Theory IOA

section ‹I/O Automata with Finite-Trace Semantics›

theory IOA
imports Main Sequences
begin

text ‹This theory is inspired and draws material from the IOA theory of Nipkow and Müller›

locale IOA = Sequences

record 'a signature =
  inputs::"'a set"
  outputs::"'a set"
  internals::"'a set"

context IOA
begin 

subsection ‹Signatures›

definition actions :: "'a signature  'a set" where
  "actions asig  inputs asig  outputs asig  internals asig"

definition externals :: "'a signature  'a set" where
  "externals asig  inputs asig  outputs asig"

definition locals :: "'a signature  'a set" where
  "locals asig  internals asig  outputs asig"

definition is_asig :: "'a signature  bool" where
  "is_asig triple 
     inputs triple  outputs triple = {} 
     outputs triple  internals triple = {} 
     inputs triple  internals triple = {}"

lemma internal_inter_external:
  assumes "is_asig sig"
  shows "internals sig  externals sig = {}"
  using assms by (auto simp add:internals_def externals_def is_asig_def)

definition hide_asig where
  "hide_asig asig actns 
    inputs = inputs asig - actns, outputs = outputs asig - actns, 
      internals = internals asig actns"

end

subsection ‹I/O Automata›

type_synonym
  ('s,'a) transition = "'s × 'a × 's"

record ('s,'a) ioa = 
  asig::"'a signature"
  start::"'s set"
  trans::"('s,'a)transition set"

context IOA 
begin

abbreviation "act A  actions (asig A)"
abbreviation "ext A  externals (asig A)"
abbreviation int where "int A  internals (asig A)"
abbreviation "inp A  inputs (asig A)"
abbreviation "out A  outputs (asig A)"
abbreviation "local A  locals (asig A)"

definition is_ioa::"('s,'a) ioa  bool" where
  "is_ioa A  is_asig (asig A)
     ( triple   trans A . (fst o snd) triple  act A)"

definition hide where
  "hide A actns  Aasig := hide_asig (asig A) actns"

definition is_trans::"'s  'a  ('s,'a)ioa  's  bool" where
  "is_trans s1 a A s2  (s1,a,s2)  trans A"

notation
  is_trans  ("_ __ _" [81,81,81,81] 100)

definition rename_set where
  "rename_set A ren  {b.  x  A . ren b = Some x}"

definition rename where
"rename A ren 
  asig = inputs = rename_set (inp A) ren, 
    outputs = rename_set (out A) ren, 
    internals = rename_set (int A) ren,
   start = start A,
   trans = {tr.  x . ren (fst (snd tr)) = Some x  (fst tr) xA (snd (snd tr))}"

text ‹Reachable states and invariants›

inductive
  reachable :: "('s,'a) ioa  's  bool"
  for A :: "('s,'a) ioa"
  where
    reachable_0:  "s  start A  reachable A s"
  | reachable_n:  " reachable A s; s aA t   reachable A t"

definition invariant where 
  "invariant A P  ( s . reachable A s  P(s))"

theorem invariantI:
  fixes A P
  assumes " s . s  start A  P s"
  and " s t a . reachable A s; P s; s aA t  P t"
  shows "invariant A P"
proof -
  { fix s
    assume "reachable A s"
    hence "P s"
    proof (induct rule:reachable.induct)
      fix s
      assume "s  start A"
      thus "P s" using assms(1) by simp
    next
      fix a s t
      assume "reachable A s" and "P s" and " s aA t"
      thus "P t" using assms(2) by simp
    qed }
  thus ?thesis by (simp add:invariant_def)
qed

end

subsection ‹Composition of Families of I/O Automata›

record ('id, 'a) family =
  ids :: "'id set"
  memb :: "'id  'a"

context IOA
begin

definition is_ioa_fam where
  "is_ioa_fam fam   i  ids fam . is_ioa (memb fam i)"

definition compatible2  where
  "compatible2 A B 
   out A  out B = {} 
   int A  act B = {} 
   int B  act A = {}"

definition compatible::"('id, ('s,'a)ioa) family  bool" where
  "compatible fam  finite (ids fam) 
    ( i  ids fam .  j  ids fam . i  j 
      compatible2 (memb fam i) (memb fam j))"

definition asig_comp2 where
  "asig_comp2 A B 
     inputs = (inputs A  inputs B) - (outputs A  outputs B),
      outputs = outputs A  outputs B,
      internals = internals A  internals B"
      
definition asig_comp::"('id, ('s,'a)ioa) family  'a signature" where
  "asig_comp fam  
     inputs = i(ids fam). inp (memb fam i) 
        - (i(ids fam). out (memb fam i)),
      outputs = i(ids fam). out (memb fam i),
      internals = i(ids fam). int (memb fam i) "

definition par2 (infixr "" 10) where
  "A  B 
      asig = asig_comp2 (asig A) (asig B),
       start = {pr. fst pr  start A  snd pr  start B},
       trans = {tr. 
        let s = fst tr; a = fst (snd tr); t = snd (snd tr)
        in (a  act A  a  act B)
            (if a  act A
              then fst s aA fst t
              else fst s = fst t)
            (if a  act B
              then snd s aB snd t
              else snd s = snd t) }"
                
definition par::"('id, ('s,'a)ioa) family  ('id  's,'a)ioa" where
  "par fam  let ids = ids fam; memb = memb fam in
       asig = asig_comp fam,
        start = {s .  iids . s i  start (memb i)},
        trans = { (s, a, s') . 
          ( iids . a  act (memb i))
           ( iids . 
              if a  act (memb i)
              then s i a(memb i) s' i
              else s i = (s' i)) } "

lemmas asig_simps = hide_asig_def is_asig_def locals_def externals_def actions_def 
  hide_def compatible_def asig_comp_def
lemmas ioa_simps = rename_def rename_set_def is_trans_def is_ioa_def par_def

end

subsection ‹Executions and Traces›

type_synonym
   ('s,'a)pairs = "('a×'s) list"
type_synonym
   ('s,'a)execution = "'s × ('s,'a)pairs"
type_synonym
   'a trace = "'a list"
   
record ('s,'a)execution_module =
  execs::"('s,'a)execution set"
  asig::"'a signature"
  
record 'a trace_module =
  traces::"'a trace set"
  asig::"'a signature"

context IOA
begin

fun is_exec_frag_of::"('s,'a)ioa  ('s,'a)execution  bool" where
  "is_exec_frag_of A (s,(ps#p')#p) = 
    (snd p' fst pA snd p  is_exec_frag_of A (s, (ps#p')))"
| "is_exec_frag_of A (s, [p]) = s fst pA snd p"
| "is_exec_frag_of A (s, []) = True"

definition is_exec_of::"('s,'a)ioa  ('s,'a)execution  bool" where
  "is_exec_of A e  fst e  start A  is_exec_frag_of A e"
  
definition filter_act where
  "filter_act  map fst"

definition schedule where
  "schedule  filter_act o snd"

definition trace where
  "trace sig  filter (λ a . a  externals sig) o schedule"

definition is_schedule_of where
  "is_schedule_of A sch 
     ( e . is_exec_of A e  sch = filter_act (snd e))"

definition is_trace_of where
  "is_trace_of A tr 
     ( sch . is_schedule_of A sch  tr = filter (λ a. a  ext A) sch)"

definition traces where
  "traces A  {tr. is_trace_of A tr}"

lemma traces_alt:
  shows "traces A = {tr .  e . is_exec_of A e 
     tr = trace (ioa.asig A) e}"
proof -
  { fix t
    assume a:"t  traces A"
    have " e . is_exec_of A e  trace (ioa.asig A) e = t"
    proof -
      from a obtain sch where 1:"is_schedule_of A sch" 
        and 2:"t = filter (λ a. a  ext A) sch"
        by (auto simp add:traces_def is_trace_of_def)
      from 1 obtain e where 3:"is_exec_of A e" and 4:"sch = filter_act (snd e)"
        by (auto simp add:is_schedule_of_def)
      from 4 and 2 have "trace (ioa.asig A) e = t"
        by (simp add:trace_def schedule_def)
      with 3 show ?thesis by fast
    qed }
  moreover
  { fix e
    assume "is_exec_of A e"
    hence "trace (ioa.asig A) e  traces A"
      by (force simp add:trace_def schedule_def traces_def 
          is_trace_of_def is_schedule_of_def is_exec_of_def) }
  ultimately show ?thesis by blast
qed

lemmas trace_simps = traces_def is_trace_of_def is_schedule_of_def filter_act_def is_exec_of_def
  trace_def schedule_def

definition proj_trace::"'a trace  ('a signature)  'a trace" (infixr "¦" 12) where
  "proj_trace t sig  filter (λ a . a  actions sig) t"

definition ioa_implements :: "('s1,'a)ioa  ('s2,'a)ioa  bool"   (infixr "=<|" 12) where
  "A =<| B  inp A = inp B  out A = out B  traces A  traces B"

subsection ‹Operations on Executions›

definition cons_exec where
  "cons_exec e p  (fst e, (snd e)#p)"

definition append_exec where
  "append_exec e e'  (fst e, (snd e)@(snd e'))"

fun last_state where
  "last_state (s,[]) = s"
| "last_state (s,ps#p) = snd p"

lemma last_state_reachable:
  fixes A e
  assumes "is_exec_of A e"
  shows "reachable A (last_state e)" using assms
proof -
  have "is_exec_of A e  reachable A (last_state e)"
  proof (induction "snd e" arbitrary: e)
    case Nil
    from Nil.prems have 1:"fst e  start A" by (simp add:is_exec_of_def)
    from Nil.hyps have 2:"last_state e = fst e" by (metis last_state.simps(1) surjective_pairing)
    from 1 and 2 and Nil.hyps show ?case by (metis reachable_0)
  next
    case (Cons p ps e)
    let ?e' = "(fst e, ps)"
    have ih:"reachable A (last_state ?e')"
    proof -
      from Cons.prems and Cons.hyps(2) have "is_exec_of A ?e'"
        by (simp add:is_exec_of_def)
          (metis (full_types) IOA.is_exec_frag_of.simps(1) IOA.is_exec_frag_of.simps(3) 
            neq_Nil_conv prod.collapse) 
      with Cons.hyps(1) show ?thesis by auto
    qed
    from Cons.prems and Cons.hyps(2) have "(last_state ?e')(fst p)A(snd p)"
      by (simp add:is_exec_of_def) (cases "(A,fst e,ps#p)" rule:is_exec_frag_of.cases, auto)
    with ih and Cons.hyps(2) show ?case
      by (metis last_state.simps(2) reachable.simps surjective_pairing)
  qed
  thus ?thesis using assms by fastforce
qed

lemma trans_from_last_state:
  assumes "is_exec_frag_of A e" and "(last_state e)aAs'"
  shows "is_exec_frag_of A (cons_exec e  (a,s'))"
    using assms by (cases "(A, fst e, snd e)" rule:is_exec_frag_of.cases, auto simp add:cons_exec_def)

lemma exec_frag_prefix:
  fixes A p ps
  assumes "is_exec_frag_of A (cons_exec e p)"
  shows "is_exec_frag_of A e"
    using assms by (cases "(A, fst e, snd e)" rule:is_exec_frag_of.cases, auto simp add:cons_exec_def)

lemma trace_same_ext:
  fixes A B e
  assumes "ext A = ext B"
  shows "trace (ioa.asig A) e = trace (ioa.asig B) e" 
  using assms by (auto simp add:trace_def)

lemma trace_append_is_append_trace:
  fixes e e' sig
  shows "trace sig (append_exec e' e) = trace sig e' @ trace sig e"
  by (simp add:append_exec_def trace_def schedule_def filter_act_def)

lemma append_exec_frags_is_exec_frag:
  fixes e e' A as
  assumes "is_exec_frag_of A e" and "last_state e = fst e'" 
  and "is_exec_frag_of A e'"
  shows "is_exec_frag_of A (append_exec e e')"
proof -
  from assms show ?thesis
  proof (induct "(fst e',snd e')" arbitrary:e' rule:is_exec_frag_of.induct)
    case (3 A)
    from "3.hyps" and "3.prems"(1)
    show ?case by (simp add:append_exec_def)
  next
    case (2 A p)
    have "last_state e (fst p)A snd p" using "2.prems"(2,3) and "2.hyps" 
      by (metis is_exec_frag_of.simps(2) prod.collapse)
    hence "is_exec_frag_of A (fst e, (snd e)#p)" using "2.prems"(1) 
      by (metis cons_exec_def prod.collapse trans_from_last_state)
    moreover 
    have "append_exec e e' = (fst e, (snd e)#p)" using "2.hyps" 
      by (metis append_Cons append_Nil append_exec_def)
    ultimately 
    show ?case by auto
  next
    case (1 A ps p' p e')
    have "is_exec_frag_of A (fst e, (snd e)@((ps#p')#p))"
    proof -
      have "is_exec_frag_of A (fst e, (snd e)@(ps#p'))" 
        by (metis "1.hyps" "1.prems" append_exec_def cons_exec_def 
            exec_frag_prefix fst_conv prod_eqI snd_conv)
      moreover
      have "snd p' (fst p)A snd p" using "1.prems"(3) "1.hyps"(2) 
        by (metis is_exec_frag_of.simps(1) prod.collapse)
      ultimately show ?thesis by simp
    qed
    moreover have "append_exec e e' = (fst e, (snd e)@((ps#p')#p))" 
      by (metis "1.hyps"(2) append_exec_def)
    ultimately show ?case by simp
  qed
qed

lemma last_state_of_append:
  fixes e e'
  assumes "fst e' = last_state e"
  shows "last_state (append_exec e e') = last_state e'"
  using assms by (cases e' rule:last_state.cases, auto simp add:append_exec_def)

end

end