Theory HOL-Proofs-Lambda.ParRed
section ‹Parallel reduction and a complete developments›
theory ParRed imports Lambda Commutation begin
subsection ‹Parallel reduction›
inductive par_beta :: "[dB, dB] => bool" (infixl ‹=>› 50)
where
var [simp, intro!]: "Var n => Var n"
| abs [simp, intro!]: "s => t ==> Abs s => Abs t"
| app [simp, intro!]: "[| s => s'; t => t' |] ==> s ° t => s' ° t'"
| beta [simp, intro!]: "[| s => s'; t => t' |] ==> (Abs s) ° t => s'[t'/0]"
inductive_cases par_beta_cases [elim!]:
"Var n => t"
"Abs s => Abs t"
"(Abs s) ° t => u"
"s ° t => u"
"Abs s => t"
subsection ‹Inclusions›
text ‹‹beta ⊆ par_beta ⊆ beta⇧*› \medskip›
lemma par_beta_varL [simp]:
"(Var n => t) = (t = Var n)"
by blast
lemma par_beta_refl [simp]: "t => t"
by (induct t) simp_all
lemma beta_subset_par_beta: "beta <= par_beta"
apply (rule predicate2I)
apply (erule beta.induct)
apply (blast intro!: par_beta_refl)+
done
lemma par_beta_subset_beta: "par_beta ≤ beta⇧*⇧*"
apply (rule predicate2I)
apply (erule par_beta.induct)
apply blast
apply (blast del: rtranclp.rtrancl_refl intro: rtranclp.rtrancl_into_rtrancl)+
done
subsection ‹Misc properties of ‹par_beta››
lemma par_beta_lift [simp]:
"t => t' ⟹ lift t n => lift t' n"
by (induct t arbitrary: t' n) fastforce+
lemma par_beta_subst:
"s => s' ⟹ t => t' ⟹ t[s/n] => t'[s'/n]"
apply (induct t arbitrary: s s' t' n)
apply (simp add: subst_Var)
apply (erule par_beta_cases)
apply simp
apply (simp add: subst_subst [symmetric])
apply (fastforce intro!: par_beta_lift)
apply fastforce
done
subsection ‹Confluence (directly)›
lemma diamond_par_beta: "diamond par_beta"
apply (unfold diamond_def commute_def square_def)
apply (rule impI [THEN allI [THEN allI]])
apply (erule par_beta.induct)
apply (blast intro!: par_beta_subst)+
done
subsection ‹Complete developments›
fun
cd :: "dB => dB"
where
"cd (Var n) = Var n"
| "cd (Var n ° t) = Var n ° cd t"
| "cd ((s1 ° s2) ° t) = cd (s1 ° s2) ° cd t"
| "cd (Abs u ° t) = (cd u)[cd t/0]"
| "cd (Abs s) = Abs (cd s)"
lemma par_beta_cd: "s => t ⟹ t => cd s"
apply (induct s arbitrary: t rule: cd.induct)
apply auto
apply (fast intro!: par_beta_subst)
done
subsection ‹Confluence (via complete developments)›
lemma diamond_par_beta2: "diamond par_beta"
unfolding diamond_def commute_def square_def
by (blast intro: par_beta_cd)
theorem beta_confluent: "confluent beta"
by (rule diamond_par_beta2 diamond_to_confluence
par_beta_subset_beta beta_subset_par_beta)+
end