Theory HOL-Proofs-Lambda.Lambda

(*  Title:      HOL/Proofs/Lambda/Lambda.thy
    Author:     Tobias Nipkow
    Copyright   1995 TU Muenchen
*)

section ‹Basic definitions of Lambda-calculus›

theory Lambda
imports Main
begin

declare [[syntax_ambiguity_warning = false]]


subsection ‹Lambda-terms in de Bruijn notation and substitution›

datatype dB =
    Var nat
  | App dB dB (infixl ° 200)
  | Abs dB

primrec
  lift :: "[dB, nat] => dB"
where
    "lift (Var i) k = (if i < k then Var i else Var (i + 1))"
  | "lift (s ° t) k = lift s k ° lift t k"
  | "lift (Abs s) k = Abs (lift s (k + 1))"

primrec
  subst :: "[dB, dB, nat] => dB"  (‹_[_'/_] [300, 0, 0] 300)
where (* FIXME base names *)
    subst_Var: "(Var i)[s/k] =
      (if k < i then Var (i - 1) else if i = k then s else Var i)"
  | subst_App: "(t ° u)[s/k] = t[s/k] ° u[s/k]"
  | subst_Abs: "(Abs t)[s/k] = Abs (t[lift s 0 / k+1])"

declare subst_Var [simp del]

text ‹Optimized versions of termsubst and termlift.›

primrec
  liftn :: "[nat, dB, nat] => dB"
where
    "liftn n (Var i) k = (if i < k then Var i else Var (i + n))"
  | "liftn n (s ° t) k = liftn n s k ° liftn n t k"
  | "liftn n (Abs s) k = Abs (liftn n s (k + 1))"

primrec
  substn :: "[dB, dB, nat] => dB"
where
    "substn (Var i) s k =
      (if k < i then Var (i - 1) else if i = k then liftn k s 0 else Var i)"
  | "substn (t ° u) s k = substn t s k ° substn u s k"
  | "substn (Abs t) s k = Abs (substn t s (k + 1))"


subsection ‹Beta-reduction›

inductive beta :: "[dB, dB] => bool"  (infixl β 50)
  where
    beta [simp, intro!]: "Abs s ° t β s[t/0]"
  | appL [simp, intro!]: "s β t  s ° u β t ° u"
  | appR [simp, intro!]: "s β t  u ° s β u ° t"
  | abs [simp, intro!]: "s β t  Abs s β Abs t"

abbreviation
  beta_reds :: "[dB, dB] => bool"  (infixl β* 50) where
  "s β* t == beta** s t"

inductive_cases beta_cases [elim!]:
  "Var i β t"
  "Abs r β s"
  "s ° t β u"

declare if_not_P [simp] not_less_eq [simp]
  ― ‹don't add r_into_rtrancl[intro!]›


subsection ‹Congruence rules›

lemma rtrancl_beta_Abs [intro!]:
    "s β* s'  Abs s β* Abs s'"
  by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+

lemma rtrancl_beta_AppL:
    "s β* s'  s ° t β* s' ° t"
  by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+

lemma rtrancl_beta_AppR:
    "t β* t'  s ° t β* s ° t'"
  by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+

lemma rtrancl_beta_App [intro]:
    "s β* s'; t β* t'  s ° t β* s' ° t'"
  by (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR intro: rtranclp_trans)


subsection ‹Substitution-lemmas›

lemma subst_eq [simp]: "(Var k)[u/k] = u"
  by (simp add: subst_Var)

lemma subst_gt [simp]: "i < j  (Var j)[u/i] = Var (j - 1)"
  by (simp add: subst_Var)

lemma subst_lt [simp]: "j < i  (Var j)[u/i] = Var j"
  by (simp add: subst_Var)

lemma lift_lift:
    "i < k + 1  lift (lift t i) (Suc k) = lift (lift t k) i"
  by (induct t arbitrary: i k) auto

lemma lift_subst [simp]:
    "j < i + 1  lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]"
  by (induct t arbitrary: i j s)
    (simp_all add: diff_Suc subst_Var lift_lift split: nat.split)

lemma lift_subst_lt:
    "i < j + 1  lift (t[s/j]) i = (lift t i) [lift s i / j + 1]"
  by (induct t arbitrary: i j s) (simp_all add: subst_Var lift_lift)

lemma subst_lift [simp]:
    "(lift t k)[s/k] = t"
  by (induct t arbitrary: k s) simp_all

lemma subst_subst:
    "i < j + 1  t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]"
  by (induct t arbitrary: i j u v)
    (simp_all add: diff_Suc subst_Var lift_lift [symmetric] lift_subst_lt
      split: nat.split)


subsection ‹Equivalence proof for optimized substitution›

lemma liftn_0 [simp]: "liftn 0 t k = t"
  by (induct t arbitrary: k) (simp_all add: subst_Var)

lemma liftn_lift [simp]: "liftn (Suc n) t k = lift (liftn n t k) k"
  by (induct t arbitrary: k) (simp_all add: subst_Var)

lemma substn_subst_n [simp]: "substn t s n = t[liftn n s 0 / n]"
  by (induct t arbitrary: n) (simp_all add: subst_Var)

theorem substn_subst_0: "substn t s 0 = t[s/0]"
  by simp


subsection ‹Preservation theorems›

text ‹Not used in Church-Rosser proof, but in Strong
  Normalization. \medskip›

theorem subst_preserves_beta [simp]:
    "r β s  r[t/i] β s[t/i]"
  by (induct arbitrary: t i set: beta) (simp_all add: subst_subst [symmetric])

theorem subst_preserves_beta': "r β* s  r[t/i] β* s[t/i]"
proof (induct set: rtranclp)
  case base
  then show ?case
    by (iprover intro: rtrancl_refl)
next
  case (step y z)
  then show ?case
    by (iprover intro: rtranclp.simps subst_preserves_beta)
qed

theorem lift_preserves_beta [simp]:
    "r β s  lift r i β lift s i"
  by (induct arbitrary: i set: beta) auto

theorem lift_preserves_beta': "r β* s  lift r i β* lift s i"
proof (induct set: rtranclp)
  case base
  then show ?case
    by (iprover intro: rtrancl_refl)
next
  case (step y z)
  then show ?case
    by (iprover intro: lift_preserves_beta rtranclp.simps)
qed

theorem subst_preserves_beta2 [simp]: "r β s  t[r/i] β* t[s/i]"
proof (induct t arbitrary: r s i)
  case (Var x)
  then show ?case
    by (simp add: subst_Var r_into_rtranclp)
next
  case (App t1 t2)
  then show ?case 
    by (simp add: rtrancl_beta_App)
next
  case (Abs t)
  then show ?case by (simp add: rtrancl_beta_Abs)
qed


theorem subst_preserves_beta2': "r β* s  t[r/i] β* t[s/i]"
proof (induct set: rtranclp)
  case base
  then show ?case by (iprover intro: rtrancl_refl)
next
  case (step y z)
  then show ?case
    by (iprover intro: rtranclp_trans subst_preserves_beta2)
qed

end