Theory Arrow_Order

(*  Author:     Tobias Nipkow, 2007  *)

section "Arrow's Theorem for Strict Linear Orders"

theory Arrow_Order imports Main "HOL-Library.FuncSet"
begin

text‹This theory formalizes the third proof due to
Geanakoplos~cite"Geanakoplos05".  Preferences are modeled as strict
linear orderings. The set of alternatives need not be finite.

Individuals are assumed to be finite but are not a priori identified with an
initial segment of the naturals. In retrospect this generality appears
gratuitous and complicates some of the low-level reasoning where we use a
bijection with such an initial segment.›

typedecl alt
typedecl indi

abbreviation "I == (UNIV::indi set)"

axiomatization where
  alt3: "a b c::alt. distinct[a,b,c]" and
  finite_indi: "finite I"

abbreviation "N == card I"

lemma third_alt: "a  b  c::alt. distinct[a,b,c]"
using alt3 by simp metis

lemma alt2: "b::alt. b  a"
using alt3 by simp metis

type_synonym pref = "(alt * alt)set"

definition "Lin == {L::pref. strict_linear_order L}"

lemmas slo_defs = Lin_def strict_linear_order_on_def total_on_def irrefl_def

lemma notin_Lin_iff: "L : Lin  xy  (x,y)  L  (y,x) : L"
apply(auto simp add: slo_defs)
apply(metis trans_def)
done

lemma converse_in_Lin[simp]: "L¯ : Lin  L : Lin"
apply (simp add: slo_defs)
apply blast
done

lemma Lin_irrefl: "L:Lin  (a,b):L  (b,a):L  False"
by(simp add:slo_defs)(metis trans_def)

corollary linear_alt: "L::pref. L : Lin"
using well_order_on[where 'a = "alt", of UNIV]
apply (auto simp:well_order_on_def Lin_def)
apply (metis strict_linear_order_on_diff_Id)
done

abbreviation
 rem :: "pref  alt  pref" where
"rem L a  {(x,y). (x,y)  L  xa  ya}"
definition
 mktop :: "pref  alt  pref" where
"mktop L b  rem L b  {(x,b)|x. xb}"
definition
 mkbot :: "pref  alt  pref" where
"mkbot L b  rem L b  {(b,y)|y. yb}"
definition
 below :: "pref  alt  alt  pref" where
"below L a b  rem L a 
  {(a,b)}  {(x,a)|x. (x,b) : L  xa}  {(a,y)|y. (b,y) : L  ya}"
definition
 above :: "pref  alt  alt  pref" where
"above L a b  rem L b 
  {(a,b)}  {(x,b)|x. (x,a) : L  xb}  {(b,y)|y. (a,y) : L  yb}"

lemma in_mktop: "(x,y)  mktop L z  xz  (if y=z then xy else (x,y)  L)"
by(auto simp:mktop_def)

lemma in_mkbot: "(x,y)  mkbot L z  yz  (if x=z then xy else (x,y)  L)"
by(auto simp:mkbot_def)

lemma in_above: "ab  L:Lin 
  (x,y) : above L a b  xy 
  (if x=b then (a,y) : L else
   if y=b then x=a | (x,a) : L else (x,y) : L)"
by(auto simp:above_def slo_defs)

lemma in_below: "ab  L:Lin 
  (x,y) : below L a b  xy 
  (if y=a then (x,b) : L else
   if x=a then y=b | (b,y) : L else (x,y) : L)"
by(auto simp:below_def slo_defs)

declare [[simp_depth_limit = 2]]

lemma mktop_Lin: "L : Lin  mktop L x : Lin"
by(auto simp add:slo_defs mktop_def trans_def)
lemma mkbot_Lin: "L : Lin  mkbot L x : Lin"
by(auto simp add:slo_defs trans_def mkbot_def)

lemma below_Lin: "xy  L : Lin  below L x y : Lin"
unfolding slo_defs below_def trans_def
apply(simp)
apply blast
done

lemma above_Lin: "xy  L : Lin  above L x y : Lin"
unfolding slo_defs above_def trans_def
apply(simp)
apply blast
done

declare [[simp_depth_limit = 50]]

abbreviation lessLin :: "alt  pref  alt  bool" ((_ <⇘_ _) [51, 51] 50)
where "a <⇘Lb == (a,b) : L"

definition "Prof = I  Lin"

abbreviation "SWF == Prof  Lin"

definition "unanimity F == PProf.a b. (i. a <⇘P ib)   a <⇘F Pb"

definition "IIA F == PProf.P'Prof.a b.
   (i. a <⇘P ib  a <⇘P' ib)  (a <⇘F Pb  a <⇘F P'b)"

definition "dictator F i == PProf. F P = P i"

lemma dictatorI: "F : SWF 
  PProf. a b. a  b  (a,b) : P i  (a,b) : F P  dictator F i"
apply(simp add:dictator_def Prof_def Pi_def Lin_def strict_linear_order_on_def)
apply safe
 apply(erule_tac x=P in allE)
 apply(erule_tac x=P in allE)
 apply(simp add:total_on_def irrefl_def)
 apply (metis trans_def)
apply (metis irrefl_def)
done

lemma const_Lin_Prof: "L:Lin  (%p. L) : Prof"
by(simp add:Prof_def Pi_def)

lemma complete_Lin: assumes "ab" shows "LLin. (a,b) : L"
proof -
  from linear_alt obtain R where "R:Lin" by auto
  thus ?thesis by (metis assms in_mkbot mkbot_Lin)
qed

declare Let_def[simp]

theorem Arrow: assumes "F : SWF" and u: "unanimity F" and "IIA F"
shows "i. dictator F i"
proof -
  { fix a b a' b' and P P'
    assume d1: "ab" "a'b'" and d2: "ab'" "ba'" and
      "P : Prof" "P' : Prof" and 1: "i. (a,b) : P i  (a',b') : P' i"
    assume "(a,b) : F P"
    define Q where
      "Q i = (let L = (if a=a' then P i else below (P i) a' a)
              in if b=b' then L else above L b b')" for i
    have "Q : Prof" using P : Prof
      by(simp add:Q_def Prof_def Pi_def above_Lin below_Lin)
    hence "F Q : Lin" using F : SWF by(simp add:Pi_def)
    have "i. (a,b) : P i  (a,b) : Q i" using d1 d2 P : Prof
      by(simp add:in_above in_below Q_def Prof_def Pi_def below_Lin)
    hence "(a,b) : F Q" using (a,b) : F P IIA F P:Prof Q : Prof
      unfolding IIA_def by blast
    moreover
    { assume "aa'"
      hence "!!i. (a',a) : Q i" using d1 d2 P : Prof
        by(simp add:in_above in_below Q_def Prof_def Pi_def below_Lin)
      hence "(a',a) : F Q" using u Q : Prof by(simp add:unanimity_def)
    } moreover
    { assume "bb'"
      hence "!!i. (b,b') : Q i" using d1 d2 P : Prof
        by(simp add:in_above in_below Q_def Prof_def Pi_def below_Lin)
      hence "(b,b') : F Q" using u Q : Prof by(simp add:unanimity_def)
    }
    ultimately have "(a',b') : F Q" using F Q : Lin
      unfolding slo_defs trans_def 
      by safe metis
    moreover
    have "i. (a',b') : Q i  (a',b') : P' i" using d1 d2 P : Prof 1
      by(simp add:Q_def in_below in_above Prof_def Pi_def below_Lin) blast
    ultimately have "(a',b') : F P'"
      using IIA F P' : Prof Q : Prof unfolding IIA_def by blast
  } note 1 = this
  { fix a b a' b' and P P'
    assume "ab" "a'b'" "ab'" "ba'" "P : Prof" "P' : Prof"
           "i. (a,b) : P i  (a',b') : P' i"
    hence "(a,b) : F P  (a',b') : F P'" using 1 by blast
  } note 2 = this
  { fix a b P P'
    assume "ab" "P : Prof" "P' : Prof" and
      iff: "i. (a,b) : P i  (b,a) : P' i"
    from ab obtain c where dist: "distinct[a,b,c]" using third_alt by metis
    let ?Q = "%p. below (P p) c b"
    let ?R = "%p. below (?Q p) b a"
    let ?S = "%p. below (?R p) a c"
    have "?Q : Prof" using P : Prof dist
      by(auto simp add:Prof_def Pi_def below_Lin)
    hence "?R : Prof" using dist by(auto simp add:Prof_def Pi_def below_Lin)
    hence "?S : Prof" using dist by(auto simp add:Prof_def Pi_def below_Lin)
    have "i. (a,b) : P i  (a,c) : ?Q i" using P : Prof dist
      by(auto simp add:in_below Prof_def Pi_def)
    hence ab: "(a,b) : F P  (a,c) : F ?Q"
      using 2 P : Prof ?Q : Prof dist[simplified] by (blast)
    have "i. (a,c) : ?Q i  (b,c) : ?R i" using P : Prof dist
      by(auto simp add:in_below Prof_def Pi_def below_Lin)
    hence ac: "(a,c) : F ?Q  (b,c) : F ?R"
      using 2 ?Q : Prof ?R : Prof dist[simplified] by (blast)
    have "i. (b,c) : ?R i  (b,a) : ?S i" using P : Prof dist
      by(auto simp add:in_below Prof_def Pi_def below_Lin)
    hence bc: "(b,c) : F ?R  (b,a) : F ?S"
      using ?R : Prof ?S : Prof dist[simplified] 2
      apply -
      apply(rule 2)
      by fast+
    have "i. (b,a) : ?S i  (a,b) : P i" using P : Prof dist
      by(auto simp add:in_below Prof_def Pi_def below_Lin)
    hence "i. (b,a) : ?S i  (b,a) : P' i" using iff by blast
    hence ba: "(b,a) : F ?S  (b,a) : F P'"
      using IIA F P' : Prof ?S : Prof unfolding IIA_def by fast
    from ab ac bc ba have "(a,b) : F P  (b,a) : F P'" by simp
  } note 3 = this
  { fix a b c P P'
    assume A: "ab" "bc" "ac" "P : Prof" "P' : Prof" and
      iff: "i. (a,b) : P i  (b,c) : P' i"
    hence "i. (b,a) : (converse o P)i  (b,c) : P' i" by simp
    moreover have cP: "converse o P : Prof"
      using P:Prof by(simp add:Prof_def Pi_def)
    ultimately have "(b,a) : F(converse o P)  (b,c) : F P'" using A 2
      by metis
    moreover have "(a,b) : F P  (b,a) : F(converse o P)"
      by (rule 3[OF ab P:Prof cP]) simp
    ultimately have "(a,b) : F P  (b,c) : F P'" by blast
  } note 4 = this
  { fix a b a' b' :: alt and P P'
    assume A: "ab" "a'b'" "P : Prof" "P' : Prof"
      "i. (a,b) : P i  (a',b') : P' i"
    have "(a,b) : F P  (a',b') : F P'"
    proof-
      { assume "ab' & ba'" hence ?thesis using 2 A by blast }
      moreover
      { assume "a=b' & ba'" hence ?thesis using 4 A by blast }
      moreover
      { assume "ab' & b=a'" hence ?thesis using 4 A by blast }
      moreover
      { assume "a=b' & b=a'" hence ?thesis using 3 A by blast }
      ultimately show ?thesis by blast
    qed
  } note pairwise_neutrality = this
  obtain h :: "indi  nat" where
    injh: "inj h" and surjh: "h ` I = {0..<N}"
    by(metis ex_bij_betw_finite_nat[OF finite_indi] bij_betw_def)
  obtain a b :: alt where "a  b" using alt3 by auto
  obtain Lab where "(a,b) : Lab" "Lab:Lin" using ab by (metis complete_Lin)
  hence "(b,a)  Lab" by(simp add:slo_defs trans_def) metis
  obtain Lba where "(b,a) : Lba" "Lba:Lin" using ab by (metis complete_Lin)
  hence "(a,b)  Lba" by(simp add:slo_defs trans_def) metis
  let ?Pi = "%n. %i. if h i < n then Lab else Lba"
  have PiProf: "!!n. ?Pi n : Prof" using Lab:Lin Lba:Lin
    unfolding Prof_def Pi_def by simp
  have "n<N. (mn. (b,a) : F(?Pi m)) & (a,b) : F(?Pi(n+1))"
  proof -
    have 0: "!!n. F(?Pi n) : Lin" using F : SWF PiProf by(simp add:Pi_def)
    have "F(%i. Lba):Lin" using F:SWF Lba:Lin by(simp add:Prof_def Pi_def)
    hence 1: "(a,b)  F(?Pi 0)" using u (a,b)  Lba Lba:Lin Lba:Lin ab
      by(simp add:unanimity_def notin_Lin_iff const_Lin_Prof)
    have "?Pi N = (%p. Lab)" using surjh [THEN equalityD1]
      by(auto simp: subset_eq)
    moreover
    have "F(%i. Lab):Lin" using F:SWF Lab:Lin by(simp add:Prof_def Pi_def)
    ultimately have 2: "(a,b)  F(?Pi N)" using u (a,b) : Lab Lab:Lin
      by(simp add:unanimity_def const_Lin_Prof)
    with ex_least_nat_less[of "%n. (a,b) : F(?Pi n)"] 1 2 notin_Lin_iff[OF 0 ab]
    show ?thesis by simp
  qed
  then obtain n where n: "n<N" "mn. (b,a) : F(?Pi m)" "(a,b) : F(?Pi(n+1))"
    by blast
  have "dictator F (inv h n)"
  proof (rule dictatorI [OF F : SWF], auto)
    fix P c d assume "P  Prof" "cd" "(c,d)  P(inv h n)"
    then obtain e where dist: "distinct[c,d,e]" using third_alt by metis
    let ?W = "%i. if h i < n then mktop (P i) e else
                  if h i = n then above (P i) c e else mkbot (P i) e"
    have "?W : Prof" using P : Prof dist
      by(simp add:Pi_def Prof_def mkbot_Lin mktop_Lin above_Lin)
    have "i. (c,d) : P i  (c,d) : ?W i" using dist P : Prof
      by(auto simp: in_above in_mkbot in_mktop Prof_def Pi_def)
    hence PW: "(c,d) : F P  (c,d) : F ?W"
      using IIA F[unfolded IIA_def] P:Prof ?W:Prof by fast
    have "i. (c,e) : ?W i  (a,b) : ?Pi (n+1) i" using dist P : Prof
      by (auto simp: (a,b):Lab (a,b)Lba
        in_mkbot in_mktop in_above Prof_def Pi_def)
    hence "(c,e) : F ?W  (a,b) : F(?Pi(n+1))"
      using pairwise_neutrality[of c e a b ?W "?Pi(n+1)"]
        ab dist ?W : Prof PiProf by simp
    hence "(c,e) : F ?W" using n(3) by blast
    have "i. (e,d) : ?W i  (b,a) : ?Pi n i"
      using dist P : Prof (c,d)  P(inv h n) inj h
      by(auto simp: (b,a):Lba (b,a)Lab
        in_mkbot in_mktop in_above Prof_def Pi_def)
    hence "(e,d) : F ?W  (b,a) : F(?Pi n)"
      using pairwise_neutrality[of e d b a ?W "?Pi n"]
        ab dist ?W : Prof PiProf by simp blast
    hence "(e,d) : F ?W" using n(2) by auto
    with (c,e) : F ?W ?W : Prof F:SWF
    have "(c,d)  F ?W" unfolding Pi_def slo_defs trans_def by blast
    thus "(c,d)  F P" using PW by blast
  qed
  thus ?thesis ..
qed

end