⋀s. refines B A s s (rel_prod (=) (=))"
shows "ac_corres' Exn st check_termination AF Γ rx ex G A C"
term "map_value (map_exn Nonlocal) A"
apply (simp add: ac_corres'_def, intro allI impI conjI)
subgoal
using assms
by (auto simp add: refines_def_old reaches_map_value ac_corres_def
map_exn_def rel_sum.simps rel_Nonlocal_def split: xstate.splits c_exntype.splits)
(metis reaches_def)+
apply (elim conjE)
subgoal premises prems for s
proof -
from refines [simplified refines_def_old, rule_format, OF prems (3)] have "succeeds B (st s)" by blast
with prems(2) have "G s ∧ succeeds B (st s)"
by (auto simp add: succeeds_def)
from ac [simplified ac_corres_def, rule_format, OF this] prems(1)
show ?thesis
by blast
qed
done
lemma ac_corres_chain:
"⟦ L1corres check_termination Gamma c_L1 c;
L2corres st_L2 rx_L2 ex_L2 P_L2 c_L2 c_L1;
L2Tcorres st_HL c_HL c_L2;
corresTA P_WA rx_WA ex_WA c_WA c_HL;
L2_call c_WA emb ns = A
⟧ ⟹
ac_corres (st_HL o st_L2) check_termination {AssumeError, StackOverflow} Gamma (rx_WA o rx_L2) (emb o ex_WA o ex_L2) (P_L2 and (P_WA o st_HL o st_L2)) A c"
apply (rule ccorresE_corresXF_merge)
apply (unfold L1corres_alt_def)
apply assumption
apply (unfold L2corres_def L2Tcorres_def corresTA_def)
apply (drule corresXF_from_L2_call)
apply ((drule (1) corresXF_corresXF_merge)+, assumption)
apply (clarsimp simp: L2_call_def L2_defs)
apply simp
apply clarsimp
apply clarsimp
done
lemma ac_corres_chain_sim_nd_monad:
"⟦ L1corres check_termination Gamma c_L1 c;
L2corres st_L2 rx_L2 ex_L2 P_L2 c_L2 c_L1;
IOcorres P_IO Q_IO st_IO rx_IO ex_IO c_IO c_L2;
L2Tcorres st_HL c_HL c_IO;
corresTA P_WA rx_WA ex_WA c_WA c_HL;
⋀s. refines c_WA A s s (rel_prod rel_liftE (=))
⟧ ⟹
ac_corres' (λ_. Exception (default::unit)) (st_HL o st_IO o st_L2) check_termination {AssumeError, StackOverflow} Gamma
(λs. (rx_WA o (λv. rx_IO v (st_L2 s)) o rx_L2) s)
(λs. (ex_WA o (λe. ex_IO e (st_L2 s)) o ex_L2) s)
(P_L2 and (P_IO o st_L2) and (P_WA o st_HL o st_IO o st_L2)) A c"
apply (rule ac_corres'_nd_monad)
apply (rule ccorresE_corresXF_merge)
apply (unfold L1corres_alt_def)
apply assumption
apply (unfold L2corres_def L2Tcorres_def corresTA_def IOcorres_def)
apply (drule corresXF_post_to_corresXF)
apply ((drule (1) corresXF_corresXF_merge)+, assumption)
apply (clarsimp simp: L2_call_def L2_defs)
apply simp
apply clarsimp
apply clarsimp
apply assumption
done
lemma ac_corres_chain_sim_exception_monad:
"⟦ L1corres check_termination Gamma c_L1 c;
L2corres st_L2 rx_L2 ex_L2 P_L2 c_L2 c_L1;
IOcorres P_IO Q_IO st_IO rx_IO ex_IO c_IO c_L2;
L2Tcorres st_HL c_HL c_IO;
corresTA P_WA rx_WA ex_WA c_WA c_HL;
⋀s. refines c_WA A s s (rel_prod (=) (=))
⟧ ⟹
ac_corres' Exn (st_HL o st_IO o st_L2) check_termination {AssumeError, StackOverflow} Gamma
(λs. (rx_WA o (λv. rx_IO v (st_L2 s)) o rx_L2) s)
(λs. (ex_WA o (λe. ex_IO e (st_L2 s)) o ex_L2) s)
(P_L2 and (P_IO o st_L2) and (P_WA o st_HL o st_IO o st_L2)) A c"
apply (rule ac_corres'_exception_monad)
apply (rule ccorresE_corresXF_merge)
apply (unfold L1corres_alt_def)
apply assumption
apply (unfold L2corres_def L2Tcorres_def corresTA_def IOcorres_def)
apply (drule corresXF_post_to_corresXF)
apply ((drule (1) corresXF_corresXF_merge)+, assumption)
apply (clarsimp simp: L2_call_def L2_defs)
apply simp
apply clarsimp
apply clarsimp
apply assumption
done
lemmas ac_corres_chain_sims = ac_corres_chain_sim_nd_monad ac_corres_chain_sim_exception_monad
definition "FUNCTION_BODY_NOT_IN_INPUT_C_FILE ≡ fail"
lemma [polish]:
"guard (λs. UNDEFINED_FUNCTION) = FUNCTION_BODY_NOT_IN_INPUT_C_FILE"
"(FUNCTION_BODY_NOT_IN_INPUT_C_FILE >>= m) = FUNCTION_BODY_NOT_IN_INPUT_C_FILE"
"unknown >>= (λx. FUNCTION_BODY_NOT_IN_INPUT_C_FILE) = FUNCTION_BODY_NOT_IN_INPUT_C_FILE"
"liftE FUNCTION_BODY_NOT_IN_INPUT_C_FILE = FUNCTION_BODY_NOT_IN_INPUT_C_FILE"
by (rule spec_monad_ext,
simp add: run_bind run_guard UNDEFINED_FUNCTION_def FUNCTION_BODY_NOT_IN_INPUT_C_FILE_def)+
lemmas ac_statistics_rewrites =
L1_seq_def
L2_defs'
text ‹There might be unexpected simplification 'unfolding' of @{const id} due to eta-expansion:
@{term id} might be expanded (e.g. by resolution to ) @{term "λx. id x"}. Now the
simp rule @{thm id_apply} triggers and rewrites it @{term "λx. x"}. Folding this back to
@{term id} might help in those cases.
›
named_theorems
l1_corres and l2_corres and io_corres and hl_corres and wa_corres and ts_corres and ac_corres and
known_function_corres and known_function
lazy_named_theorems
l1_def and l2_def and io_def and hl_def and wa_def and ts_def and ac_def
named_theorems
heap_update_syntax
lemma fold_id: "(λx. x) = id"
by (simp add: id_def)
lemma fold_id_unit: " (λ_. ()) = id"
by (simp add: id_def)
ML_file "lib/set.ML"
ML_file "trace_antiquote.ML"
ML_file "function_info.ML"
ML_file "program_info.ML"
ML_file "autocorres_trace.ML"
ML_file "autocorres_options.ML"
ML_file "autocorres_data.ML"
ML_file "autocorres_util.ML"
ML_file "exception_rewrite.ML"
ML_file "simpl_conv.ML"
ML_file "prog.ML"
ML_file "l2_opt.ML"
ML_file "local_var_extract.ML"
context globals_stack_heap_state
begin
ML_file "in_out_parameters.ML"
declaration ‹fn phi =>
In_Out_Parameters.Data.add (In_Out_Parameters.operations phi) phi›
end
ML_file "record_utils.ML"
ML_file "heap_lift_base.ML"
ML_file "heap_lift.ML"
ML_file "word_abstract.ML"
ML_file "pretty_bound_var_names.ML"
ML_file "monad_convert.ML"
ML_file "type_strengthen.ML"
ML_file "autocorres.ML"
ML ‹
Outer_Syntax.command @{command_keyword "init-autocorres"}
"Initialise Autocorres"
(AutoCorres.init_autocorres_parser >>
(Toplevel.theory o (fn (opt, filename) => AutoCorres.do_init_autocorres opt filename true #> snd)))
›
ML ‹
Outer_Syntax.command @{command_keyword "autocorres"}
"Abstract the output of the C parser into a monadic representation."
(AutoCorres.autocorres_parser >>
(Toplevel.theory o (fn (opt, filename) => AutoCorres.parallel_autocorres opt filename)))
›
ML ‹
Outer_Syntax.command @{command_keyword "final-autocorres"}
"Finalise Autocorres"
(AutoCorres.final_autocorres_parser >>
(Toplevel.theory o (fn filename => AutoCorres.final_autocorres_cmd filename)))
›
setup ‹
let
fun fresh_var maxidx (n, T) = Var (("_" ^ n, maxidx + 1), T)
fun head_type t = t |> HOLogic.dest_Trueprop |> head_of |> fastype_of
fun get_maxidx maxidx ts =
if maxidx < 0
then fold (curry Int.max) (map maxidx_of_term ts) 0
else maxidx
fun mk_corresTA_pattern maxidx (t as @{term_pat "Trueprop (corresTA ?P ?rx ?ex ?A ?C)"}) =
let
val mi = get_maxidx maxidx [P, rx, ex, A, C]
val T = head_type t
val [PT, rxT, exT, AT, _] = binder_types T
val [P', rx', ex', A'] = map (fresh_var mi) [("P", PT), ("rx", rxT), ("ex", exT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "corresTA"}, T) $
P' $ rx' $ ex' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_abstract_val_pattern maxidx (t as (@{term_pat "Trueprop (abstract_val ?P ?A ?f ?C)"})) =
let
val mi = get_maxidx maxidx [P, A, f, C]
val T = head_type t
val [PT, AT, fT, _] = binder_types T
val [P', A', f'] = map (fresh_var mi) [("P", PT), ("A", AT), ("f", fT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "abstract_val"}, T) $
P' $ A' $ f' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_valid_typ_abs_fn_pattern maxidx (t as (@{term_pat "Trueprop (valid_typ_abs_fn ?P ?Q ?A ?C)"})) =
let
val mi = get_maxidx maxidx [P, Q, A, C]
val T = head_type t
val [PT, QT, AT, CT] = binder_types T
val [P', Q', A', C'] = map (fresh_var mi) [("P", PT), ("Q", QT), ("A", AT), ("C", CT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "valid_typ_abs_fn"}, T) $
P' $ Q' $ A' $ C')
in pat end
fun mk_introduce_typ_abs_fn_pattern maxidx (t as (@{term_pat "Trueprop (introduce_typ_abs_fn ?f)"})) =
let
val mi = get_maxidx maxidx [f]
val T = head_type t
val [fT] = binder_types T
val [f'] = map (fresh_var mi) [("f", fT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "introduce_typ_abs_fn"}, T) $ f')
in pat end
fun mk_id_pattern _ t = t
fun mk_abs_expr_pattern maxidx (t as (@{term_pat "Trueprop (abs_expr ?st ?P ?A ?C)"})) =
let
val mi = get_maxidx maxidx [st, P, A, C]
val T = head_type t
val [stT, PT, AT, _] = binder_types T
val [st', P', A'] = map (fresh_var mi) [("st", stT), ("P", PT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "abs_expr"}, T) $
st' $ P' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_abs_guard_pattern maxidx (t as (@{term_pat "Trueprop (abs_guard ?st ?A ?C)"})) =
let
val mi = get_maxidx maxidx[st, A, C]
val T = head_type t
val [stT, AT, _] = binder_types T
val [st', A'] = map (fresh_var mi) [("st", stT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "abs_guard"}, T) $
st' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_L2Tcorres_pattern maxidx (t as (@{term_pat "Trueprop (L2Tcorres ?st ?A ?C)"})) =
let
val mi = get_maxidx maxidx[st, A, C]
val T = head_type t
val [stT, AT, _] = binder_types T
val [st', A'] = map (fresh_var mi) [("st", stT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "L2Tcorres"}, T) $
st' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_abs_modifies_pattern maxidx (t as (@{term_pat "Trueprop (abs_modifies ?st ?P ?A ?C)"})) =
let
val mi = get_maxidx maxidx [st, P, A, C]
val T = head_type t
val [stT, PT, AT, _] = binder_types T
val [st', P', A'] = map (fresh_var mi) [("st", stT), ("P", PT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "abs_modifies"}, T) $
st' $ P' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_struct_rewrite_guard_pattern maxidx (t as (@{term_pat "Trueprop (struct_rewrite_guard ?A ?C)"})) =
let
val mi = get_maxidx maxidx [A, C]
val T = head_type t
val [AT, _] = binder_types T
val [A'] = map (fresh_var mi) [("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "struct_rewrite_guard"}, T) $
A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_struct_rewrite_expr_pattern maxidx (t as (@{term_pat "Trueprop (struct_rewrite_expr ?P ?A ?C)"})) =
let
val mi = get_maxidx maxidx[P, A, C]
val T = head_type t
val [PT, AT, _] = binder_types T
val [P', A'] = map (fresh_var mi) [("P", PT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "struct_rewrite_expr"}, T) $
P' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_struct_rewrite_modifies_pattern maxidx (t as (@{term_pat "Trueprop (struct_rewrite_modifies ?P ?A ?C)"})) =
let
val mi = get_maxidx maxidx [P, A, C]
val T = head_type t
val [PT, AT, _] = binder_types T
val [P', A'] = map (fresh_var mi) [("P", PT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "struct_rewrite_modifies"}, T) $
P' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_abs_spec_pattern maxidx (t as (@{term_pat "Trueprop (abs_spec ?st ?P ?A ?C)"})) =
let
val mi = get_maxidx maxidx[st, P, A, C]
val T = head_type t
val [stT, PT, AT, _] = binder_types T
val [st', P', A'] = map (fresh_var mi) [("st", stT), ("P", PT), ("A", AT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "abs_spec"}, T) $
st' $ P' $ A' $ Utils.open_beta_norm_eta C)
in pat end
fun mk_heap_lift__wrap_h_val_pattern maxidx (t as (@{term_pat "Trueprop (heap_lift__wrap_h_val ?X ?Y)"})) =
let
val mi = get_maxidx maxidx [X, Y]
val T = head_type t
val [XT, YT] = binder_types T
val [X', Y'] = map (fresh_var mi) [("X", XT), ("Y", YT)]
val pat = HOLogic.mk_Trueprop (Const (@{const_name "heap_lift__wrap_h_val"}, T) $ X' $ Y' )
in pat end
in
Context.theory_map (fold WordAbstract.add_pattern [
mk_corresTA_pattern,
mk_abstract_val_pattern,
mk_valid_typ_abs_fn_pattern,
mk_introduce_typ_abs_fn_pattern,
mk_id_pattern
]) #>
Context.theory_map (fold HeapLift.add_pattern [
mk_abs_expr_pattern,
mk_abs_guard_pattern,
mk_L2Tcorres_pattern,
mk_abs_modifies_pattern,
mk_struct_rewrite_guard_pattern,
mk_struct_rewrite_expr_pattern,
mk_struct_rewrite_modifies_pattern,
mk_abs_spec_pattern,
mk_heap_lift__wrap_h_val_pattern,
mk_id_pattern
])
end
›
end