Theory Abs_Int3

(* Author: Tobias Nipkow *)

section "Widening and Narrowing"

theory Abs_Int3
imports Abs_Int2_ivl
begin

class WN = SL_top +
fixes widen :: "'a  'a  'a" (infix  65)
assumes widen1: "x  x  y"
assumes widen2: "y  x  y"
fixes narrow :: "'a  'a  'a" (infix  65)
assumes narrow1: "y  x  y  x  y"
assumes narrow2: "y  x  x  y  x"


subsection "Intervals"

instantiation ivl :: WN
begin

definition "widen_ivl ivl1 ivl2 =
  (⌦‹if is_empty ivl1 then ivl2 else
   if is_empty ivl2 then ivl1 else›
     case (ivl1,ivl2) of (I l1 h1, I l2 h2) 
       I (if le_option False l2 l1  l2  l1 then None else l1)
         (if le_option True h1 h2  h1  h2 then None else h1))"

definition "narrow_ivl ivl1 ivl2 =
  (⌦‹if is_empty ivl1 ∨ is_empty ivl2 then empty else›
     case (ivl1,ivl2) of (I l1 h1, I l2 h2) 
       I (if l1 = None then l2 else l1)
         (if h1 = None then h2 else h1))"

instance
proof qed
  (auto simp add: widen_ivl_def narrow_ivl_def le_option_def le_ivl_def empty_def split: ivl.split option.split if_splits)

end


subsection "Abstract State"

instantiation st :: (WN)WN
begin

definition "widen_st F1 F2 =
  FunDom (λx. fun F1 x  fun F2 x) (inter_list (dom F1) (dom F2))"

definition "narrow_st F1 F2 =
  FunDom (λx. fun F1 x  fun F2 x) (inter_list (dom F1) (dom F2))"

instance
proof (standard, goal_cases)
  case 1 thus ?case
    by(simp add: widen_st_def le_st_def lookup_def widen1)
next
  case 2 thus ?case
    by(simp add: widen_st_def le_st_def lookup_def widen2)
next
  case 3 thus ?case
    by(auto simp: narrow_st_def le_st_def lookup_def narrow1)
next
  case 4 thus ?case
    by(auto simp: narrow_st_def le_st_def lookup_def narrow2)
qed

end


subsection "Option"

instantiation option :: (WN)WN
begin

fun widen_option where
"None  x = x" |
"x  None = x" |
"(Some x)  (Some y) = Some(x  y)"

fun narrow_option where
"None  x = None" |
"x  None = None" |
"(Some x)  (Some y) = Some(x  y)"

instance
proof (standard, goal_cases)
  case (1 x y) show ?case
    by(induct x y rule: widen_option.induct) (simp_all add: widen1)
next
  case (2 x y) show ?case
    by(induct x y rule: widen_option.induct) (simp_all add: widen2)
next
  case (3 x y) thus ?case
    by(induct x y rule: narrow_option.induct) (simp_all add: narrow1)
next
  case (4 y x) thus ?case
    by(induct x y rule: narrow_option.induct) (simp_all add: narrow2)
qed

end


subsection "Annotated commands"

fun map2_acom :: "('a  'a  'a)  'a acom  'a acom  'a acom" where
"map2_acom f (SKIP {a1}) (SKIP {a2}) = (SKIP {f a1 a2})" |
"map2_acom f (x ::= e {a1}) (x' ::= e' {a2}) = (x ::= e {f a1 a2})" |
"map2_acom f (c1;;c2) (c1';;c2') = (map2_acom f c1 c1';; map2_acom f c2 c2')" |
"map2_acom f (IF b THEN c1 ELSE c2 {a1}) (IF b' THEN c1' ELSE c2' {a2}) =
  (IF b THEN map2_acom f c1 c1' ELSE map2_acom f c2 c2' {f a1 a2})" |
"map2_acom f ({a1} WHILE b DO c {a2}) ({a3} WHILE b' DO c' {a4}) =
  ({f a1 a3} WHILE b DO map2_acom f c c' {f a2 a4})"

abbreviation widen_acom :: "('a::WN)acom  'a acom  'a acom" (infix c 65)
where "widen_acom == map2_acom (∇)"

abbreviation narrow_acom :: "('a::WN)acom  'a acom  'a acom" (infix c 65)
where "narrow_acom == map2_acom (△)"

lemma widen1_acom: "strip c = strip c'  c  c c c'"
by(induct c c' rule: le_acom.induct)(simp_all add: widen1)

lemma widen2_acom: "strip c = strip c'  c'  c c c'"
by(induct c c' rule: le_acom.induct)(simp_all add: widen2)

lemma narrow1_acom: "y  x  y  x c y"
by(induct y x rule: le_acom.induct) (simp_all add: narrow1)

lemma narrow2_acom: "y  x  x c y  x"
by(induct y x rule: le_acom.induct) (simp_all add: narrow2)


subsection "Post-fixed point computation"

definition iter_widen :: "('a acom  'a acom)  'a acom  ('a::WN)acom option"
where "iter_widen f = while_option (λc. ¬ f c  c) (λc. c c f c)"

definition iter_narrow :: "('a acom  'a acom)  'a acom  'a::WN acom option"
where "iter_narrow f = while_option (λc. ¬ c  c c f c) (λc. c c f c)"

definition pfp_wn ::
  "(('a::WN)option acom  'a option acom)  com  'a option acom option"
where "pfp_wn f c = (case iter_widen f (c c) of None  None
                     | Some c'  iter_narrow f c')"

lemma strip_map2_acom:
 "strip c1 = strip c2  strip(map2_acom f c1 c2) = strip c1"
by(induct f c1 c2 rule: map2_acom.induct) simp_all

lemma iter_widen_pfp: "iter_widen f c = Some c'  f c'  c'"
by(auto simp add: iter_widen_def dest: while_option_stop)

lemma strip_while: fixes f :: "'a acom  'a acom"
assumes "c. strip (f c) = strip c" and "while_option P f c = Some c'"
shows "strip c' = strip c"
using while_option_rule[where P = "λc'. strip c' = strip c", OF _ assms(2)]
by (metis assms(1))

lemma strip_iter_widen: fixes f :: "'a::WN acom  'a acom"
assumes "c. strip (f c) = strip c" and "iter_widen f c = Some c'"
shows "strip c' = strip c"
proof-
  have "c. strip(c c f c) = strip c" by (metis assms(1) strip_map2_acom)
  from strip_while[OF this] assms(2) show ?thesis by(simp add: iter_widen_def)
qed

lemma iter_narrow_pfp: assumes "mono f" and "f c0  c0"
and "iter_narrow f c0 = Some c"
shows "f c  c  c  c0" (is "?P c")
proof-
  { fix c assume "?P c"
    note 1 = conjunct1[OF this] and 2 = conjunct2[OF this]
    let ?c' = "c c f c"
    have "?P ?c'"
    proof
      have "f ?c'  f c"  by(rule monoD[OF mono f narrow2_acom[OF 1]])
      also have "  ?c'" by(rule narrow1_acom[OF 1])
      finally show "f ?c'  ?c'" .
      have "?c'  c" by (rule narrow2_acom[OF 1])
      also have "c  c0" by(rule 2)
      finally show "?c'  c0" .
    qed
  }
  with while_option_rule[where P = ?P, OF _ assms(3)[simplified iter_narrow_def]]
    assms(2) le_refl
  show ?thesis by blast
qed

lemma pfp_wn_pfp:
  " mono f;  pfp_wn f c = Some c'   f c'  c'"
unfolding pfp_wn_def
by (auto dest: iter_widen_pfp iter_narrow_pfp split: option.splits)

lemma strip_pfp_wn:
  " c. strip(f c) = strip c; pfp_wn f c = Some c'   strip c' = c"
apply(auto simp add: pfp_wn_def iter_narrow_def split: option.splits)
by (metis (mono_tags) strip_map2_acom strip_while strip_bot_acom strip_iter_widen)

locale Abs_Int2 = Abs_Int1_mono
where γ=γ for γ :: "'av::{WN,L_top_bot}  val set"
begin

definition AI_wn :: "com  'av st option acom option" where
"AI_wn = pfp_wn (step' )"

lemma AI_wn_sound: "AI_wn c = Some c'  CS c  γc c'"
proof(simp add: CS_def AI_wn_def)
  assume 1: "pfp_wn (step' ) c = Some c'"
  from pfp_wn_pfp[OF mono_step'2 1]
  have 2: "step'  c'  c'" .
  have 3: "strip (γc (step'  c')) = c" by(simp add: strip_pfp_wn[OF _ 1])
  have "lfp (step UNIV) c  γc (step'  c')"
  proof(rule lfp_lowerbound[simplified,OF 3])
    show "step UNIV (γc (step'  c'))  γc (step'  c')"
    proof(rule step_preserves_le[OF _ _])
      show "UNIV  γo " by simp
      show "γc (step'  c')  γc c'" by(rule mono_gamma_c[OF 2])
    qed
  qed
  from this 2 show "lfp (step UNIV) c  γc c'"
    by (blast intro: mono_gamma_c order_trans)
qed

end

global_interpretation Abs_Int2
where γ = γ_ivl and num' = num_ivl and plus' = plus_ivl
and test_num' = in_ivl
and filter_plus' = filter_plus_ivl and filter_less' = filter_less_ivl
defines AI_ivl' = AI_wn
..


subsection "Tests"

definition "step_up_ivl n = ((λc. c c step_ivl  c)^^n)"
definition "step_down_ivl n = ((λc. c c step_ivl  c)^^n)"

text‹For @{const test3_ivl}, @{const AI_ivl} needed as many iterations as
the loop took to execute. In contrast, @{const AI_ivl'} converges in a
constant number of steps:›

value "show_acom (step_up_ivl 1 (c test3_ivl))"
value "show_acom (step_up_ivl 2 (c test3_ivl))"
value "show_acom (step_up_ivl 3 (c test3_ivl))"
value "show_acom (step_up_ivl 4 (c test3_ivl))"
value "show_acom (step_up_ivl 5 (c test3_ivl))"
value "show_acom (step_down_ivl 1 (step_up_ivl 5 (c test3_ivl)))"
value "show_acom (step_down_ivl 2 (step_up_ivl 5 (c test3_ivl)))"
value "show_acom (step_down_ivl 3 (step_up_ivl 5 (c test3_ivl)))"

text‹Now all the analyses terminate:›

value "show_acom_opt (AI_ivl' test4_ivl)"
value "show_acom_opt (AI_ivl' test5_ivl)"
value "show_acom_opt (AI_ivl' test6_ivl)"


subsection "Termination: Intervals"

definition m_ivl :: "ivl  nat" where
"m_ivl ivl = (case ivl of I l h 
     (case l of None  0 | Some _  1) + (case h of None  0 | Some _  1))"

lemma m_ivl_height: "m_ivl ivl  2"
by(simp add: m_ivl_def split: ivl.split option.split)

lemma m_ivl_anti_mono: "(y::ivl)  x  m_ivl x  m_ivl y"
by(auto simp: m_ivl_def le_option_def le_ivl_def
        split: ivl.split option.split if_splits)

lemma m_ivl_widen:
  "~ y  x  m_ivl(x  y) < m_ivl x"
by(auto simp: m_ivl_def widen_ivl_def le_option_def le_ivl_def
        split: ivl.splits option.splits if_splits)

lemma Top_less_ivl: "  x  m_ivl x = 0"
by(auto simp: m_ivl_def le_option_def le_ivl_def empty_def Top_ivl_def
        split: ivl.split option.split if_splits)


definition n_ivl :: "ivl  nat" where
"n_ivl ivl = 2 - m_ivl ivl"

lemma n_ivl_mono: "(x::ivl)  y  n_ivl x  n_ivl y"
unfolding n_ivl_def by (metis diff_le_mono2 m_ivl_anti_mono)

lemma n_ivl_narrow:
  "~ x  x  y  n_ivl(x  y) < n_ivl x"
by(auto simp: n_ivl_def m_ivl_def narrow_ivl_def le_option_def le_ivl_def
        split: ivl.splits option.splits if_splits)


subsection "Termination: Abstract State"

definition "m_st m st = (xset(dom st). m(fun st x))"

lemma m_st_height: assumes "finite X" and "set (dom S)  X"
shows "m_st m_ivl S  2 * card X"
proof(auto simp: m_st_def)
  have "(xset(dom S). m_ivl (fun S x))  (xset(dom S). 2)" (is "?L  _")
    by(rule sum_mono)(simp add:m_ivl_height)
  also have "  (xX. 2)"
    by(rule sum_mono2[OF assms]) simp
  also have " = 2 * card X" by(simp)
  finally show "?L  " .
qed

lemma m_st_anti_mono:
  "S1  S2  m_st m_ivl S2  m_st m_ivl S1"
proof(auto simp: m_st_def le_st_def lookup_def split: if_splits)
  let ?X = "set(dom S1)" let ?Y = "set(dom S2)"
  let ?f = "fun S1" let ?g = "fun S2"
  assume asm: "x?Y. (x  ?X  ?f x  ?g x)  (x  ?X    ?g x)"
  hence 1: "y?Y?X. m_ivl(?g y)  m_ivl(?f y)" by(simp add: m_ivl_anti_mono)
  have 0: "x?Y-?X. m_ivl(?g x) = 0" using asm by (auto simp: Top_less_ivl)
  have "(y?Y. m_ivl(?g y)) = (y(?Y-?X)  (?Y?X). m_ivl(?g y))"
    by (metis Un_Diff_Int)
  also have " = (y?Y-?X. m_ivl(?g y)) + (y?Y?X. m_ivl(?g y))"
    by(subst sum.union_disjoint) auto
  also have "(y?Y-?X. m_ivl(?g y)) = 0" using 0 by simp
  also have "0 + (y?Y?X. m_ivl(?g y)) = (y?Y?X. m_ivl(?g y))" by simp
  also have "  (y?Y?X. m_ivl(?f y))"
    by(rule sum_mono)(simp add: 1)
  also have "  (y?X. m_ivl(?f y))"
    by(simp add: sum_mono2[of "?X" "?Y Int ?X", OF _ Int_lower2])
  finally show "(y?Y. m_ivl(?g y))  (x?X. m_ivl(?f x))" .
qed

lemma m_st_widen:
assumes "¬ S2  S1" shows "m_st m_ivl (S1  S2) < m_st m_ivl S1"
proof-
  { let ?X = "set(dom S1)" let ?Y = "set(dom S2)"
    let ?f = "fun S1" let ?g = "fun S2"
    fix x assume "x  ?X" "¬ lookup S2 x  ?f x"
    have "(x?X?Y. m_ivl(?f x  ?g x)) < (x?X. m_ivl(?f x))" (is "?L < ?R")
    proof cases
      assume "x : ?Y"
      have "?L < (x?X?Y. m_ivl(?f x))"
      proof(rule sum_strict_mono_ex1, simp)
        show "x?X?Y. m_ivl(?f x  ?g x)  m_ivl (?f x)"
          by (metis m_ivl_anti_mono widen1)
      next
        show "x?X?Y. m_ivl(?f x  ?g x) < m_ivl(?f x)"
          using x:?X x:?Y ¬ lookup S2 x  ?f x
          by (metis IntI m_ivl_widen lookup_def)
      qed
      also have "  ?R" by(simp add: sum_mono2[OF _ Int_lower1])
      finally show ?thesis .
    next
      assume "x ~: ?Y"
      have "?L  (x?X?Y. m_ivl(?f x))"
      proof(rule sum_mono, simp)
        fix x assume "x:?X  x:?Y" show "m_ivl(?f x  ?g x)  m_ivl (?f x)"
          by (metis m_ivl_anti_mono widen1)
      qed
      also have " < m_ivl(?f x) + "
        using m_ivl_widen[OF ¬ lookup S2 x  ?f x]
        by (metis Nat.le_refl add_strict_increasing gr0I not_less0)
      also have " = (yinsert x (?X?Y). m_ivl(?f y))"
        using x ~: ?Y by simp
      also have "  (x?X. m_ivl(?f x))"
        by(rule sum_mono2)(insert x:?X, auto)
      finally show ?thesis .
    qed
  } with assms show ?thesis
    by(auto simp: le_st_def widen_st_def m_st_def Int_def)
qed

definition "n_st m X st = (xX. m(lookup st x))"

lemma n_st_mono: assumes "set(dom S1)  X" "set(dom S2)  X" "S1  S2"
shows "n_st n_ivl X S1  n_st n_ivl X S2"
proof-
  have "(xX. n_ivl(lookup S1 x))  (xX. n_ivl(lookup S2 x))"
    apply(rule sum_mono) using assms
    by(auto simp: le_st_def lookup_def n_ivl_mono split: if_splits)
  thus ?thesis by(simp add: n_st_def)
qed

lemma n_st_narrow:
assumes "finite X" and "set(dom S1)  X" "set(dom S2)  X"
and "S2  S1" "¬ S1  S1  S2"
shows "n_st n_ivl X (S1  S2) < n_st n_ivl X S1"
proof-
  have 1: "xX. n_ivl (lookup (S1  S2) x)  n_ivl (lookup S1 x)"
    using assms(2-4)
    by(auto simp: le_st_def narrow_st_def lookup_def n_ivl_mono narrow2
            split: if_splits)
  have 2: "xX. n_ivl (lookup (S1  S2) x) < n_ivl (lookup S1 x)"
    using assms(2-5)
    by(auto simp: le_st_def narrow_st_def lookup_def intro: n_ivl_narrow
            split: if_splits)
  have "(xX. n_ivl(lookup (S1  S2) x)) < (xX. n_ivl(lookup S1 x))"
    apply(rule sum_strict_mono_ex1[OF finite X]) using 1 2 by blast+
  thus ?thesis by(simp add: n_st_def)
qed


subsection "Termination: Option"

definition "m_o m n opt = (case opt of None  n+1 | Some x  m x)"

lemma m_o_anti_mono: "finite X  domo S2  X  S1  S2 
  m_o (m_st m_ivl) (2 * card X) S2  m_o (m_st m_ivl) (2 * card X) S1"
apply(induction S1 S2 rule: le_option.induct)
apply(auto simp: domo_def m_o_def m_st_anti_mono le_SucI m_st_height
           split: option.splits)
done

lemma m_o_widen: " finite X; domo S2  X; ¬ S2  S1  
  m_o (m_st m_ivl) (2 * card X) (S1  S2) < m_o (m_st m_ivl) (2 * card X) S1"
by(auto simp: m_o_def domo_def m_st_height less_Suc_eq_le m_st_widen
        split: option.split)

definition "n_o n opt = (case opt of None  0 | Some x  n x + 1)"

lemma n_o_mono: "domo S1  X  domo S2  X  S1  S2 
  n_o (n_st n_ivl X) S1  n_o (n_st n_ivl X) S2"
apply(induction S1 S2 rule: le_option.induct)
apply(auto simp: domo_def n_o_def n_st_mono
           split: option.splits)
done

lemma n_o_narrow:
  " finite X; domo S1  X; domo S2  X; S2  S1; ¬ S1  S1  S2 
   n_o (n_st n_ivl X) (S1  S2) < n_o (n_st n_ivl X) S1"
apply(induction S1 S2 rule: narrow_option.induct)
apply(auto simp: n_o_def domo_def n_st_narrow)
done

lemma domo_widen_subset: "domo (S1  S2)  domo S1  domo S2"
apply(induction S1 S2 rule: widen_option.induct)
apply (auto simp: domo_def widen_st_def)
done

lemma domo_narrow_subset: "domo (S1  S2)  domo S1  domo S2"
apply(induction S1 S2 rule: narrow_option.induct)
apply (auto simp: domo_def narrow_st_def)
done

subsection "Termination: Commands"

lemma strip_widen_acom[simp]:
  "strip c' = strip (c::'a::WN acom)   strip (c c c') = strip c"
by(induction "widen::'a'a'a" c c' rule: map2_acom.induct) simp_all

lemma strip_narrow_acom[simp]:
  "strip c' = strip (c::'a::WN acom)   strip (c c c') = strip c"
by(induction "narrow::'a'a'a" c c' rule: map2_acom.induct) simp_all

lemma annos_widen_acom[simp]: "strip c1 = strip (c2::'a::WN acom) 
  annos(c1 c c2) = map (%(x,y).xy) (zip (annos c1) (annos(c2::'a::WN acom)))"
by(induction "widen::'a'a'a" c1 c2 rule: map2_acom.induct)
  (simp_all add: size_annos_same2)

lemma annos_narrow_acom[simp]: "strip c1 = strip (c2::'a::WN acom) 
  annos(c1 c c2) = map (%(x,y).xy) (zip (annos c1) (annos(c2::'a::WN acom)))"
by(induction "narrow::'a'a'a" c1 c2 rule: map2_acom.induct)
  (simp_all add: size_annos_same2)

lemma widen_acom_Com[simp]: "strip c2 = strip c1 
  c1 : Com X  c2 : Com X  (c1 c c2) : Com X"
apply(auto simp add: Com_def)
apply(rename_tac S S' x)
apply(erule in_set_zipE)
apply(auto simp: domo_def split: option.splits)
apply(case_tac S)
apply(case_tac S')
apply simp
apply fastforce
apply(case_tac S')
apply fastforce
apply (fastforce simp: widen_st_def)
done

lemma narrow_acom_Com[simp]: "strip c2 = strip c1 
  c1 : Com X  c2 : Com X  (c1 c c2) : Com X"
apply(auto simp add: Com_def)
apply(rename_tac S S' x)
apply(erule in_set_zipE)
apply(auto simp: domo_def split: option.splits)
apply(case_tac S)
apply(case_tac S')
apply simp
apply fastforce
apply(case_tac S')
apply fastforce
apply (fastforce simp: narrow_st_def)
done

definition "m_c m c = (let as = annos c in i=0..<size as. m(as!i))"

lemma measure_m_c: "finite X  {(c, c c c') |c c'::ivl st option acom.
     strip c' = strip c  c : Com X  c' : Com X  ¬ c'  c}¯
     measure(m_c(m_o (m_st m_ivl) (2*card(X))))"
apply(auto simp: m_c_def Let_def Com_def)
apply(subgoal_tac "length(annos c') = length(annos c)")
prefer 2 apply (simp add: size_annos_same2)
apply (auto)
apply(rule sum_strict_mono_ex1)
apply simp
apply (clarsimp)
apply(erule m_o_anti_mono)
apply(rule subset_trans[OF domo_widen_subset])
apply fastforce
apply(rule widen1)
apply(auto simp: le_iff_le_annos listrel_iff_nth)
apply(rule_tac x=n in bexI)
prefer 2 apply simp
apply(erule m_o_widen)
apply (simp)+
done

lemma measure_n_c: "finite X  {(c, c c c') |c c'.
  strip c = strip c'  c  Com X  c'  Com X  c'  c  ¬ c  c c c'}¯
   measure(m_c(n_o (n_st n_ivl X)))"
apply(auto simp: m_c_def Let_def Com_def)
apply(subgoal_tac "length(annos c') = length(annos c)")
prefer 2 apply (simp add: size_annos_same2)
apply (auto)
apply(rule sum_strict_mono_ex1)
apply simp
apply (clarsimp)
apply(rule n_o_mono)
using domo_narrow_subset apply fastforce
apply fastforce
apply(rule narrow2)
apply(fastforce simp: le_iff_le_annos listrel_iff_nth)
apply(auto simp: le_iff_le_annos listrel_iff_nth)
apply(rule_tac x=n in bexI)
prefer 2 apply simp
apply(erule n_o_narrow)
apply (simp)+
done


subsection "Termination: Post-Fixed Point Iterations"

lemma iter_widen_termination:
fixes c0 :: "'a::WN acom"
assumes P_f: "c. P c  P(f c)"
assumes P_widen: "c c'. P c  P c'  P(c c c')"
and "wf({(c::'a acom,c c c')|c c'. P c  P c'  ~ c'  c}^-1)"
and "P c0" and "c0  f c0" shows "c. iter_widen f c0 = Some c"
proof(simp add: iter_widen_def, rule wf_while_option_Some[where P = "P"])
  show "wf {(cc', c). (P c  ¬ f c  c)  cc' = c c f c}"
    apply(rule wf_subset[OF assms(3)]) by(blast intro: P_f)
next
  show "P c0" by(rule P c0)
next
  fix c assume "P c" thus "P (c c f c)" by(simp add: P_f P_widen)
qed

lemma iter_narrow_termination:
assumes P_f: "c. P c  P(c c f c)"
and wf: "wf({(c, c c f c)|c c'. P c  ~ c  c c f c}^-1)"
and "P c0" shows "c. iter_narrow f c0 = Some c"
proof(simp add: iter_narrow_def, rule wf_while_option_Some[where P = "P"])
  show "wf {(c', c). (P c  ¬ c  c c f c)  c' = c c f c}"
    apply(rule wf_subset[OF wf]) by(blast intro: P_f)
next
  show "P c0" by(rule P c0)
next
  fix c assume "P c" thus "P (c c f c)" by(simp add: P_f)
qed

lemma iter_winden_step_ivl_termination:
  "c. iter_widen (step_ivl ) (c c0) = Some c"
apply(rule iter_widen_termination[where
  P = "%c. strip c = c0  c : Com(vars c0)"])
apply (simp_all add: step'_Com bot_acom)
apply(rule wf_subset)
apply(rule wf_measure)
apply(rule subset_trans)
prefer 2
apply(rule measure_m_c[where X = "vars c0", OF finite_cvars])
apply blast
done

lemma iter_narrow_step_ivl_termination:
  "c0  Com (vars(strip c0))  step_ivl  c0  c0 
  c. iter_narrow (step_ivl ) c0 = Some c"
apply(rule iter_narrow_termination[where
  P = "%c. strip c = strip c0  c : Com(vars(strip c0))  step_ivl  c  c"])
apply (simp_all add: step'_Com)
apply(clarify)
apply(frule narrow2_acom, drule mono_step'[OF le_refl], erule le_trans[OF _ narrow1_acom])
apply assumption
apply(rule wf_subset)
apply(rule wf_measure)
apply(rule subset_trans)
prefer 2
apply(rule measure_n_c[where X = "vars(strip c0)", OF finite_cvars])
apply auto
by (metis bot_least domo_Top order_refl step'_Com strip_step')

(* FIXME: simplify type system: Combine Com(X) and vars <= X?? *)
lemma while_Com:
fixes c :: "'a st option acom"
assumes "while_option P f c = Some c'"
and "!!c. strip(f c) = strip c"
and "c::'a st option acom. c : Com(X)  vars(strip c)  X  f c : Com(X)"
and "c : Com(X)" and "vars(strip c)  X" shows "c' : Com(X)"
using while_option_rule[where P = "λc'. c' : Com(X)  vars(strip c')  X", OF _ assms(1)]
by(simp add: assms(2-))

lemma iter_widen_Com: fixes f :: "'a::WN st option acom  'a st option acom"
assumes "iter_widen f c = Some c'"
and "c. c : Com(X)  vars(strip c)  X  f c : Com(X)"
and "!!c. strip(f c) = strip c"
and "c : Com(X)" and "vars (strip c)  X" shows "c' : Com(X)"
proof-
  have "c. c : Com(X)  vars(strip c)  X  c c f c : Com(X)"
    by (metis (full_types) widen_acom_Com assms(2,3))
  from while_Com[OF assms(1)[simplified iter_widen_def] _ this assms(4,5)]
  show ?thesis using assms(3) by(simp)
qed


context Abs_Int2
begin

lemma iter_widen_step'_Com:
  "iter_widen (step' ) c = Some c'  vars(strip c)  X  c : Com(X)
    c' : Com(X)"
apply(subgoal_tac "strip c'= strip c")
prefer 2 apply (metis strip_iter_widen strip_step')
apply(drule iter_widen_Com)
prefer 3 apply assumption
prefer 3 apply assumption
apply (auto simp: step'_Com)
done

end

theorem AI_ivl'_termination:
  "c'. AI_ivl' c = Some c'"
apply(auto simp: AI_wn_def pfp_wn_def iter_winden_step_ivl_termination split: option.split)
apply(rule iter_narrow_step_ivl_termination)
apply (metis bot_acom_Com iter_widen_step'_Com[OF _ subset_refl] strip_iter_widen strip_step')
apply(erule iter_widen_pfp)
done

end


(* interesting(?) relic
lemma widen_assoc:
  "~ (y::ivl) ⊑ x ⟹ ~ z ⊑ x ∇ y ⟹ ((x::ivl) ∇ y) ∇ z = x ∇ (y ∇ z)"
apply(cases x)
apply(cases y)
apply(cases z)
apply(rename_tac x1 x2 y1 y2 z1 z2)
apply(simp add: le_ivl_def)
apply(case_tac x1)
apply(case_tac x2)
apply(simp add:le_option_def widen_ivl_def split: if_splits option.splits)
apply(simp add:le_option_def widen_ivl_def split: if_splits option.splits)
apply(case_tac x2)
apply(simp add:le_option_def widen_ivl_def split: if_splits option.splits)
apply(case_tac y1)
apply(case_tac y2)
apply(simp add:le_option_def widen_ivl_def split: if_splits option.splits)
apply(case_tac z1)
apply(auto simp add:le_option_def widen_ivl_def split: if_splits option.splits ivl.splits)[1]
apply(auto simp add:le_option_def widen_ivl_def split: if_splits option.splits ivl.splits)[1]
apply(case_tac y2)
apply(auto simp add:le_option_def widen_ivl_def split: if_splits option.splits ivl.splits)[1]
apply(case_tac z1)
apply(auto simp add:le_option_def widen_ivl_def split: if_splits ivl.splits option.splits)[1]
apply(case_tac z2)
apply(auto simp add:le_option_def widen_ivl_def split: if_splits option.splits)[1]
apply(auto simp add:le_option_def widen_ivl_def split: if_splits option.splits)[1]
done

lemma widen_step_trans:
  "~ (y::ivl) ⊑ x ⟹ ~ z ⊑ x ∇ y ⟹ ∃u. (x ∇ y) ∇ z = x ∇ u ∧ ~ u ⊑ x"
by (metis widen_assoc preord_class.le_trans widen1)
*)