Theory AutoCorres2.CorresXF
theory CorresXF
imports
CCorresE
begin
definition "corresXF_simple st xf P M M' ≡
∀s. (P s ∧ succeeds M (st s)) ⟶ (∀r' t'. reaches M' s r' t' ⟶
reaches M (st s) (xf r' t') (st t')) ∧ succeeds M' s"
definition "corresXF st ret_xf ex_xf P A C ≡
∀s. P s ∧ succeeds A (st s) ⟶
(∀r t. reaches C s r t ⟶
(case r of
Exn r ⇒ reaches A (st s) (Exn (ex_xf r t)) (st t)
| Result r ⇒ reaches A (st s) (Result (ret_xf r t)) (st t)))
∧ succeeds C s"
definition "rel_XF st ret_xf ex_xf Q ≡ λ(r, t) (r', t').
t' = st t ∧
rel_xval (λe e'. e' = ex_xf e t) (λv v'. v' = ret_xf v t) r r' ∧
Q r t"
lemma corresXF_refines_iff:
"corresXF st ret_xf ex_xf P A C ⟷
(∀s. P s ⟶ refines C A s (st s) (rel_XF st ret_xf ex_xf (λ_ _. True)))"
apply standard
subgoal
apply (clarsimp simp add: corresXF_def refines_def_old rel_XF_def rel_xval.simps split: xval_splits)
by (metis Exn_def default_option_def exception_or_result_cases not_Some_eq)
subgoal
apply (fastforce simp add: corresXF_def refines_def_old rel_XF_def rel_xval.simps split: xval_splits)
done
done
definition "corresXF_post st ret_xf ex_xf P Q A C ≡
∀s. P s ∧ succeeds A (st s) ⟶
(∀r t. reaches C s r t ⟶ Q s r t ∧
(case r of
Exn r ⇒ reaches A (st s) (Exn (ex_xf r t)) (st t)
| Result r ⇒ reaches A (st s) (Result (ret_xf r t)) (st t)))
∧ succeeds C s"
lemma corresXF_post_refines_iff:
"corresXF_post st ret_xf ex_xf P Q A C ⟷
(∀s. P s ⟶ refines C A s (st s) (rel_XF st ret_xf ex_xf (Q s)))"
apply standard
subgoal
apply (clarsimp simp add: corresXF_post_def refines_def_old rel_XF_def rel_xval.simps split: xval_splits)
by (metis Exn_def default_option_def exception_or_result_cases not_Some_eq)
subgoal
apply (fastforce simp add: corresXF_post_def refines_def_old rel_XF_def rel_xval.simps split: xval_splits)
done
done
lemma corresXF_post_to_corresXF:
"corresXF_post st ret_xf ex_xf P Q A C ⟹ corresXF st ret_xf ex_xf P A C"
by (auto simp add: corresXF_def corresXF_post_def)
lemma corresXF_corres_XF_post_conv:
"corresXF st ret_xf ex_xf P A C = corresXF_post st ret_xf ex_xf P (λ_ _ _. True) A C"
by (auto simp add: corresXF_def corresXF_post_def)
lemma corresXF_simple_corresXF:
"(corresXF_simple st
(λx s. case x of
Exn r ⇒ Exn (ex_state r s)
| Result r ⇒ (Result (ret_state r s))) P M M')
= (corresXF st ret_state ex_state P M M')"
unfolding corresXF_simple_def corresXF_def
by (auto split: xval_splits)
lemma corresXF_simpleI: "⟦
⋀s' t' r'. ⟦P s'; succeeds M (st s'); reaches M' s' r' t'⟧
⟹ reaches M (st s') (xf r' t') (st t');
⋀s'. ⟦P s'; succeeds M (st s') ⟧ ⟹ succeeds M' s'
⟧ ⟹ corresXF_simple st xf P M M'"
apply atomize
apply (clarsimp simp: corresXF_simple_def)
done
lemma corresXF_I: "⟦
⋀s' t' r'. ⟦P s'; succeeds M (st s'); reaches M' s' (Result r') t'⟧
⟹ reaches M (st s') (Result (ret_state r' t')) (st t');
⋀s' t' r'. ⟦P s'; succeeds M (st s'); reaches M' s' (Exn r') t'⟧
⟹ reaches M (st s') (Exn (ex_state r' t')) (st t');
⋀s'. ⟦P s'; succeeds M (st s') ⟧ ⟹ succeeds M' s'
⟧ ⟹ corresXF st ret_state ex_state P M M'"
apply atomize
apply (clarsimp simp: corresXF_def)
subgoal for s r t
apply (erule_tac x=s in allE, erule (1) impE)
apply (erule_tac x=s in allE, erule (1) impE)
apply (erule_tac x=s in allE, erule (1) impE)
apply (clarsimp split: xval_splits)
apply auto
done
done
lemma ccpo_prod_gfp_gfp:
"class.ccpo
(prod_lub Inf Inf :: (('a::complete_lattice * 'b :: complete_lattice) set ⇒ _))
(rel_prod (≥) (≥)) (mk_less (rel_prod (≥) (≥)))"
by (rule ccpo_rel_prodI ccpo_Inf)+
lemma admissible_mem: "ccpo.admissible Inf (≥) (λA. x ∈ A)"
by (auto simp: ccpo.admissible_def)
lemma admissible_nondet_ord_corresXF:
"ccpo.admissible Inf (≥) (λA. corresXF st R E P A C)"
unfolding corresXF_def imp_conjL imp_conjR
apply (intro admissible_all admissible_conj admissible_imp)
subgoal for s
apply (rule ccpo.admissibleI)
apply (clarsimp simp add: ccpo.admissible_def chain_def
succeeds_def reaches_def split: prod.splits xval_splits)
apply (intro conjI allI impI)
subgoal
apply transfer
by (auto simp add: Inf_post_state_def top_post_state_def)
(metis outcomes.simps(2) post_state.simps(3))
subgoal
apply transfer
by (auto simp add: Inf_post_state_def top_post_state_def)
(metis outcomes.simps(2) post_state.simps(3))
done
subgoal
apply (rule ccpo.admissibleI)
apply (clarsimp simp add: ccpo.admissible_def chain_def
succeeds_def reaches_def split: prod.splits xval_splits)
apply transfer
apply (auto simp add: Inf_post_state_def top_post_state_def image_def vimage_def
split: if_split_asm)
done
done
lemma corresXF_top: "corresXF st ret_xf ex_xf P ⊤ C"
by (auto simp add: corresXF_def)
lemma admissible_nondet_ord_corresXF_post:
"ccpo.admissible Inf (≥) (λA. corresXF_post st R E P Q A C)"
unfolding corresXF_post_def imp_conjL imp_conjR
apply (intro admissible_all admissible_conj admissible_imp)
subgoal
apply (rule ccpo.admissibleI)
apply (clarsimp simp add: ccpo.admissible_def chain_def
succeeds_def reaches_def split: prod.splits xval_splits)
apply (intro conjI allI impI)
subgoal
apply transfer
apply (clarsimp simp add: Inf_post_state_def top_post_state_def)
apply (metis (no_types, lifting) INF_top_conv(1) Inf_post_state_def top_post_state_def)
done
subgoal
apply transfer
by (auto simp add: Inf_post_state_def top_post_state_def)
(metis outcomes.simps(2) post_state.simps(3))
subgoal
apply transfer
apply (clarsimp simp add: Inf_post_state_def top_post_state_def)
apply (metis (no_types, lifting) INF_top_conv(1) Inf_post_state_def top_post_state_def)
done
subgoal
apply transfer
apply (clarsimp simp add: Inf_post_state_def top_post_state_def image_def vimage_def
split: if_split_asm)
by (metis outcomes.simps(2) post_state.simps(3))
done
subgoal
apply (rule ccpo.admissibleI)
apply (clarsimp simp add: ccpo.admissible_def chain_def
succeeds_def reaches_def split: prod.splits xval_splits)
apply transfer
apply (auto simp add: Inf_post_state_def top_post_state_def image_def vimage_def
split: if_split_asm)
done
done
lemma corresXF_post_top: "corresXF_post st ret_xf ex_xf P Q ⊤ C"
by (auto simp add: corresXF_post_def)
lemma corresXF_assume_pre:
"⟦ ⋀s s'. ⟦ P s'; s = st s' ⟧ ⟹ corresXF st xf_normal xf_exception P L R ⟧ ⟹ corresXF st xf_normal xf_exception P L R"
apply atomize
apply (clarsimp simp: corresXF_def)
apply force
done
lemma corresXF_assume_fix_pre:
"⟦ ⋀s s'. ⟦ P s'; s = st s' ⟧ ⟹ corresXF st xf_normal xf_exception (λs. s = s' ∧ P s) L R ⟧ ⟹ corresXF st xf_normal xf_exception P L R"
apply atomize
apply (clarsimp simp: corresXF_def)
done
lemma corresXF_guard_imp:
"⟦ corresXF st xf_normal xf_exception Q f g; ⋀s. P s ⟹ Q s ⟧
⟹ corresXF st xf_normal xf_exception P f g"
apply (clarsimp simp: corresXF_def)
done
lemma corresXF_return:
"⟦ ⋀s. ⟦ P s ⟧ ⟹ xf_normal b s = a ⟧ ⟹
corresXF st xf_normal xf_exception P (return a) (return b)"
apply (clarsimp simp: corresXF_def )
done
lemma corresXF_gets:
"⟦ ⋀s. P s ⟹ ret (g s) s = f (st s) ⟧ ⟹
corresXF st ret ex P (gets f) (gets g)"
apply (clarsimp simp: corresXF_def)
done
lemma corresXF_insert_guard:
"⟦ corresXF st ret ex Q A C; ⋀s. ⟦ P s ⟧ ⟹ G (st s) ⟶ Q s ⟧ ⟹
corresXF st ret ex P (guard G >>= (λ_. A)) C "
apply (auto simp: corresXF_def succeeds_guard succeeds_bind reaches_bind reaches_guard)
done
lemma corresXF_exec_abs_guard:
"corresXF st ret_xf ex_xf (λs. P s ∧ G (st s)) (A ()) C ⟹ corresXF st ret_xf ex_xf P (guard G >>= A) C"
apply (auto simp: corresXF_def succeeds_guard succeeds_bind reaches_bind reaches_guard)
done
lemma corresXF_simple_exec:
"⟦ corresXF_simple st xf P A B; reaches B s r' s'; succeeds A (st s); P s ⟧
⟹ reaches A (st s) (xf r' s') (st s')"
apply (fastforce simp: corresXF_simple_def)
done
lemma corresXF_simple_fail:
"⟦ corresXF_simple st xf P A B; ¬ succeeds B s; P s ⟧
⟹ ¬ succeeds A (st s)"
apply (fastforce simp: corresXF_simple_def)
done
lemma corresXF_simple_no_fail:
"⟦ corresXF_simple st xf P A B; succeeds A (st s); P s ⟧
⟹ succeeds B s"
apply (fastforce simp: corresXF_simple_def)
done
lemma corresXF_exec_normal:
"⟦ corresXF st ret ex P A B; reaches B s (Result r') s'; succeeds A (st s); P s ⟧
⟹ reaches A (st s) (Result (ret r' s')) (st s')"
by (auto simp add: corresXF_def split: xval_splits)
lemma corresXF_exec_except:
"⟦ corresXF st ret ex P A B; reaches B s (Exn r') s'; succeeds A (st s); P s ⟧
⟹ reaches A (st s) (Exn (ex r' s')) (st s')"
by (auto simp add: corresXF_def split: xval_splits)
lemma corresXF_exec_fail:
"⟦ corresXF st ret ex P A B; ¬ succeeds B s; P s ⟧
⟹ ¬ succeeds A (st s)"
by (auto simp add: corresXF_def split: xval_splits)
lemma corresXF_intermediate:
"⟦ corresXF st ret_xf ex_xf P A' C;
corresXF id (λr s. r) (λr s. r) (λs. ∃x. s = st x ∧ P x) A A' ⟧ ⟹
corresXF st ret_xf ex_xf P A C"
apply (clarsimp simp: corresXF_def split: xval_splits)
apply fast
done
lemma corresXF_join:
"⟦ corresXF st V E P L L'; ⋀x y. corresXF st V' E (P' x y) (R x) (R' y);
⋀s. Q s ⟹ L' ∙ s ?⦃ λr t. case r of Exn _ ⇒ ⊤ | Result v ⇒ P' (V v t) v t ⦄;
⋀s. Q s ⟹ P s ⟧ ⟹
corresXF st V' E Q (L >>= R) (L' >>= R')"
apply (clarsimp simp add: corresXF_refines_iff split: xval_splits)
apply (rule refines_bind_bind_exn[where Q="rel_XF st V E (λ_ _. True) ⊓
(λ(r, t) x. case r of Exn _ ⇒ ⊤ | Result v ⇒ P' (V v t) v t)"])
subgoal
apply (rule refines_strengthen1[where R="rel_XF st V E (λ_ _. True)"])
by auto
by (auto simp add: rel_XF_def)
lemma corresXF_join_xf_state_independent_same_state:
"⟦ corresXF (λs. s) (λr s. V r) (λr s. E r) P L L';
⋀y. corresXF (λs. s) (λr s. V' r) (λr s. E r) (P' (V y)) (R (V y)) (R' y);
⋀s. Q s ⟹ L ∙ s ?⦃ λr t. case r of Exn _ ⇒ ⊤ | Result v ⇒ P' v t⦄; ⋀s. Q s ⟹ P s ⟧ ⟹
corresXF (λs. s) (λr s. V' r) (λr s. E r) Q (L >>= R) (L' >>= R')"
apply (clarsimp simp add: corresXF_refines_iff)
apply (rule refines_bind_bind_exn[where
Q="rel_XF (λs. s) (λr s. V r) (λr s. E r) (λ_ _. True) ⊓
(λx (r, t). case r of Exn _ ⇒ ⊤ | Result v ⇒ P' v t)"])
subgoal
apply (rule refines_strengthen2[where R="rel_XF (λs. s) (λr s. V r) (λr s. E r) (λ_ _. True)"])
by auto
by (auto simp add: rel_XF_def)
lemma corresXF_except:
"⟦ corresXF st V E P L L'; ⋀x y. corresXF st V E' (P' x y) (R x) (R' y);
⋀s. Q s ⟹ L' ∙ s ?⦃ λr s. case r of Exn r ⇒ P' (E r s) r s | Result _ ⇒ ⊤ ⦄;
⋀s. Q s ⟹ P s ⟧ ⟹
corresXF st V E' Q ( L <catch> R) (L' <catch> R')"
apply (clarsimp simp add: corresXF_refines_iff)
apply (rule refines_catch [where Q="(rel_XF st V E (λ_ _. True)) ⊓
(λ(r, s) x. case r of Exn r ⇒ P' (E r s) r s | Result _ ⇒ ⊤)"])
subgoal
apply (rule refines_strengthen1[where R="rel_XF st V E (λ_ _. True)"])
by auto
apply (auto simp add: rel_XF_def)
done
lemma corresXF_cond:
"⟦ corresXF st V E P L L'; corresXF st V E P R R'; ⋀s. P s ⟹ A (st s) = A' s ⟧ ⟹
corresXF st V E P (condition A L R) (condition A' L' R')"
apply (clarsimp simp add: corresXF_refines_iff)
using refines_condition by metis
lemma refines_assume_succeeds: "(succeeds g t ⟹ refines f g s t R) ⟹ refines f g s t R"
by (auto simp add: refines_def_old)
lemma corresXF_while:
assumes body_corres: "⋀x y. corresXF st ret ex (λs. P x s ∧ y = ret x s) (A y) (B x)"
and cond_match: "⋀s r. P r s ⟹ C r s = C' (ret r s) (st s)"
and pred_inv: "⋀r s. P r s ⟹ C r s ⟹ succeeds (whileLoop C' A (ret r s)) (st s) ⟹
B r ∙ s ?⦃ λr s. case r of Exn _ ⇒ True | Result r ⇒ P r s ⦄"
and init_match: "⋀s. P' x s ⟹ y = ret x s"
and pred_imply: "⋀s. P' x s ⟹ P x s"
shows "corresXF st ret ex (P' x) (whileLoop C' A y) (whileLoop C B x)"
apply (clarsimp simp add: corresXF_refines_iff)
apply (rule refines_assume_succeeds)
subgoal for s
apply (rule refines_mono [OF _ refines_whileLoop'
[where R = "rel_XF st ret ex (λr s. case r of Exn _ ⇒ True | Result r ⇒ P r s) ⊓
(λ(r, s) _. case r of Exn _ ⇒ True | Result r ⇒
succeeds (whileLoop C' A (ret r s)) (st s))"
and C = C and C'=C' and B=B and B'=A and I=x and I'=y and s=s and s'="st s"]])
subgoal by (auto simp add: rel_XF_def)
subgoal by (auto simp add: rel_XF_def cond_match pred_imply)
subgoal using body_corres pred_inv
apply (subst (asm) rel_XF_def)
apply (clarsimp simp add: corresXF_refines_iff)
apply (rule refines_strengthen[where R="rel_XF st ret ex (λ_ _. True)" and
G="λr s. case r of Exn _ ⇒ True | Result r ⇒ succeeds (whileLoop C' A r) s"])
subgoal by auto
apply assumption
subgoal
apply (subst (asm) (3) whileLoop_unroll)
apply (auto simp add: succeeds_bind runs_to_partial_def_old split: xval_splits)
done
apply (auto simp: rel_XF_def rel_xval.simps)
done
subgoal
by (auto simp add: rel_XF_def init_match pred_imply)
subgoal
by (auto simp add: rel_XF_def rel_xval.simps rel_exception_or_result.simps Exn_def default_option_def split: xval_splits )
done
done
lemma corresXF_name_pre:
"⟦ ⋀s'. corresXF st ret ex (λs. P s ∧ s = s') A C ⟧ ⟹
corresXF st ret ex P A C"
by (clarsimp simp: corresXF_def)
lemma corresXF_guarded_while_body:
"corresXF st ret ex P A B ⟹
corresXF st ret ex P
(do{ r ← A; _ ← guard (G r); return r }) B"
apply (clarsimp simp add: corresXF_refines_iff)
apply (clarsimp simp add: refines_def_old succeeds_bind reaches_bind)
by (smt (verit) Exn_def case_exception_or_result_Exn case_exception_or_result_Result
default_option_def the_Exception_simp the_Exception_Result exception_or_result_cases
is_Exception_simps(1) is_Exception_simps(2) not_None_eq)
lemma whileLoop_succeeds_terminates_guard_body:
assumes B_succeeds: "⋀i s. succeeds (B i) s ⟹ succeeds (B' i) s"
assumes B_reaches: "⋀i s r t. reaches (B' i) s r t ⟹ succeeds (B i) s ⟹ reaches (B i) s r t"
assumes termi: "run (whileLoop C B I) s ≠ ⊤"
shows "run (whileLoop C B' I) s ≠ ⊤"
using termi
proof (induct rule: whileLoop_ne_top_induct)
case step show ?case unfolding top_post_state_def
apply (rule whileLoop_ne_Failure)
using step B_succeeds B_reaches
apply (clarsimp simp add: runs_to_def_old)
by (metis top_post_state_def)
qed
lemma whileLoop_succeeds_guard_body:
assumes B_succeeds: "⋀i s. succeeds (B i) s ⟹ succeeds (B' i) s"
assumes B_reaches: "⋀i s r t. reaches (B' i) s r t ⟹ succeeds (B i) s ⟹ reaches (B i) s r t"
assumes termi: "succeeds (whileLoop C B I) s"
shows "succeeds (whileLoop C B' I) s"
using whileLoop_succeeds_terminates_guard_body [OF B_succeeds B_reaches] termi
by (auto simp: succeeds_def top_post_state_def)
lemma corresXF_guarded_while:
assumes body_corres: "⋀x y. corresXF st ret ex (λs. P x s ∧ y = ret x s) (A y) (B x)"
and cond_match: "⋀s r. ⟦ P r s; G (ret r s) (st s) ⟧ ⟹ C r s = C' (ret r s) (st s)"
and pred_inv: "⋀r s. P r s ⟹ C r s ⟹ succeeds (whileLoop C' A (ret r s)) (st s) ⟹ G (ret r s) (st s) ⟹
B r ∙ s ?⦃ λr s. case r of Exn _ ⇒ True | Result r ⇒ G (ret r s) (st s) ⟶ P r s ⦄"
and pred_imply: "⋀s. ⟦ G y (st s); P' x s ⟧ ⟹ P x s"
and init_match: "⋀s. ⟦ G y (st s); P' x s ⟧ ⟹ y = ret x s"
shows "corresXF st ret ex (P' x)
(do {
_ ← guard (G y);
whileLoop C' (λi. (do {
r ← A i;
_ ← guard (G r);
return r
})) y
})
(whileLoop C B x)"
proof -
{fix i s
assume *: "succeeds (whileLoop C' (λi.
(do { r ← A i;
_ ← guard (G r);
return r
})) i) s"
have "succeeds (whileLoop C' A i) s"
apply (rule whileLoop_succeeds_guard_body [OF _ _ *])
subgoal by (auto simp add: succeeds_bind)
subgoal apply (clarsimp simp add: reaches_bind succeeds_bind)
by (smt (verit, best) dual_order.refl exception_or_result_split_asm le_boolD)
done
} note new_body_fails_more = this
note new_body_corres = body_corres [THEN corresXF_guarded_while_body]
show ?thesis
apply (rule corresXF_exec_abs_guard)
apply (rule corresXF_name_pre)
apply (rule corresXF_assume_pre)
apply clarsimp
subgoal for s'
apply (rule corresXF_guard_imp)
apply (rule corresXF_while [where
P="λx s. P x s ∧ G (ret x s) (st s)" and P'="λx s. P' x s ∧ s = s'"])
apply (rule corresXF_guard_imp)
apply (rule new_body_corres)
apply (clarsimp)
apply (clarsimp)
apply (rule cond_match, simp, simp)
subgoal for r s
using pred_inv [of r s, OF _ _ new_body_fails_more ]
apply clarsimp
apply (subst (asm) whileLoop_unroll)
apply (clarsimp simp add: cond_match)
apply (clarsimp simp add: succeeds_bind)
apply (clarsimp simp add: runs_to_partial_def_old split: xval_splits, intro conjI)
apply (metis (mono_tags, lifting) body_corres corresXF_exec_normal)
using body_corres corresXF_exec_normal by fastforce
subgoal
using init_match by auto
subgoal
using init_match pred_imply by auto
subgoal by auto
done
done
qed
definition "ac_corres st check_termination AF Γ rx ex G ≡
λA B. ∀s. (G s ∧ succeeds A (st s)) ⟶
(∀t. Γ ⊢ ⟨B, Normal s⟩ ⇒ t ⟶
(case t of
Normal s' ⇒ reaches A (st s) (Result (rx s')) (st s')
| Abrupt s' ⇒ reaches A (st s) (Exn (ex s')) (st s')
| Fault e ⇒ e ∈ AF
| _ ⇒ False))
∧ (check_termination ⟶ Γ ⊢ B ↓ Normal s)"
lemma ccorresE_corresXF_merge:
"⟦ ccorresE st1 ct AF Γ ⊤ G1 M B;
corresXF st2 rx ex G2 A M;
⋀s. st s = st2 (st1 s);
⋀r s. rx' s = rx r (st1 s);
⋀r s. ex' s = ex r (st1 s);
⋀s. G s ⟶ (s ∈ G1 ∧ G2 (st1 s)) ⟧ ⟹
ac_corres st ct AF Γ rx' ex' G A B"
apply (unfold ac_corres_def)
apply clarsimp
apply (clarsimp simp: ccorresE_def)
apply (clarsimp simp: corresXF_def)
apply (erule allE, erule impE, force)
apply (erule allE, erule impE, force)
apply clarsimp
apply (erule allE, erule impE, fastforce)
subgoal for s t by (cases t; fastforce)
done
lemma corresXF_corresXF_merge:
"⟦ corresXF st rx ex P A B; corresXF st' rx' ex' P' B C ⟧ ⟹
corresXF (st o st') (λrv s. rx (rx' rv s) (st' s))
(λrv s. ex (ex' rv s) (st' s)) (λs. P' s ∧ P (st' s)) A C "
apply (clarsimp simp: corresXF_def split: xval_splits)
apply fastforce
done
lemma ac_corres_guard_imp:
"⟦ ac_corres st ct AF G rx ex P A C; ⋀s. P' s ⟹ P s ⟧ ⟹ ac_corres st ct AF G rx ex P' A C"
apply atomize
apply (clarsimp simp: ac_corres_def)
done
lemma corresXF_modify_local:
"⟦ ⋀s. st s = st (M s); ⋀s. P s ⟹ ret () (M s) = x ⟧
⟹ corresXF st ret ex P (return x) (modify M)"
by (auto simp add: corresXF_def)
lemma corresXF_modify_global:
"⟦ ⋀s. P s ⟹ M (st s) = st (M' s) ⟧ ⟹
corresXF st ret ex P (modify M) (modify M')"
by (auto simp add: corresXF_def)
lemma corresXF_select_modify:
"⟦ ⋀s. P s ⟹ st s = st (M s); ⋀s. P s ⟹ ret () (M s) ∈ x ⟧ ⟹
corresXF st ret ex P (select x) (modify M)"
by (auto simp add: corresXF_def)
lemma corresXF_select_select:
"⟦ ⋀s a. st s = st (M (a::('a ⇒ ('a::{type}))) s);
⋀s x. ⟦ P s; x ∈ b⟧ ⟹ ret x s ∈ a ⟧ ⟹
corresXF st ret ex P (select a) (select b)"
by (auto simp add: corresXF_def)
lemma corresXF_modify_gets:
"⟦ ⋀s. P s ⟹ st s = st (M s); ⋀s. P s ⟹ ret () (M s) = f (st (M s)) ⟧ ⟹
corresXF st ret ex P (gets f) (modify M)"
by (auto simp add: corresXF_def)
lemma corresXF_guard:
"⟦ ⋀s. P s ⟹ G' s = G (st s) ⟧ ⟹ corresXF st ret ex P (guard G) (guard G')"
by (auto simp add: corresXF_def)
lemma corresXF_fail:
"corresXF st return_xf exception_xf P fail X"
by (auto simp add: corresXF_def)
lemma corresXF_spec:
"⟦ ⋀s s'. ((s, s') ∈ A') = ((st s, st s') ∈ A); surj st ⟧
⟹ corresXF st ret ex P (state_select A) (state_select A')"
apply (clarsimp simp add: corresXF_def)
apply (frule_tac y=undefined in surjD)
apply (clarsimp simp: image_def set_eq_UNIV)
apply metis
done
lemma corresXF_throw:
"⟦ ⋀s. P s ⟹ E B s = A ⟧ ⟹ corresXF st V E P (throw A) (throw B)"
by (auto simp add: corresXF_def Exn_def)
lemma corresXF_append_gets_abs:
assumes corres: "corresXF st ret ex P L R"
and consistent: "⋀s. P s ⟹ R ∙ s ?⦃λr s. case r of Exn _ ⇒ ⊤ | Result v ⇒ M (ret v s) (st s) = ret' v s ⦄"
shows "corresXF st ret' ex P (L >>= (λr. gets (M r))) R"
using corres consistent
apply (clarsimp simp add: corresXF_refines_iff runs_to_partial_def_old refines_def_old
succeeds_bind reaches_bind rel_XF_def rel_xval.simps split: xval_splits )
using Exn_def by force
lemma corresXF_skipE:
"corresXF st ret ex P skip skip"
by (auto simp add: corresXF_def Exn_def)
lemma corresXF_id:
"corresXF id (λr s. r) (λr s. r) P M M"
by (fastforce simp: corresXF_def split: xval_splits)
lemma corresXF_cong:
"⟦ ⋀s. st s = st' s;
⋀s r. ret_xf r s = ret_xf' r s;
⋀s r. ex_xf r s = ex_xf' r s;
⋀s. P s = P' s;
⋀s s'. P' s' ⟹ run A s = run A' s;
⋀s. P' s ⟹ run C s = run C' s ⟧ ⟹
corresXF st ret_xf ex_xf P A C = corresXF st' ret_xf' ex_xf' P' A' C'"
apply atomize
apply (auto simp: corresXF_def reaches_def succeeds_def split: xval_splits)
done
lemma corresXF_exec_abs_select:
"⟦ x ∈ Q; x ∈ Q ⟹ corresXF id rx ex P (A x) A' ⟧ ⟹ corresXF id rx ex P (select Q >>= A) A'"
by (fastforce simp add: corresXF_def succeeds_bind reaches_bind split: xval_splits)
end