Theory AOT_semantics
theory AOT_semantics
imports AOT_syntax
begin
section‹Abstract Semantics for AOT›
specification(AOT_denotes)
AOT_sem_denotes: ‹[w ⊨ τ↓] = AOT_model_denotes τ›
by (rule exI[where x=‹λ τ . ε⇩𝗈 w . AOT_model_denotes τ›])
(simp add: AOT_model_proposition_choice_simp)
lemma AOT_sem_var_induct[induct type: AOT_var]:
assumes AOT_denoting_term_case: ‹⋀ τ . [v ⊨ τ↓] ⟹ [v ⊨ φ{τ}]›
shows ‹[v ⊨ φ{α}]›
by (simp add: AOT_denoting_term_case AOT_sem_denotes AOT_term_of_var)
text‹\linelabel{AOT_imp_spec}›
specification(AOT_imp)
AOT_sem_imp: ‹[w ⊨ φ → ψ] = ([w ⊨ φ] ⟶ [w ⊨ ψ])›
by (rule exI[where x=‹λ φ ψ . ε⇩𝗈 w . ([w ⊨ φ] ⟶ [w ⊨ ψ])›])
(simp add: AOT_model_proposition_choice_simp)
specification(AOT_not)
AOT_sem_not: ‹[w ⊨ ¬φ] = (¬[w ⊨ φ])›
by (rule exI[where x=‹λ φ . ε⇩𝗈 w . ¬[w ⊨ φ]›])
(simp add: AOT_model_proposition_choice_simp)
text‹\linelabel{AOT_box_spec}›
specification(AOT_box)
AOT_sem_box: ‹[w ⊨ □φ] = (∀ w . [w ⊨ φ])›
by (rule exI[where x=‹λ φ . ε⇩𝗈 w . ∀ w . [w ⊨ φ]›])
(simp add: AOT_model_proposition_choice_simp)
text‹\linelabel{AOT_act_spec}›
specification(AOT_act)
AOT_sem_act: ‹[w ⊨ ❙𝒜φ] = [w⇩0 ⊨ φ]›
by (rule exI[where x=‹λ φ . ε⇩𝗈 w . [w⇩0 ⊨ φ]›])
(simp add: AOT_model_proposition_choice_simp)
text‹Derived semantics for basic defined connectives.›
lemma AOT_sem_conj: ‹[w ⊨ φ & ψ] = ([w ⊨ φ] ∧ [w ⊨ ψ])›
using AOT_conj AOT_model_equiv_def AOT_sem_imp AOT_sem_not by auto
lemma AOT_sem_equiv: ‹[w ⊨ φ ≡ ψ] = ([w ⊨ φ] = [w ⊨ ψ])›
using AOT_equiv AOT_sem_conj AOT_model_equiv_def AOT_sem_imp by auto
lemma AOT_sem_disj: ‹[w ⊨ φ ∨ ψ] = ([w ⊨ φ] ∨ [w ⊨ ψ])›
using AOT_disj AOT_model_equiv_def AOT_sem_imp AOT_sem_not by auto
lemma AOT_sem_dia: ‹[w ⊨ ◇φ] = (∃ w . [w ⊨ φ])›
using AOT_dia AOT_sem_box AOT_model_equiv_def AOT_sem_not by auto
specification(AOT_forall)
AOT_sem_forall: ‹[w ⊨ ∀α φ{α}] = (∀ τ . [w ⊨ τ↓] ⟶ [w ⊨ φ{τ}])›
by (rule exI[where x=‹λ op . ε⇩𝗈 w . ∀ τ . [w ⊨ τ↓] ⟶ [w ⊨ «op τ»]›])
(simp add: AOT_model_proposition_choice_simp)
lemma AOT_sem_exists: ‹[w ⊨ ∃α φ{α}] = (∃ τ . [w ⊨ τ↓] ∧ [w ⊨ φ{τ}])›
unfolding AOT_exists[unfolded AOT_model_equiv_def, THEN spec]
by (simp add: AOT_sem_forall AOT_sem_not)
text‹\linelabel{AOT_eq_spec}›
specification(AOT_eq)
AOT_sem_eq: ‹[w ⊨ τ = τ'] = ([w ⊨ τ↓] ∧ [w ⊨ τ'↓] ∧ τ = τ')›
by (rule exI[where x=‹λ τ τ' . ε⇩𝗈 w . [w ⊨ τ↓] ∧ [w ⊨ τ'↓] ∧ τ = τ'›])
(simp add: AOT_model_proposition_choice_simp)
text‹\linelabel{AOT_desc_spec}›
specification(AOT_desc)
AOT_sem_desc_denotes: ‹[w ⊨ ❙ιx(φ{x})↓] = (∃! κ . [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}])›
AOT_sem_desc_prop: ‹[w ⊨ ❙ιx(φ{x})↓] ⟹ [w⇩0 ⊨ φ{❙ιx(φ{x})}]›
AOT_sem_desc_unique: ‹[w ⊨ ❙ιx(φ{x})↓] ⟹ [w ⊨ κ↓] ⟹ [w⇩0 ⊨ φ{κ}] ⟹
[w ⊨ ❙ιx(φ{x}) = κ]›
proof -
have ‹∃x::'a . ¬AOT_model_denotes x›
using AOT_model_nondenoting_ex
by blast
text‹Note that we may choose a distinct non-denoting object for each matrix.
We do this explicitly merely to convince ourselves that our specification
can still be satisfied.›
then obtain nondenoting :: ‹('a ⇒ 𝗈) ⇒ 'a› where
nondenoting: ‹∀ φ . ¬AOT_model_denotes (nondenoting φ)›
by fast
define desc where
‹desc = (λ φ . if (∃! κ . [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}])
then (THE κ . [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}])
else nondenoting φ)›
{
fix φ :: ‹'a ⇒ 𝗈›
assume ex1: ‹∃! κ . [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}]›
then obtain κ where x_prop: "[w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}]"
unfolding AOT_sem_denotes by blast
moreover have "(desc φ) = κ"
unfolding desc_def using x_prop ex1 by fastforce
ultimately have "[w⇩0 ⊨ «desc φ»↓] ∧ [w⇩0 ⊨ «φ (desc φ)»]"
by blast
} note 1 = this
moreover {
fix φ :: ‹'a ⇒ 𝗈›
assume nex1: ‹∄! κ . [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}]›
hence "(desc φ) = nondenoting φ" by (simp add: desc_def AOT_sem_denotes)
hence "[w ⊨ ¬«desc φ»↓]" for w
by (simp add: AOT_sem_denotes nondenoting AOT_sem_not)
}
ultimately have desc_denotes_simp:
‹[w ⊨ «desc φ»↓] = (∃! κ . [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}])› for φ w
by (simp add: AOT_sem_denotes desc_def nondenoting)
have ‹(∀φ w. [w ⊨ «desc φ»↓] = (∃!κ. [w⇩0 ⊨ κ↓] ∧ [w⇩0 ⊨ φ{κ}])) ∧
(∀φ w. [w ⊨ «desc φ»↓] ⟶ [w⇩0 ⊨ «φ (desc φ)»]) ∧
(∀φ w κ. [w ⊨ «desc φ»↓] ⟶ [w ⊨ κ↓] ⟶ [w⇩0 ⊨ φ{κ}] ⟶
[w ⊨ «desc φ» = κ])›
by (insert 1; auto simp: desc_denotes_simp AOT_sem_eq AOT_sem_denotes
desc_def nondenoting)
thus ?thesis
by (safe intro!: exI[where x=desc]; presburger)
qed
text‹\linelabel{AOT_exe_lambda_spec}›
specification(AOT_exe AOT_lambda)
AOT_sem_exe: ‹[w ⊨ [Π]κ⇩1...κ⇩n] = ([w ⊨ Π↓] ∧ [w ⊨ κ⇩1...κ⇩n↓] ∧
[w ⊨ «Rep_rel Π κ⇩1κ⇩n»])›
AOT_sem_lambda_eta: ‹[w ⊨ Π↓] ⟹ [w ⊨ [λν⇩1...ν⇩n [Π]ν⇩1...ν⇩n] = Π]›
AOT_sem_lambda_beta: ‹[w ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]↓] ⟹ [w ⊨ κ⇩1...κ⇩n↓] ⟹
[w ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]κ⇩1...κ⇩n] = [w ⊨ φ{κ⇩1...κ⇩n}]›
AOT_sem_lambda_denotes: ‹[w ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]↓] =
(∀ v κ⇩1κ⇩n κ⇩1'κ⇩n' . [v ⊨ κ⇩1...κ⇩n↓] ∧ [v ⊨ κ⇩1'...κ⇩n'↓] ∧
(∀ Π v . [v ⊨ Π↓] ⟶ [v ⊨ [Π]κ⇩1...κ⇩n] = [v ⊨ [Π]κ⇩1'...κ⇩n']) ⟶
[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}])›
AOT_sem_lambda_coex: ‹[w ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]↓] ⟹
(∀ w κ⇩1κ⇩n . [w ⊨ κ⇩1...κ⇩n↓] ⟶ [w ⊨ φ{κ⇩1...κ⇩n}] = [w ⊨ ψ{κ⇩1...κ⇩n}]) ⟹
[w ⊨ [λν⇩1...ν⇩n ψ{ν⇩1...ν⇩n}]↓]›
AOT_sem_lambda_eq_prop_eq: ‹«[λν⇩1...ν⇩n φ]» = «[λν⇩1...ν⇩n ψ]» ⟹ φ = ψ›
AOT_sem_exe_denoting: ‹[w ⊨ Π↓] ⟹ AOT_exe Π κs = Rep_rel Π κs›
AOT_sem_exe_equiv: ‹AOT_model_term_equiv x y ⟹ AOT_exe Π x = AOT_exe Π y›
proof -
have ‹∃ x :: <'a> . ¬AOT_model_denotes x›
by (rule exI[where x=‹Abs_rel (λ x . ε⇩𝗈 w. True)›])
(meson AOT_model_denotes_rel.abs_eq AOT_model_nondenoting_ex
AOT_model_proposition_choice_simp)
define exe :: ‹<'a> ⇒ 'a ⇒ 𝗈› where
‹exe ≡ λ Π κs . if AOT_model_denotes Π
then Rep_rel Π κs
else (ε⇩𝗈 w . False)›
define lambda :: ‹('a⇒𝗈) ⇒ <'a>› where
‹lambda ≡ λ φ . if AOT_model_denotes (Abs_rel φ)
then (Abs_rel φ)
else
if (∀ κ κ' w . (AOT_model_denotes κ ∧ AOT_model_term_equiv κ κ') ⟶
[w ⊨ «φ κ»] = [w ⊨ «φ κ'»])
then
Abs_rel (fix_irregular (λ x . if AOT_model_denotes x
then φ (SOME y . AOT_model_term_equiv x y)
else (ε⇩𝗈 w . False)))
else
Abs_rel φ›
have fix_irregular_denoting_simp[simp]:
‹fix_irregular (λx. if AOT_model_denotes x then φ x else ψ x) κ = φ κ›
if ‹AOT_model_denotes κ›
for κ :: 'a and φ ψ
by (simp add: that fix_irregular_denoting)
have denoting_eps_cong[cong]:
‹[w ⊨ «φ (Eps (AOT_model_term_equiv κ))»] = [w ⊨ «φ κ»]›
if ‹AOT_model_denotes κ›
and ‹∀ κ κ'. AOT_model_denotes κ ∧ AOT_model_term_equiv κ κ' ⟶
(∀w. [w ⊨ «φ κ»] = [w ⊨ «φ κ'»])›
for w :: w and κ :: 'a and φ :: ‹'a⇒𝗈›
using that AOT_model_term_equiv_eps(2) by blast
have exe_rep_rel: ‹[w ⊨ «exe Π κ⇩1κ⇩n»] = ([w ⊨ Π↓] ∧ [w ⊨ κ⇩1...κ⇩n↓] ∧
[w ⊨ «Rep_rel Π κ⇩1κ⇩n»])› for w Π κ⇩1κ⇩n
by (metis AOT_model_denotes_rel.rep_eq exe_def AOT_sem_denotes
AOT_model_proposition_choice_simp)
moreover have ‹[w ⊨ «Π»↓] ⟹ [w ⊨ «lambda (exe Π)» = «Π»]› for Π w
by (auto simp: Rep_rel_inverse lambda_def AOT_sem_denotes AOT_sem_eq
AOT_model_denotes_rel_def Abs_rel_inverse exe_def)
moreover have lambda_denotes_beta:
‹[w ⊨ «exe (lambda φ) κ »] = [w ⊨ «φ κ»]›
if ‹[w ⊨ «lambda φ»↓]› and ‹[w ⊨ «κ»↓]›
for φ κ w
using that unfolding exe_def AOT_sem_denotes
by (auto simp: lambda_def Abs_rel_inverse split: if_split_asm)
moreover have lambda_denotes_simp:
‹[w ⊨ «lambda φ»↓] = (∀ v κ⇩1κ⇩n κ⇩1'κ⇩n' . [v ⊨ κ⇩1...κ⇩n↓] ∧ [v ⊨ κ⇩1'...κ⇩n'↓] ∧
(∀ Π v . [v ⊨ Π↓] ⟶ [v ⊨ «exe Π κ⇩1κ⇩n»] = [v ⊨ «exe Π κ⇩1'κ⇩n'»]) ⟶
[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}])› for φ w
proof
assume ‹[w ⊨ «lambda φ»↓]›
hence ‹AOT_model_denotes (lambda φ)›
unfolding AOT_sem_denotes by simp
moreover have ‹[w ⊨ «φ κ»] ⟹ [w ⊨ «φ κ'»]›
and ‹[w ⊨ «φ κ'»] ⟹ [w ⊨ «φ κ»]›
if ‹AOT_model_denotes κ› and ‹AOT_model_term_equiv κ κ'›
for w κ κ'
by (metis (no_types, lifting) AOT_model_denotes_rel.abs_eq lambda_def
that calculation)+
ultimately show ‹∀ v κ⇩1κ⇩n κ⇩1'κ⇩n' . [v ⊨ κ⇩1...κ⇩n↓] ∧ [v ⊨ κ⇩1'...κ⇩n'↓] ∧
(∀ Π v . [v ⊨ Π↓] ⟶ [v ⊨ «exe Π κ⇩1κ⇩n»] = [v ⊨ «exe Π κ⇩1'κ⇩n'»]) ⟶
[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}]›
unfolding AOT_sem_denotes
by (metis (no_types) AOT_sem_denotes lambda_denotes_beta)
next
assume ‹∀ v κ⇩1κ⇩n κ⇩1'κ⇩n' . [v ⊨ κ⇩1...κ⇩n↓] ∧ [v ⊨ κ⇩1'...κ⇩n'↓] ∧
(∀ Π v . [v ⊨ Π↓] ⟶ [v ⊨ «exe Π κ⇩1κ⇩n»] = [v ⊨ «exe Π κ⇩1'κ⇩n'»]) ⟶
[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}]›
hence ‹[w ⊨ «φ κ»] = [w ⊨ «φ κ'»]›
if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧ AOT_model_term_equiv κ κ'›
for w κ κ'
using that
by (auto simp: AOT_sem_denotes)
(meson AOT_model_term_equiv_rel_equiv AOT_sem_denotes exe_rep_rel)+
hence ‹[w ⊨ «φ κ»] = [w ⊨ «φ κ'»]›
if ‹AOT_model_denotes κ ∧ AOT_model_term_equiv κ κ'›
for w κ κ'
using that AOT_model_term_equiv_denotes by blast
hence ‹AOT_model_denotes (lambda φ)›
by (auto simp: lambda_def Abs_rel_inverse AOT_model_denotes_rel.abs_eq
AOT_model_irregular_equiv AOT_model_term_equiv_eps(3)
AOT_model_term_equiv_regular fix_irregular_def AOT_sem_denotes
AOT_model_term_equiv_denotes AOT_model_proposition_choice_simp
AOT_model_irregular_false
split: if_split_asm
intro: AOT_model_irregular_eqI)
thus ‹[w ⊨ «lambda φ»↓]›
by (simp add: AOT_sem_denotes)
qed
moreover have ‹[w ⊨ «lambda ψ»↓]›
if ‹[w ⊨ «lambda φ»↓]›
and ‹∀ w κ⇩1κ⇩n . [w ⊨ κ⇩1...κ⇩n↓] ⟶ [w ⊨ φ{κ⇩1...κ⇩n}] = [w ⊨ ψ{κ⇩1...κ⇩n}]›
for φ ψ w using that unfolding lambda_denotes_simp by auto
moreover have ‹[w ⊨ Π↓] ⟹ exe Π κs = Rep_rel Π κs› for Π κs w
by (simp add: exe_def AOT_sem_denotes)
moreover have ‹lambda (λx. p) = lambda (λx. q) ⟹ p = q› for p q
unfolding lambda_def
by (auto split: if_split_asm simp: Abs_rel_inject fix_irregular_def)
(meson AOT_model_irregular_nondenoting AOT_model_denoting_ex)+
moreover have ‹AOT_model_term_equiv x y ⟹ exe Π x = exe Π y› for x y Π
unfolding exe_def
by (meson AOT_model_denotes_rel.rep_eq)
note calculation = calculation this
show ?thesis
apply (safe intro!: exI[where x=exe] exI[where x=lambda])
using calculation apply simp_all
using lambda_denotes_simp by blast+
qed
lemma AOT_model_lambda_denotes:
‹AOT_model_denotes (AOT_lambda φ) = (∀ v κ κ' .
AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧ AOT_model_term_equiv κ κ' ⟶
[v ⊨ «φ κ»] = [v ⊨ «φ κ'»])›
proof(safe)
fix v and κ κ' :: 'a
assume ‹AOT_model_denotes (AOT_lambda φ)›
hence 1: ‹AOT_model_denotes κ⇩1κ⇩n ∧
AOT_model_denotes κ⇩1'κ⇩n' ∧
(∀Π v. AOT_model_denotes Π ⟶ [v ⊨ [Π]κ⇩1...κ⇩n] = [v ⊨ [Π]κ⇩1'...κ⇩n']) ⟶
[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}]› for κ⇩1κ⇩n κ⇩1'κ⇩n' v
using AOT_sem_lambda_denotes[simplified AOT_sem_denotes] by blast
{
fix v and κ⇩1κ⇩n κ⇩1'κ⇩n' :: 'a
assume d: ‹AOT_model_denotes κ⇩1κ⇩n ∧ AOT_model_denotes κ⇩1'κ⇩n' ∧
AOT_model_term_equiv κ⇩1κ⇩n κ⇩1'κ⇩n'›
hence ‹∀Π w. AOT_model_denotes Π ⟶ [w ⊨ [Π]κ⇩1...κ⇩n] = [w ⊨ [Π]κ⇩1'...κ⇩n']›
by (metis AOT_sem_exe_equiv)
hence ‹[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}]› using d 1 by auto
}
moreover assume ‹AOT_model_denotes κ›
moreover assume ‹AOT_model_denotes κ'›
moreover assume ‹AOT_model_term_equiv κ κ'›
ultimately show ‹[v ⊨ «φ κ»] ⟹ [v ⊨ «φ κ'»]›
and ‹[v ⊨ «φ κ'»] ⟹ [v ⊨ «φ κ»]›
by auto
next
assume 0: ‹∀ v κ κ' . AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧
AOT_model_term_equiv κ κ' ⟶ [v ⊨ «φ κ»] = [v ⊨ «φ κ'»]›
{
fix κ⇩1κ⇩n κ⇩1'κ⇩n' :: 'a
assume den: ‹AOT_model_denotes κ⇩1κ⇩n›
moreover assume den': ‹AOT_model_denotes κ⇩1'κ⇩n'›
assume ‹∀Π v . AOT_model_denotes Π ⟶
[v ⊨ [Π]κ⇩1...κ⇩n] = [v ⊨ [Π]κ⇩1'...κ⇩n']›
hence ‹∀Π v . AOT_model_denotes Π ⟶
[v ⊨ «Rep_rel Π κ⇩1κ⇩n»] = [v ⊨ «Rep_rel Π κ⇩1'κ⇩n'»]›
by (simp add: AOT_sem_denotes AOT_sem_exe den den')
hence "AOT_model_term_equiv κ⇩1κ⇩n κ⇩1'κ⇩n'"
unfolding AOT_model_term_equiv_rel_equiv[OF den, OF den']
by argo
hence ‹[v ⊨ φ{κ⇩1...κ⇩n}] = [v ⊨ φ{κ⇩1'...κ⇩n'}]› for v
using den den' 0 by blast
}
thus ‹AOT_model_denotes (AOT_lambda φ)›
unfolding AOT_sem_lambda_denotes[simplified AOT_sem_denotes]
by blast
qed
specification (AOT_lambda0)
AOT_sem_lambda0: "AOT_lambda0 φ = φ"
by (rule exI[where x=‹λx. x›]) simp
specification(AOT_concrete)
AOT_sem_concrete: ‹[w ⊨ [E!]κ] =
AOT_model_concrete w κ›
by (rule exI[where x=‹AOT_var_of_term (Abs_rel
(λ x . ε⇩𝗈 w . AOT_model_concrete w x))›];
subst AOT_var_of_term_inverse)
(auto simp: AOT_model_unary_regular AOT_model_concrete_denotes
AOT_model_concrete_equiv AOT_model_regular_κ_def
AOT_model_proposition_choice_simp AOT_sem_exe Abs_rel_inverse
AOT_model_denotes_rel_def AOT_sem_denotes)
lemma AOT_sem_equiv_defI:
assumes ‹⋀ v . [v ⊨ φ] ⟹ [v ⊨ ψ]›
and ‹⋀ v . [v ⊨ ψ] ⟹ [v ⊨ φ]›
shows ‹AOT_model_equiv_def φ ψ›
using AOT_model_equiv_def assms by blast
lemma AOT_sem_id_defI:
assumes ‹⋀ α v . [v ⊨ «σ α»↓] ⟹ [v ⊨ «τ α» = «σ α»]›
assumes ‹⋀ α v . ¬[v ⊨ «σ α»↓] ⟹ [v ⊨ ¬«τ α»↓]›
shows ‹AOT_model_id_def τ σ›
using assms
unfolding AOT_sem_denotes AOT_sem_eq AOT_sem_not
using AOT_model_id_def[THEN iffD2]
by metis
lemma AOT_sem_id_def2I:
assumes ‹⋀ α β v . [v ⊨ «σ α β»↓] ⟹ [v ⊨ «τ α β» = «σ α β»]›
assumes ‹⋀ α β v . ¬[v ⊨ «σ α β»↓] ⟹ [v ⊨ ¬«τ α β»↓]›
shows ‹AOT_model_id_def (case_prod τ) (case_prod σ)›
apply (rule AOT_sem_id_defI)
using assms by (auto simp: AOT_sem_conj AOT_sem_not AOT_sem_eq AOT_sem_denotes
AOT_model_denotes_prod_def)
lemma AOT_sem_id_defE1:
assumes ‹AOT_model_id_def τ σ›
and ‹[v ⊨ «σ α»↓]›
shows ‹[v ⊨ «τ α» = «σ α»]›
using assms by (simp add: AOT_model_id_def AOT_sem_denotes AOT_sem_eq)
lemma AOT_sem_id_defE2:
assumes ‹AOT_model_id_def τ σ›
and ‹¬[v ⊨ «σ α»↓]›
shows ‹¬[v ⊨ «τ α»↓]›
using assms by (simp add: AOT_model_id_def AOT_sem_denotes AOT_sem_eq)
lemma AOT_sem_id_def0I:
assumes ‹⋀ v . [v ⊨ σ↓] ⟹ [v ⊨ τ = σ]›
and ‹⋀ v . ¬[v ⊨ σ↓] ⟹ [v ⊨ ¬τ↓]›
shows ‹AOT_model_id_def (case_unit τ) (case_unit σ)›
apply (rule AOT_sem_id_defI)
using assms
by (simp_all add: AOT_sem_conj AOT_sem_eq AOT_sem_not AOT_sem_denotes
AOT_model_denotes_unit_def case_unit_Unity)
lemma AOT_sem_id_def0E1:
assumes ‹AOT_model_id_def (case_unit τ) (case_unit σ)›
and ‹[v ⊨ σ↓]›
shows ‹[v ⊨ τ = σ]›
by (metis (full_types) AOT_sem_id_defE1 assms(1) assms(2) case_unit_Unity)
lemma AOT_sem_id_def0E2:
assumes ‹AOT_model_id_def (case_unit τ) (case_unit σ)›
and ‹¬[v ⊨ σ↓]›
shows ‹¬[v ⊨ τ↓]›
by (metis AOT_sem_id_defE2 assms(1) assms(2) case_unit_Unity)
lemma AOT_sem_id_def0E3:
assumes ‹AOT_model_id_def (case_unit τ) (case_unit σ)›
and ‹[v ⊨ σ↓]›
shows ‹[v ⊨ τ↓]›
using AOT_sem_id_def0E1[OF assms]
by (simp add: AOT_sem_eq AOT_sem_denotes)
lemma AOT_sem_ordinary_def_denotes: ‹[w ⊨ [λx ◇[E!]x]↓]›
unfolding AOT_sem_denotes AOT_model_lambda_denotes
by (auto simp: AOT_sem_dia AOT_model_concrete_equiv
AOT_sem_concrete AOT_sem_denotes)
lemma AOT_sem_abstract_def_denotes: ‹[w ⊨ [λx ¬◇[E!]x]↓]›
unfolding AOT_sem_denotes AOT_model_lambda_denotes
by (auto simp: AOT_sem_dia AOT_model_concrete_equiv
AOT_sem_concrete AOT_sem_denotes AOT_sem_not)
text‹Relation identity is constructed using an auxiliary abstract projection
mechanism with suitable instantiations for @{typ κ} and products.›
class AOT_RelationProjection =
fixes AOT_sem_proj_id :: ‹'a::AOT_IndividualTerm ⇒ ('a ⇒ 𝗈) ⇒ ('a ⇒ 𝗈) ⇒ 𝗈›
assumes AOT_sem_proj_id_prop:
‹[v ⊨ Π = Π'] =
[v ⊨ Π↓ & Π'↓ & ∀α («AOT_sem_proj_id α (λ τ . «[Π]τ») (λ τ . «[Π']τ»)»)]›
and AOT_sem_proj_id_refl:
‹[v ⊨ τ↓] ⟹ [v ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}] = [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]] ⟹
[v ⊨ «AOT_sem_proj_id τ φ φ»]›
class AOT_UnaryRelationProjection = AOT_RelationProjection +
assumes AOT_sem_unary_proj_id:
‹AOT_sem_proj_id κ φ ψ = «[λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}] = [λν⇩1...ν⇩n ψ{ν⇩1...ν⇩n}]»›
instantiation κ :: AOT_UnaryRelationProjection
begin
definition AOT_sem_proj_id_κ :: ‹κ ⇒ (κ ⇒ 𝗈) ⇒ (κ ⇒ 𝗈) ⇒ 𝗈› where
‹AOT_sem_proj_id_κ κ φ ψ = «[λz φ{z}] = [λz ψ{z}]»›
instance proof
show ‹[v ⊨ Π = Π'] =
[v ⊨ Π↓ & Π'↓ & ∀α («AOT_sem_proj_id α (λ τ . «[Π]τ») (λ τ . «[Π']τ»)»)]›
for v and Π Π' :: ‹<κ>›
unfolding AOT_sem_proj_id_κ_def
by (simp add: AOT_sem_eq AOT_sem_conj AOT_sem_denotes AOT_sem_forall)
(metis AOT_sem_denotes AOT_model_denoting_ex AOT_sem_eq AOT_sem_lambda_eta)
next
show ‹AOT_sem_proj_id κ φ ψ = «[λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}] = [λν⇩1...ν⇩n ψ{ν⇩1...ν⇩n}]»›
for κ :: κ and φ ψ
unfolding AOT_sem_proj_id_κ_def ..
next
show ‹[v ⊨ «AOT_sem_proj_id τ φ φ»]›
if ‹[v ⊨ τ↓]› and ‹[v ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}] = [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]]›
for τ :: κ and v φ
using that by (simp add: AOT_sem_proj_id_κ_def AOT_sem_eq)
qed
end
instantiation prod ::
("{AOT_UnaryRelationProjection, AOT_UnaryIndividualTerm}", AOT_RelationProjection)
AOT_RelationProjection
begin
definition AOT_sem_proj_id_prod :: ‹'a×'b ⇒ ('a×'b ⇒ 𝗈) ⇒ ('a×'b ⇒ 𝗈) ⇒ 𝗈› where
‹AOT_sem_proj_id_prod ≡ λ (x,y) φ ψ . «[λz «φ (z,y)»] = [λz «ψ (z,y)»] &
«AOT_sem_proj_id y (λ a . φ (x,a)) (λ a . ψ (x,a))»»›
instance proof
text‹This is the main proof that allows to derive the definition of n-ary
relation identity. We need to show that our defined projection identity
implies relation identity for relations on pairs of individual terms.›
fix v and Π Π' :: ‹<'a×'b>›
have AOT_meta_proj_denotes1: ‹AOT_model_denotes (Abs_rel (λz. AOT_exe Π (z, β)))›
if ‹AOT_model_denotes Π› for Π :: ‹<'a×'b>› and β
using that unfolding AOT_model_denotes_rel.rep_eq
apply (simp add: Abs_rel_inverse AOT_meta_prod_equivI(2) AOT_sem_denotes
that)
by (metis (no_types, lifting) AOT_meta_prod_equivI(2) AOT_model_denotes_prod_def
AOT_model_unary_regular AOT_sem_exe AOT_sem_exe_equiv case_prodD)
{
fix κ :: 'a and Π :: ‹<'a×'b>›
assume Π_denotes: ‹AOT_model_denotes Π›
assume α_denotes: ‹AOT_model_denotes κ›
hence ‹AOT_exe Π (κ, x) = AOT_exe Π (κ, y)›
if ‹AOT_model_term_equiv x y› for x y :: 'b
by (simp add: AOT_meta_prod_equivI(1) AOT_sem_exe_equiv that)
moreover have ‹AOT_model_denotes κ⇩1'κ⇩n'›
if ‹[w ⊨ [Π]κ κ⇩1'...κ⇩n']› for w κ⇩1'κ⇩n'
by (metis that AOT_model_denotes_prod_def AOT_sem_exe
AOT_sem_denotes case_prodD)
moreover {
fix x :: 'b
assume x_irregular: ‹¬AOT_model_regular x›
hence prod_irregular: ‹¬AOT_model_regular (κ, x)›
by (metis (no_types, lifting) AOT_model_irregular_nondenoting
AOT_model_regular_prod_def case_prodD)
hence ‹(¬AOT_model_denotes κ ∨ ¬AOT_model_regular x) ∧
(AOT_model_denotes κ ∨ ¬AOT_model_denotes x)›
unfolding AOT_model_regular_prod_def by blast
hence x_nonden: ‹¬AOT_model_regular x›
by (simp add: α_denotes)
have ‹Rep_rel Π (κ, x) = AOT_model_irregular (Rep_rel Π) (κ, x)›
using AOT_model_denotes_rel.rep_eq Π_denotes prod_irregular by blast
moreover have ‹AOT_model_irregular (Rep_rel Π) (κ, x) =
AOT_model_irregular (λz. Rep_rel Π (κ, z)) x›
using Π_denotes x_irregular prod_irregular x_nonden
using AOT_model_irregular_prod_generic
apply (induct arbitrary: Π x rule: AOT_model_irregular_prod.induct)
by (auto simp: α_denotes AOT_model_irregular_nondenoting
AOT_model_regular_prod_def AOT_meta_prod_equivI(2)
AOT_model_denotes_rel.rep_eq AOT_model_term_equiv_eps(1)
intro!: AOT_model_irregular_eqI)
ultimately have
‹AOT_exe Π (κ, x) = AOT_model_irregular (λz. AOT_exe Π (κ, z)) x›
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]
by auto
}
ultimately have ‹AOT_model_denotes (Abs_rel (λz. AOT_exe Π (κ, z)))›
by (simp add: Abs_rel_inverse AOT_model_denotes_rel.rep_eq)
} note AOT_meta_proj_denotes2 = this
{
fix κ⇩1'κ⇩n' :: 'b and Π :: ‹<'a×'b>›
assume Π_denotes: ‹AOT_model_denotes Π›
assume β_denotes: ‹AOT_model_denotes κ⇩1'κ⇩n'›
hence ‹AOT_exe Π (x, κ⇩1'κ⇩n') = AOT_exe Π (y, κ⇩1'κ⇩n')›
if ‹AOT_model_term_equiv x y› for x y :: 'a
by (simp add: AOT_meta_prod_equivI(2) AOT_sem_exe_equiv that)
moreover have ‹AOT_model_denotes κ›
if ‹[w ⊨ [Π]κ κ⇩1'...κ⇩n']› for w κ
by (metis that AOT_model_denotes_prod_def AOT_sem_exe
AOT_sem_denotes case_prodD)
moreover {
fix x :: 'a
assume ‹¬AOT_model_regular x›
hence ‹False›
using AOT_model_unary_regular by blast
hence
‹AOT_exe Π (x,κ⇩1'κ⇩n') = AOT_model_irregular (λz. AOT_exe Π (z,κ⇩1'κ⇩n')) x›
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]
by auto
}
ultimately have ‹AOT_model_denotes (Abs_rel (λz. AOT_exe Π (z,κ⇩1'κ⇩n')))›
by (simp add: Abs_rel_inverse AOT_model_denotes_rel.rep_eq)
} note AOT_meta_proj_denotes1 = this
{
assume Π_denotes: ‹AOT_model_denotes Π›
assume Π'_denotes: ‹AOT_model_denotes Π'›
have Π_proj2_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π (α, z)))›
if ‹AOT_model_denotes α› for α
using that AOT_meta_proj_denotes2[OF Π_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π_denotes] by simp
have Π'_proj2_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π' (α, z)))›
if ‹AOT_model_denotes α› for α
using that AOT_meta_proj_denotes2[OF Π'_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π'_denotes] by simp
have Π_proj1_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π (z, α)))›
if ‹AOT_model_denotes α› for α
using that AOT_meta_proj_denotes1[OF Π_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π_denotes] by simp
have Π'_proj1_den: ‹AOT_model_denotes (Abs_rel (λz. Rep_rel Π' (z, α)))›
if ‹AOT_model_denotes α› for α
using that AOT_meta_proj_denotes1[OF Π'_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF Π'_denotes] by simp
{
fix κ :: 'a and κ⇩1'κ⇩n' :: 'b
assume ‹Π = Π'›
assume ‹AOT_model_denotes (κ,κ⇩1'κ⇩n')›
hence ‹AOT_model_denotes κ› and beta_denotes: ‹AOT_model_denotes κ⇩1'κ⇩n'›
by (auto simp: AOT_model_denotes_prod_def)
have ‹AOT_model_denotes «[λz [Π]z κ⇩1'...κ⇩n']»›
by (rule AOT_model_lambda_denotes[THEN iffD2])
(metis AOT_sem_exe_denoting AOT_meta_prod_equivI(2)
AOT_model_denotes_rel.rep_eq AOT_sem_denotes
AOT_sem_exe_denoting Π_denotes)
moreover have ‹«[λz [Π]z κ⇩1'...κ⇩n']» = «[λz [Π']z κ⇩1'...κ⇩n']»›
by (simp add: ‹Π = Π'›)
moreover have ‹[v ⊨ «AOT_sem_proj_id κ⇩1'κ⇩n' (λκ⇩1'κ⇩n'. «[Π]κ κ⇩1'...κ⇩n'»)
(λκ⇩1'κ⇩n'. «[Π']κ κ⇩1'...κ⇩n'»)»]›
unfolding ‹Π = Π'› using beta_denotes
by (rule AOT_sem_proj_id_refl[unfolded AOT_sem_denotes];
simp add: AOT_sem_denotes AOT_sem_eq AOT_model_lambda_denotes)
(metis AOT_meta_prod_equivI(1) AOT_model_denotes_rel.rep_eq
AOT_sem_exe AOT_sem_exe_denoting Π'_denotes)
ultimately have ‹[v ⊨ «AOT_sem_proj_id (κ,κ⇩1'κ⇩n') (λ κ⇩1κ⇩n . «[Π]κ⇩1...κ⇩n»)
(λ κ⇩1κ⇩n . «[Π']κ⇩1...κ⇩n»)»]›
unfolding AOT_sem_proj_id_prod_def
by (simp add: AOT_sem_denotes AOT_sem_conj AOT_sem_eq)
}
moreover {
assume ‹⋀ α . AOT_model_denotes α ⟹
[v ⊨ «AOT_sem_proj_id α (λ κ⇩1κ⇩n . «[Π]κ⇩1...κ⇩n») (λ κ⇩1κ⇩n . «[Π']κ⇩1...κ⇩n»)»]›
hence 0: ‹AOT_model_denotes κ ⟹ AOT_model_denotes κ⇩1'κ⇩n' ⟹
AOT_model_denotes «[λz [Π]z κ⇩1'...κ⇩n']» ∧
AOT_model_denotes «[λz [Π']z κ⇩1'...κ⇩n']» ∧
«[λz [Π]z κ⇩1'...κ⇩n']» = «[λz [Π']z κ⇩1'...κ⇩n']» ∧
[v ⊨ «AOT_sem_proj_id κ⇩1'κ⇩n' (λκ⇩1κ⇩n. «[Π]κ κ⇩1...κ⇩n»)
(λκ⇩1κ⇩n. «[Π']κ κ⇩1...κ⇩n»)»]› for κ κ⇩1'κ⇩n'
unfolding AOT_sem_proj_id_prod_def
by (auto simp: AOT_sem_denotes AOT_sem_conj AOT_sem_eq
AOT_model_denotes_prod_def)
obtain αden :: 'a and βden :: 'b where
αden: ‹AOT_model_denotes αden› and βden: ‹AOT_model_denotes βden›
using AOT_model_denoting_ex by metis
{
fix κ :: 'a
assume αdenotes: ‹AOT_model_denotes κ›
have 1: ‹[v ⊨ «AOT_sem_proj_id κ⇩1'κ⇩n' (λκ⇩1'κ⇩n'. «[Π]κ κ⇩1'...κ⇩n'»)
(λκ⇩1'κ⇩n'. «[Π']κ κ⇩1'...κ⇩n'»)»]›
if ‹AOT_model_denotes κ⇩1'κ⇩n'› for κ⇩1'κ⇩n'
using that 0 using αdenotes by blast
hence ‹[v ⊨ «AOT_sem_proj_id β (λz. Rep_rel Π (κ, z))
(λz. Rep_rel Π' (κ, z))»]›
if ‹AOT_model_denotes β› for β
using that
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π'_denotes]
by blast
hence ‹Abs_rel (λz. Rep_rel Π (κ, z)) = Abs_rel (λz. Rep_rel Π' (κ, z))›
using AOT_sem_proj_id_prop[of v ‹Abs_rel (λz. Rep_rel Π (κ, z))›
‹Abs_rel (λz. Rep_rel Π' (κ, z))›,
simplified AOT_sem_eq AOT_sem_conj AOT_sem_forall
AOT_sem_denotes, THEN iffD2]
Π_proj2_den[OF αdenotes] Π'_proj2_den[OF αdenotes]
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF Π_proj2_den[OF αdenotes]]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF Π'_proj2_den[OF αdenotes]]
by (metis Abs_rel_inverse UNIV_I)
hence "Rep_rel Π (κ,β) = Rep_rel Π' (κ,β)" for β
by (simp add: Abs_rel_inject[simplified]) meson
} note αdenotes = this
{
fix κ⇩1'κ⇩n' :: 'b
assume βden: ‹AOT_model_denotes κ⇩1'κ⇩n'›
have 1: ‹«[λz [Π]z κ⇩1'...κ⇩n']» = «[λz [Π']z κ⇩1'...κ⇩n']»›
using 0 βden AOT_model_denoting_ex by blast
hence ‹Abs_rel (λz. Rep_rel Π (z, κ⇩1'κ⇩n')) =
Abs_rel (λz. Rep_rel Π' (z, κ⇩1'κ⇩n'))› (is ‹?a = ?b›)
apply (safe intro!: AOT_sem_proj_id_prop[of v ‹?a› ‹?b›,
simplified AOT_sem_eq AOT_sem_conj AOT_sem_forall
AOT_sem_denotes, THEN iffD2, THEN conjunct2, THEN conjunct2]
Π_proj1_den[OF βden] Π'_proj1_den[OF βden])
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF Π'_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF Π_proj1_den[OF βden]]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF Π'_proj1_den[OF βden]]
by (subst (0 1) Abs_rel_inverse; simp?)
(metis (no_types, lifting) AOT_model_denotes_rel.abs_eq
AOT_model_lambda_denotes AOT_sem_denotes AOT_sem_eq
AOT_sem_unary_proj_id Π_proj1_den[OF βden])
hence ‹Rep_rel Π (x,κ⇩1'κ⇩n') = Rep_rel Π' (x,κ⇩1'κ⇩n')› for x
by (simp add: Abs_rel_inject)
metis
} note βdenotes = this
{
fix α :: 'a and β :: 'b
assume ‹AOT_model_regular (α, β)›
moreover {
assume ‹AOT_model_denotes α ∧ AOT_model_regular β›
hence ‹Rep_rel Π (α,β) = Rep_rel Π' (α,β)›
using αdenotes by presburger
}
moreover {
assume ‹¬AOT_model_denotes α ∧ AOT_model_denotes β›
hence ‹Rep_rel Π (α,β) = Rep_rel Π' (α,β)›
by (simp add: βdenotes)
}
ultimately have ‹Rep_rel Π (α,β) = Rep_rel Π' (α,β)›
by (metis (no_types, lifting) AOT_model_regular_prod_def case_prodD)
}
hence ‹Rep_rel Π = Rep_rel Π'›
using Π_denotes[unfolded AOT_model_denotes_rel.rep_eq,
THEN conjunct2, THEN conjunct2, THEN spec, THEN mp]
using Π'_denotes[unfolded AOT_model_denotes_rel.rep_eq,
THEN conjunct2, THEN conjunct2, THEN spec, THEN mp]
using AOT_model_irregular_eqI[of ‹Rep_rel Π› ‹Rep_rel Π'› ‹(_,_)›]
using AOT_model_irregular_nondenoting by fastforce
hence ‹Π = Π'›
by (rule Rep_rel_inject[THEN iffD1])
}
ultimately have ‹Π = Π' = (∀ κ . AOT_model_denotes κ ⟶
[v ⊨ «AOT_sem_proj_id κ (λ κ⇩1κ⇩n . «[Π]κ⇩1...κ⇩n»)
(λ κ⇩1κ⇩n . «[Π']κ⇩1...κ⇩n»)»])›
by auto
}
thus ‹[v ⊨ Π = Π'] = [v ⊨ Π↓ & Π'↓ &
∀α («AOT_sem_proj_id α (λ κ⇩1κ⇩n . «[Π]κ⇩1...κ⇩n») (λ κ⇩1κ⇩n . «[Π']κ⇩1...κ⇩n»)»)]›
by (auto simp: AOT_sem_eq AOT_sem_denotes AOT_sem_forall AOT_sem_conj)
next
fix v and φ :: ‹'a×'b⇒𝗈› and τ :: ‹'a×'b›
assume ‹[v ⊨ τ↓]›
moreover assume ‹[v ⊨ [λz⇩1...z⇩n «φ z⇩1z⇩n»] = [λz⇩1...z⇩n «φ z⇩1z⇩n»]]›
ultimately show ‹[v ⊨ «AOT_sem_proj_id τ φ φ»]›
unfolding AOT_sem_proj_id_prod_def
using AOT_sem_proj_id_refl[of v "snd τ" "λb. φ (fst τ, b)"]
by (auto simp: AOT_sem_eq AOT_sem_conj AOT_sem_denotes
AOT_model_denotes_prod_def AOT_model_lambda_denotes
AOT_meta_prod_equivI)
qed
end
text‹Sanity-check to verify that n-ary relation identity follows.›
lemma ‹[v ⊨ Π = Π'] = [v ⊨ Π↓ & Π'↓ & ∀x∀y([λz [Π]z y] = [λz [Π']z y] &
[λz [Π]x z] = [λz [Π']x z])]›
for Π :: ‹<κ×κ>›
by (auto simp: AOT_sem_proj_id_prop[of v Π Π'] AOT_sem_proj_id_prod_def
AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id
AOT_model_denotes_prod_def)
lemma ‹[v ⊨ Π = Π'] = [v ⊨ Π↓ & Π'↓ & ∀x⇩1∀x⇩2∀x⇩3 (
[λz [Π]z x⇩2 x⇩3] = [λz [Π']z x⇩2 x⇩3] &
[λz [Π]x⇩1 z x⇩3] = [λz [Π']x⇩1 z x⇩3] &
[λz [Π]x⇩1 x⇩2 z] = [λz [Π']x⇩1 x⇩2 z])]›
for Π :: ‹<κ×κ×κ>›
by (auto simp: AOT_sem_proj_id_prop[of v Π Π'] AOT_sem_proj_id_prod_def
AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id
AOT_model_denotes_prod_def)
lemma ‹[v ⊨ Π = Π'] = [v ⊨ Π↓ & Π'↓ & ∀x⇩1∀x⇩2∀x⇩3∀x⇩4 (
[λz [Π]z x⇩2 x⇩3 x⇩4] = [λz [Π']z x⇩2 x⇩3 x⇩4] &
[λz [Π]x⇩1 z x⇩3 x⇩4] = [λz [Π']x⇩1 z x⇩3 x⇩4] &
[λz [Π]x⇩1 x⇩2 z x⇩4] = [λz [Π']x⇩1 x⇩2 z x⇩4] &
[λz [Π]x⇩1 x⇩2 x⇩3 z] = [λz [Π']x⇩1 x⇩2 x⇩3 z])]›
for Π :: ‹<κ×κ×κ×κ>›
by (auto simp: AOT_sem_proj_id_prop[of v Π Π'] AOT_sem_proj_id_prod_def
AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id
AOT_model_denotes_prod_def)
text‹n-ary Encoding is constructed using a similar mechanism as n-ary relation
identity using an auxiliary notion of projection-encoding.›
class AOT_Enc =
fixes AOT_enc :: ‹'a ⇒ <'a::AOT_IndividualTerm> ⇒ 𝗈›
and AOT_proj_enc :: ‹'a ⇒ ('a ⇒ 𝗈) ⇒ 𝗈›
assumes AOT_sem_enc_denotes:
‹[v ⊨ «AOT_enc κ⇩1κ⇩n Π»] ⟹ [v ⊨ κ⇩1...κ⇩n↓] ∧ [v ⊨ Π↓]›
assumes AOT_sem_enc_proj_enc:
‹[v ⊨ «AOT_enc κ⇩1κ⇩n Π»] =
[v ⊨ Π↓ & «AOT_proj_enc κ⇩1κ⇩n (λ κ⇩1κ⇩n. «[Π]κ⇩1...κ⇩n»)»]›
assumes AOT_sem_proj_enc_denotes:
‹[v ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»] ⟹ [v ⊨ κ⇩1...κ⇩n↓]›
assumes AOT_sem_enc_nec:
‹[v ⊨ «AOT_enc κ⇩1κ⇩n Π»] ⟹ [w ⊨ «AOT_enc κ⇩1κ⇩n Π»]›
assumes AOT_sem_proj_enc_nec:
‹[v ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»] ⟹ [w ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»]›
assumes AOT_sem_universal_encoder:
‹∃ κ⇩1κ⇩n. [v ⊨ κ⇩1...κ⇩n↓] ∧ (∀ Π . [v ⊨ Π↓] ⟶ [v ⊨ «AOT_enc κ⇩1κ⇩n Π»]) ∧
(∀ φ . [v ⊨ [λz⇩1...z⇩n φ{z⇩1...z⇩n}]↓] ⟶ [v ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»])›
AOT_syntax_print_translations
"_AOT_enc (_AOT_individual_term κ) (_AOT_relation_term Π)" <= "CONST AOT_enc κ Π"
context AOT_meta_syntax
begin
notation AOT_enc (‹❙⦃_,_❙⦄›)
end
context AOT_no_meta_syntax
begin
no_notation AOT_enc (‹❙⦃_,_❙⦄›)
end
text‹Unary encoding additionally has to satisfy the axioms of unary encoding and
the definition of property identity.›
class AOT_UnaryEnc = AOT_UnaryIndividualTerm +
assumes AOT_sem_enc_eq: ‹[v ⊨ Π↓ & Π'↓ & □∀ν (ν[Π] ≡ ν[Π']) → Π = Π']›
and AOT_sem_A_objects: ‹[v ⊨ ∃x (¬◇[E!]x & ∀F (x[F] ≡ φ{F}))]›
and AOT_sem_unary_proj_enc: ‹AOT_proj_enc x ψ = AOT_enc x «[λz ψ{z}]»›
and AOT_sem_nocoder: ‹[v ⊨ [E!]κ] ⟹ ¬[w ⊨ «AOT_enc κ Π»]›
and AOT_sem_ind_eq: ‹([v ⊨ κ↓] ∧ [v ⊨ κ'↓] ∧ κ = (κ')) =
(([v ⊨ [λx ◇[E!]x]κ] ∧
[v ⊨ [λx ◇[E!]x]κ'] ∧
(∀ v Π . [v ⊨ Π↓] ⟶ [v ⊨ [Π]κ] = [v ⊨ [Π]κ']))
∨ ([v ⊨ [λx ¬◇[E!]x]κ] ∧
[v ⊨ [λx ¬◇[E!]x]κ'] ∧
(∀ v Π . [v ⊨ Π↓] ⟶ [v ⊨ κ[Π]] = [v ⊨ κ'[Π]])))›
and AOT_sem_enc_indistinguishable_all:
‹AOT_ExtendedModel ⟹
[v ⊨ [λx ¬◇[E!]x]κ] ⟹
[v ⊨ [λx ¬◇[E!]x]κ'] ⟹
(⋀ Π' . [v ⊨ Π'↓] ⟹ (⋀ w . [w ⊨ [Π']κ] = [w ⊨ [Π']κ'])) ⟹
[v ⊨ Π↓] ⟹
(⋀ Π' . [v ⊨ Π'↓] ⟹ (⋀ κ⇩0 . [v ⊨ [λx ◇[E!]x]κ⇩0] ⟹
(⋀ w . [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0])) ⟹ [v ⊨ κ[Π']]) ⟹
(⋀ Π' . [v ⊨ Π'↓] ⟹ (⋀ κ⇩0 . [v ⊨ [λx ◇[E!]x]κ⇩0] ⟹
(⋀ w . [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0])) ⟹ [v ⊨ κ'[Π']])›
and AOT_sem_enc_indistinguishable_ex:
‹AOT_ExtendedModel ⟹
[v ⊨ [λx ¬◇[E!]x]κ] ⟹
[v ⊨ [λx ¬◇[E!]x]κ'] ⟹
(⋀ Π' . [v ⊨ Π'↓] ⟹ (⋀ w . [w ⊨ [Π']κ] = [w ⊨ [Π']κ'])) ⟹
[v ⊨ Π↓] ⟹
∃ Π' . [v ⊨ Π'↓] ∧ [v ⊨ κ[Π']] ∧
(∀ κ⇩0 . [v ⊨ [λx ◇[E!]x]κ⇩0] ⟶
(∀ w . [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0])) ⟹
∃ Π' . [v ⊨ Π'↓] ∧ [v ⊨ κ'[Π']] ∧
(∀ κ⇩0 . [v ⊨ [λx ◇[E!]x]κ⇩0] ⟶
(∀ w . [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]))›
text‹We specify encoding to align with the model-construction of encoding.›
consts AOT_sem_enc_κ :: ‹κ ⇒ <κ> ⇒ 𝗈›
specification(AOT_sem_enc_κ)
AOT_sem_enc_κ:
‹[v ⊨ «AOT_sem_enc_κ κ Π»] =
(AOT_model_denotes κ ∧ AOT_model_denotes Π ∧ AOT_model_enc κ Π)›
by (rule exI[where x=‹λ κ Π . ε⇩𝗈 w . AOT_model_denotes κ ∧ AOT_model_denotes Π ∧
AOT_model_enc κ Π›])
(simp add: AOT_model_proposition_choice_simp AOT_model_enc_κ_def κ.case_eq_if)
text‹We show that @{typ κ} satisfies the generic properties of n-ary encoding.›
instantiation κ :: AOT_Enc
begin
definition AOT_enc_κ :: ‹κ ⇒ <κ> ⇒ 𝗈› where
‹AOT_enc_κ ≡ AOT_sem_enc_κ›
definition AOT_proj_enc_κ :: ‹κ ⇒ (κ ⇒ 𝗈) ⇒ 𝗈› where
‹AOT_proj_enc_κ ≡ λ κ φ . AOT_enc κ «[λz «φ z»]»›
lemma AOT_enc_κ_meta:
‹[v ⊨ κ[Π]] = (AOT_model_denotes κ ∧ AOT_model_denotes Π ∧ AOT_model_enc κ Π)›
for κ::κ
using AOT_sem_enc_κ unfolding AOT_enc_κ_def by auto
instance proof
fix v and κ :: κ and Π
show ‹[v ⊨ «AOT_enc κ Π»] ⟹ [v ⊨ κ↓] ∧ [v ⊨ Π↓]›
unfolding AOT_sem_denotes
using AOT_enc_κ_meta by blast
next
fix v and κ :: κ and Π
show ‹[v ⊨ κ[Π]] = [v ⊨ Π↓ & «AOT_proj_enc κ (λ κ'. «[Π]κ'»)»]›
proof
assume enc: ‹[v ⊨ κ[Π]]›
hence Π_denotes: ‹AOT_model_denotes Π›
by (simp add: AOT_enc_κ_meta)
hence Π_eta_denotes: ‹AOT_model_denotes «[λz [Π]z]»›
using AOT_sem_denotes AOT_sem_eq AOT_sem_lambda_eta by metis
show ‹[v ⊨ Π↓ & «AOT_proj_enc κ (λ κ. «[Π]κ»)»]›
using AOT_sem_lambda_eta[simplified AOT_sem_denotes AOT_sem_eq, OF Π_denotes]
using Π_eta_denotes Π_denotes
by (simp add: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_κ_def enc)
next
assume ‹[v ⊨ Π↓ & «AOT_proj_enc κ (λ κ. «[Π]κ»)»]›
hence Π_denotes: "AOT_model_denotes Π" and eta_enc: "[v ⊨ κ[λz [Π]z]]"
by (auto simp: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_κ_def)
thus ‹[v ⊨ κ[Π]]›
using AOT_sem_lambda_eta[simplified AOT_sem_denotes AOT_sem_eq, OF Π_denotes]
by auto
qed
next
show ‹[v ⊨ «AOT_proj_enc κ φ»] ⟹ [v ⊨ κ↓]› for v and κ :: κ and φ
by (simp add: AOT_enc_κ_meta AOT_sem_denotes AOT_proj_enc_κ_def)
next
fix v w and κ :: κ and Π
assume ‹[v ⊨ κ[Π]]›
thus ‹[w ⊨ κ[Π]]›
by (simp add: AOT_enc_κ_meta)
next
fix v w and κ :: κ and φ
assume ‹[v ⊨ «AOT_proj_enc κ φ»]›
thus ‹[w ⊨ «AOT_proj_enc κ φ»]›
by (simp add: AOT_enc_κ_meta AOT_proj_enc_κ_def)
next
show ‹∃κ::κ. [v ⊨ κ↓] ∧ (∀ Π . [v ⊨ Π↓] ⟶ [v ⊨ κ[Π]]) ∧
(∀ φ . [v ⊨ [λz φ{z}]↓] ⟶ [v ⊨ «AOT_proj_enc κ φ»])› for v
by (rule exI[where x=‹ακ UNIV›])
(simp add: AOT_sem_denotes AOT_enc_κ_meta AOT_model_enc_κ_def
AOT_model_denotes_κ_def AOT_proj_enc_κ_def)
qed
end
text‹We show that @{typ κ} satisfies the properties of unary encoding.›
instantiation κ :: AOT_UnaryEnc
begin
instance proof
fix v and Π Π' :: ‹<κ>›
show ‹[v ⊨ Π↓ & Π'↓ & □∀ν (ν[Π] ≡ ν[Π']) → Π = Π']›
apply (simp add: AOT_sem_forall AOT_sem_eq AOT_sem_imp AOT_sem_equiv
AOT_enc_κ_meta AOT_sem_conj AOT_sem_denotes AOT_sem_box)
using AOT_meta_A_objects_κ by fastforce
next
fix v and φ:: ‹<κ> ⇒ 𝗈›
show ‹[v ⊨ ∃x (¬◇[E!]x & ∀F (x[F] ≡ φ{F}))]›
using AOT_model_A_objects[of "λ Π . [v ⊨ φ{Π}]"]
by (auto simp: AOT_sem_denotes AOT_sem_exists AOT_sem_conj AOT_sem_not
AOT_sem_dia AOT_sem_concrete AOT_enc_κ_meta AOT_sem_equiv
AOT_sem_forall)
next
show ‹AOT_proj_enc x ψ = AOT_enc x (AOT_lambda ψ)› for x :: κ and ψ
by (simp add: AOT_proj_enc_κ_def)
next
show ‹[v ⊨ [E!]κ] ⟹ ¬ [w ⊨ κ[Π]]› for v w and κ :: κ and Π
by (simp add: AOT_enc_κ_meta AOT_sem_concrete AOT_model_nocoder)
next
fix v and κ κ' :: κ
show ‹([v ⊨ κ↓] ∧ [v ⊨ κ'↓] ∧ κ = κ') =
(([v ⊨ [λx ◇[E!]x]κ] ∧
[v ⊨ [λx ◇[E!]x]κ'] ∧
(∀ v Π . [v ⊨ Π↓] ⟶ [v ⊨ [Π]κ] = [v ⊨ [Π]κ']))
∨ ([v ⊨ [λx ¬◇[E!]x]κ] ∧
[v ⊨ [λx ¬◇[E!]x]κ'] ∧
(∀ v Π . [v ⊨ Π↓] ⟶ [v ⊨ κ[Π]] = [v ⊨ κ'[Π]])))›
(is ‹?lhs = (?ordeq ∨ ?abseq)›)
proof -
{
assume 0: ‹[v ⊨ κ↓] ∧ [v ⊨ κ'↓] ∧ κ = κ'›
{
assume ‹is_ωκ κ'›
hence ‹[v ⊨ [λx ◇[E!]x]κ']›
apply (subst AOT_sem_lambda_beta[OF AOT_sem_ordinary_def_denotes, of v κ'])
apply (simp add: "0")
apply (simp add: AOT_sem_dia)
using AOT_sem_concrete AOT_model_ω_concrete_in_some_world is_ωκ_def by force
hence ‹?ordeq› unfolding 0[THEN conjunct2, THEN conjunct2] by auto
}
moreover {
assume ‹is_ακ κ'›
hence ‹[v ⊨ [λx ¬◇[E!]x]κ']›
apply (subst AOT_sem_lambda_beta[OF AOT_sem_abstract_def_denotes, of v κ'])
apply (simp add: "0")
apply (simp add: AOT_sem_not AOT_sem_dia)
using AOT_sem_concrete is_ακ_def by force
hence ‹?abseq› unfolding 0[THEN conjunct2, THEN conjunct2] by auto
}
ultimately have ‹?ordeq ∨ ?abseq›
by (meson "0" AOT_sem_denotes AOT_model_denotes_κ_def κ.exhaust_disc)
}
moreover {
assume ordeq: ‹?ordeq›
hence κ_denotes: ‹[v ⊨ κ↓]› and κ'_denotes: ‹[v ⊨ κ'↓]›
by (simp add: AOT_sem_denotes AOT_sem_exe)+
hence ‹is_ωκ κ› and ‹is_ωκ κ'›
by (metis AOT_model_concrete_κ.simps(2) AOT_model_denotes_κ_def
AOT_sem_concrete AOT_sem_denotes AOT_sem_dia AOT_sem_lambda_beta
AOT_sem_ordinary_def_denotes κ.collapse(2) κ.exhaust_disc ordeq)+
have denotes: ‹[v ⊨ [λz «ε⇩𝗈 w . κυ z = κυ κ»]↓]›
unfolding AOT_sem_denotes AOT_model_lambda_denotes
by (simp add: AOT_model_term_equiv_κ_def)
hence "[v ⊨ [λz «ε⇩𝗈 w . κυ z = κυ κ»]κ] = [v ⊨ [λz «ε⇩𝗈 w . κυ z = κυ κ»]κ']"
using ordeq by (simp add: AOT_sem_denotes)
hence ‹[v ⊨ «κ»↓] ∧ [v ⊨ «κ'»↓] ∧ κ = κ'›
unfolding AOT_sem_lambda_beta[OF denotes, OF κ_denotes]
AOT_sem_lambda_beta[OF denotes, OF κ'_denotes]
using κ'_denotes ‹is_ωκ κ'› ‹is_ωκ κ› is_ωκ_def
AOT_model_proposition_choice_simp by force
}
moreover {
assume 0: ‹?abseq›
hence κ_denotes: ‹[v ⊨ κ↓]› and κ'_denotes: ‹[v ⊨ κ'↓]›
by (simp add: AOT_sem_denotes AOT_sem_exe)+
hence ‹¬is_ωκ κ› and ‹¬is_ωκ κ'›
by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)
AOT_sem_concrete AOT_sem_dia AOT_sem_exe AOT_sem_lambda_beta
AOT_sem_not κ.collapse(1) 0)+
hence ‹is_ακ κ› and ‹is_ακ κ'›
by (meson AOT_sem_denotes AOT_model_denotes_κ_def κ.exhaust_disc
κ_denotes κ'_denotes)+
then obtain x y where κ_def: ‹κ = ακ x› and κ'_def: ‹κ' = ακ y›
using is_ακ_def by auto
{
fix r
assume ‹r ∈ x›
hence ‹[v ⊨ κ[«urrel_to_rel r»]]›
unfolding κ_def
unfolding AOT_enc_κ_meta
unfolding AOT_model_enc_κ_def
apply (simp add: AOT_model_denotes_κ_def)
by (metis (mono_tags) AOT_rel_equiv_def Quotient_def urrel_quotient)
hence ‹[v ⊨ κ'[«urrel_to_rel r»]]›
using AOT_enc_κ_meta 0 by (metis AOT_sem_enc_denotes)
hence ‹r ∈ y›
unfolding κ'_def
unfolding AOT_enc_κ_meta
unfolding AOT_model_enc_κ_def
apply (simp add: AOT_model_denotes_κ_def)
using Quotient_abs_rep urrel_quotient by fastforce
}
moreover {
fix r
assume ‹r ∈ y›
hence ‹[v ⊨ κ'[«urrel_to_rel r»]]›
unfolding κ'_def
unfolding AOT_enc_κ_meta
unfolding AOT_model_enc_κ_def
apply (simp add: AOT_model_denotes_κ_def)
by (metis (mono_tags) AOT_rel_equiv_def Quotient_def urrel_quotient)
hence ‹[v ⊨ κ[«urrel_to_rel r»]]›
using AOT_enc_κ_meta 0 by (metis AOT_sem_enc_denotes)
hence ‹r ∈ x›
unfolding κ_def
unfolding AOT_enc_κ_meta
unfolding AOT_model_enc_κ_def
apply (simp add: AOT_model_denotes_κ_def)
using Quotient_abs_rep urrel_quotient by fastforce
}
ultimately have "x = y" by blast
hence ‹[v ⊨ κ↓] ∧ [v ⊨ κ'↓] ∧ κ = κ'›
using κ'_def κ'_denotes κ_def by blast
}
ultimately show ?thesis
unfolding AOT_sem_denotes
by auto
qed
next
fix v and κ κ' :: κ and Π Π' :: ‹<κ>›
assume ext: ‹AOT_ExtendedModel›
assume ‹[v ⊨ [λx ¬◇[E!]x]κ]›
hence ‹is_ακ κ›
by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)
AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1) κ.exhaust_disc)
hence κ_abs: ‹¬(∃ w . AOT_model_concrete w κ)›
using is_ακ_def by fastforce
have κ_den: ‹AOT_model_denotes κ›
by (simp add: AOT_model_denotes_κ_def κ.distinct_disc(5) ‹is_ακ κ›)
assume ‹[v ⊨ [λx ¬◇[E!]x]κ']›
hence ‹is_ακ κ'›
by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)
AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1)
κ.exhaust_disc)
hence κ'_abs: ‹¬(∃ w . AOT_model_concrete w κ')›
using is_ακ_def by fastforce
have κ'_den: ‹AOT_model_denotes κ'›
by (meson AOT_model_denotes_κ_def κ.distinct_disc(6) ‹is_ακ κ'›)
assume ‹[v ⊨ Π'↓] ⟹ [w ⊨ [Π']κ] = [w ⊨ [Π']κ']› for Π' w
hence indist: ‹[v ⊨ «Rep_rel Π' κ»] = [v ⊨ «Rep_rel Π' κ'»]›
if ‹AOT_model_denotes Π'› for Π' v
by (metis AOT_sem_denotes AOT_sem_exe κ'_den κ_den that)
assume κ_enc_cond: ‹[v ⊨ Π'↓] ⟹
(⋀ κ⇩0 w. [v ⊨ [λx ◇[E!]x]κ⇩0] ⟹
[w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]) ⟹
[v ⊨ κ[Π']]› for Π'
assume Π_den': ‹[v ⊨ Π↓]›
hence Π_den: ‹AOT_model_denotes Π›
using AOT_sem_denotes by blast
{
fix Π' :: ‹<κ>›
assume Π'_den: ‹AOT_model_denotes Π'›
hence Π'_den': ‹[v ⊨ Π'↓]›
by (simp add: AOT_sem_denotes)
assume 1: ‹∃w. AOT_model_concrete w x ⟹
[v ⊨ «Rep_rel Π' x»] = [v ⊨ «Rep_rel Π x»]› for v x
{
fix κ⇩0 :: κ and w
assume ‹[v ⊨ [λx ◇[E!]x]κ⇩0]›
hence ‹is_ωκ κ⇩0›
by (smt (z3) AOT_model_concrete_κ.simps(2) AOT_model_denotes_κ_def
AOT_sem_concrete AOT_sem_denotes AOT_sem_dia AOT_sem_exe
AOT_sem_lambda_beta κ.exhaust_disc is_ακ_def)
then obtain x where x_prop: ‹κ⇩0 = ωκ x›
using is_ωκ_def by blast
have ‹∃w . AOT_model_concrete w (ωκ x)›
by (simp add: AOT_model_ω_concrete_in_some_world)
hence ‹[v ⊨ «Rep_rel Π' (ωκ x)»] = [v ⊨ «Rep_rel Π (ωκ x)»]› for v
using 1 by blast
hence ‹[w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]› unfolding x_prop
by (simp add: AOT_sem_exe AOT_sem_denotes AOT_model_denotes_κ_def
Π'_den Π_den)
} note 2 = this
have ‹[v ⊨ κ[Π']]›
using κ_enc_cond[OF Π'_den', OF 2]
by metis
hence ‹AOT_model_enc κ Π'›
using AOT_enc_κ_meta by blast
} note κ_enc_cond = this
hence ‹AOT_model_denotes Π' ⟹
(⋀v x. ∃w. AOT_model_concrete w x ⟹
[v ⊨ «Rep_rel Π' x»] = [v ⊨ «Rep_rel Π x»]) ⟹
AOT_model_enc κ Π'› for Π'
by blast
assume Π'_den': ‹[v ⊨ Π'↓]›
hence Π'_den: ‹AOT_model_denotes Π'›
using AOT_sem_denotes by blast
assume ord_indist: ‹[v ⊨ [λx ◇[E!]x]κ⇩0] ⟹
[w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]› for κ⇩0 w
{
fix w and κ⇩0 :: κ
assume 0: ‹∃w. AOT_model_concrete w κ⇩0›
hence ‹[v ⊨ [λx ◇[E!]x]κ⇩0]›
using AOT_model_concrete_denotes AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_lambda_beta AOT_sem_ordinary_def_denotes by blast
hence ‹[w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]›
using ord_indist by metis
hence ‹[w ⊨ «Rep_rel Π' κ⇩0»] = [w ⊨ «Rep_rel Π κ⇩0»]›
by (metis AOT_model_concrete_denotes AOT_sem_denotes AOT_sem_exe Π'_den Π_den 0)
} note ord_indist = this
have ‹AOT_model_enc κ' Π'›
using AOT_model_enc_indistinguishable_all
[OF ext, OF κ_den, OF κ_abs, OF κ'_den, OF κ'_abs, OF Π_den]
indist κ_enc_cond Π'_den ord_indist by blast
thus ‹[v ⊨ κ'[Π']]›
using AOT_enc_κ_meta Π'_den κ'_den by blast
next
fix v and κ κ' :: κ and Π Π' :: ‹<κ>›
assume ext: ‹AOT_ExtendedModel›
assume ‹[v ⊨ [λx ¬◇[E!]x]κ]›
hence ‹is_ακ κ›
by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)
AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1)
κ.exhaust_disc)
hence κ_abs: ‹¬(∃ w . AOT_model_concrete w κ)›
using is_ακ_def by fastforce
have κ_den: ‹AOT_model_denotes κ›
by (simp add: AOT_model_denotes_κ_def κ.distinct_disc(5) ‹is_ακ κ›)
assume ‹[v ⊨ [λx ¬◇[E!]x]κ']›
hence ‹is_ακ κ'›
by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)
AOT_model_denotes_κ_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not κ.collapse(1)
κ.exhaust_disc)
hence κ'_abs: ‹¬(∃ w . AOT_model_concrete w κ')›
using is_ακ_def by fastforce
have κ'_den: ‹AOT_model_denotes κ'›
by (meson AOT_model_denotes_κ_def κ.distinct_disc(6) ‹is_ακ κ'›)
assume ‹[v ⊨ Π'↓] ⟹ [w ⊨ [Π']κ] = [w ⊨ [Π']κ']› for Π' w
hence indist: ‹[v ⊨ «Rep_rel Π' κ»] = [v ⊨ «Rep_rel Π' κ'»]›
if ‹AOT_model_denotes Π'› for Π' v
by (metis AOT_sem_denotes AOT_sem_exe κ'_den κ_den that)
assume Π_den': ‹[v ⊨ Π↓]›
hence Π_den: ‹AOT_model_denotes Π›
using AOT_sem_denotes by blast
assume ‹∃Π'. [v ⊨ Π'↓] ∧ [v ⊨ κ[Π']] ∧
(∀κ⇩0. [v ⊨ [λx ◇[E!]x]κ⇩0] ⟶
(∀w. [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]))›
then obtain Π' where
Π'_den: ‹[v ⊨ Π'↓]› and
Π'_enc: ‹[v ⊨ κ[Π']]› and
Π'_prop: ‹∀κ⇩0. [v ⊨ [λx ◇[E!]x]κ⇩0] ⟶
(∀w. [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0])›
by blast
have ‹AOT_model_denotes Π'›
using AOT_enc_κ_meta Π'_enc by force
moreover have ‹AOT_model_enc κ Π'›
using AOT_enc_κ_meta Π'_enc by blast
moreover have ‹(∃w. AOT_model_concrete w κ⇩0) ⟹
[v ⊨ «Rep_rel Π' κ⇩0»] = [v ⊨ «Rep_rel Π κ⇩0»]› for κ⇩0 v
proof -
assume 0: ‹∃w. AOT_model_concrete w κ⇩0›
hence ‹[v ⊨ [λx ◇[E!]x]κ⇩0]› for v
using AOT_model_concrete_denotes AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_lambda_beta AOT_sem_ordinary_def_denotes by blast
hence ‹∀w. [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]› using Π'_prop by blast
thus ‹[v ⊨ «Rep_rel Π' κ⇩0»] = [v ⊨ «Rep_rel Π κ⇩0»]›
by (meson "0" AOT_model_concrete_denotes AOT_sem_denotes AOT_sem_exe Π_den
calculation(1))
qed
ultimately have ‹∃Π'. AOT_model_denotes Π' ∧ AOT_model_enc κ Π' ∧
(∀v x. (∃w. AOT_model_concrete w x) ⟶
[v ⊨ «Rep_rel Π' x»] = [v ⊨ «Rep_rel Π x»])›
by blast
hence ‹∃Π'. AOT_model_denotes Π' ∧ AOT_model_enc κ' Π' ∧
(∀v x. (∃w. AOT_model_concrete w x) ⟶
[v ⊨ «Rep_rel Π' x»] = [v ⊨ «Rep_rel Π x»])›
using AOT_model_enc_indistinguishable_ex
[OF ext, OF κ_den, OF κ_abs, OF κ'_den, OF κ'_abs, OF Π_den]
indist by blast
then obtain Π'' where
Π''_den: ‹AOT_model_denotes Π''›
and Π''_enc: ‹AOT_model_enc κ' Π''›
and Π''_prop: ‹(∃w. AOT_model_concrete w x) ⟹
[v ⊨ «Rep_rel Π'' x»] = [v ⊨ «Rep_rel Π x»]› for v x
by blast
have ‹[v ⊨ Π''↓]›
by (simp add: AOT_sem_denotes Π''_den)
moreover have ‹[v ⊨ κ'[Π'']]›
by (simp add: AOT_enc_κ_meta Π''_den Π''_enc κ'_den)
moreover have ‹[v ⊨ [λx ◇[E!]x]κ⇩0] ⟹
(∀w. [w ⊨ [Π'']κ⇩0] = [w ⊨ [Π]κ⇩0])› for κ⇩0
proof -
assume ‹[v ⊨ [λx ◇[E!]x]κ⇩0]›
hence ‹∃w. AOT_model_concrete w κ⇩0›
by (metis AOT_sem_concrete AOT_sem_dia AOT_sem_exe AOT_sem_lambda_beta)
thus ‹∀w. [w ⊨ [Π'']κ⇩0] = [w ⊨ [Π]κ⇩0]›
using Π''_prop
by (metis AOT_sem_denotes AOT_sem_exe Π''_den Π_den)
qed
ultimately show ‹∃Π'. [v ⊨ Π'↓] ∧ [v ⊨ κ'[Π']] ∧
(∀κ⇩0. [v ⊨ [λx ◇[E!]x]κ⇩0] ⟶
(∀w. [w ⊨ [Π']κ⇩0] = [w ⊨ [Π]κ⇩0]))›
by (safe intro!: exI[where x=Π'']) blast+
qed
end
text‹Define encoding for products using projection-encoding.›
instantiation prod :: (AOT_UnaryEnc, AOT_Enc) AOT_Enc
begin
definition AOT_proj_enc_prod :: ‹'a×'b ⇒ ('a×'b ⇒ 𝗈) ⇒ 𝗈› where
‹AOT_proj_enc_prod ≡ λ (κ,κ') φ . «κ[λν «φ (ν,κ')»] &
«AOT_proj_enc κ' (λν. φ (κ,ν))»»›
definition AOT_enc_prod :: ‹'a×'b ⇒ <'a×'b> ⇒ 𝗈› where
‹AOT_enc_prod ≡ λ κ Π . «Π↓ & «AOT_proj_enc κ (λ κ⇩1'κ⇩n'. «[Π]κ⇩1'...κ⇩n'»)»»›
instance proof
show ‹[v ⊨ κ⇩1...κ⇩n[Π]] ⟹ [v ⊨ κ⇩1...κ⇩n↓] ∧ [v ⊨ Π↓]›
for v and κ⇩1κ⇩n :: ‹'a×'b› and Π
unfolding AOT_enc_prod_def
apply (induct κ⇩1κ⇩n; simp add: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_prod_def)
by (metis AOT_sem_denotes AOT_model_denotes_prod_def AOT_sem_enc_denotes
AOT_sem_proj_enc_denotes case_prodI)
next
show ‹[v ⊨ κ⇩1...κ⇩n[Π]] =
[v ⊨ «Π»↓ & «AOT_proj_enc κ⇩1κ⇩n (λ κ⇩1κ⇩n. «[Π]κ⇩1...κ⇩n»)»]›
for v and κ⇩1κ⇩n :: ‹'a×'b› and Π
unfolding AOT_enc_prod_def ..
next
show ‹[v ⊨ «AOT_proj_enc κs φ»] ⟹ [v ⊨ «κs»↓]›
for v and κs :: ‹'a×'b› and φ
by (metis (mono_tags, lifting)
AOT_sem_conj AOT_sem_denotes AOT_model_denotes_prod_def
AOT_sem_enc_denotes AOT_sem_proj_enc_denotes
AOT_proj_enc_prod_def case_prod_unfold)
next
fix v w Π and κ⇩1κ⇩n :: ‹'a×'b›
show ‹[w ⊨ κ⇩1...κ⇩n[Π]]› if ‹[v ⊨ κ⇩1...κ⇩n[Π]]› for v w Π and κ⇩1κ⇩n :: ‹'a×'b›
by (metis (mono_tags, lifting)
AOT_enc_prod_def AOT_sem_enc_proj_enc AOT_sem_conj AOT_sem_denotes
AOT_sem_proj_enc_nec AOT_proj_enc_prod_def case_prod_unfold that)
next
show ‹[w ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»]› if ‹[v ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»]›
for v w φ and κ⇩1κ⇩n :: ‹'a×'b›
by (metis (mono_tags, lifting)
that AOT_sem_enc_proj_enc AOT_sem_conj AOT_sem_denotes
AOT_sem_proj_enc_nec AOT_proj_enc_prod_def case_prod_unfold)
next
fix v
obtain κ :: 'a where a_prop: ‹[v ⊨ κ↓] ∧ (∀ Π . [v ⊨ Π↓] ⟶ [v ⊨ κ[Π]])›
using AOT_sem_universal_encoder by blast
obtain κ⇩1'κ⇩n' :: 'b where b_prop:
‹[v ⊨ κ⇩1'...κ⇩n'↓] ∧ (∀ φ . [v ⊨ [λν⇩1...ν⇩n «φ ν⇩1ν⇩n»]↓] ⟶
[v ⊨ «AOT_proj_enc κ⇩1'κ⇩n' φ»])›
using AOT_sem_universal_encoder by blast
have ‹AOT_model_denotes «[λν⇩1...ν⇩n [«Π»]ν⇩1...ν⇩n κ⇩1'...κ⇩n']»›
if ‹AOT_model_denotes Π› for Π :: ‹<'a×'b>›
unfolding AOT_model_lambda_denotes
by (metis AOT_meta_prod_equivI(2) AOT_sem_exe_equiv)
moreover have ‹AOT_model_denotes «[λν⇩1...ν⇩n [«Π»]κ ν⇩1...ν⇩n]»›
if ‹AOT_model_denotes Π› for Π :: ‹<'a×'b>›
unfolding AOT_model_lambda_denotes
by (metis AOT_meta_prod_equivI(1) AOT_sem_exe_equiv)
ultimately have 1: ‹[v ⊨ «(κ,κ⇩1'κ⇩n')»↓]›
and 2: ‹(∀ Π . [v ⊨ Π↓] ⟶ [v ⊨ κ κ⇩1'...κ⇩n'[Π]])›
using a_prop b_prop
by (auto simp: AOT_sem_denotes AOT_enc_κ_meta AOT_model_enc_κ_def
AOT_model_denotes_κ_def AOT_model_denotes_prod_def
AOT_enc_prod_def AOT_proj_enc_prod_def AOT_sem_conj)
have ‹AOT_model_denotes «[λz⇩1...z⇩n «φ (z⇩1z⇩n, κ⇩1'κ⇩n')»]»›
if ‹AOT_model_denotes «[λz⇩1...z⇩m φ{z⇩1...z⇩m}]»› for φ :: ‹'a×'b ⇒ 𝗈›
using that
unfolding AOT_model_lambda_denotes
by (metis (no_types, lifting) AOT_sem_denotes AOT_model_denotes_prod_def
AOT_meta_prod_equivI(2) b_prop case_prodI)
moreover have ‹AOT_model_denotes «[λz⇩1...z⇩n «φ (κ, z⇩1z⇩n)»]»›
if ‹AOT_model_denotes «[λz⇩1...z⇩m φ{z⇩1...z⇩m}]»› for φ :: ‹'a×'b ⇒ 𝗈›
using that
unfolding AOT_model_lambda_denotes
by (metis (no_types, lifting) AOT_sem_denotes AOT_model_denotes_prod_def
AOT_meta_prod_equivI(1) a_prop case_prodI)
ultimately have 3:
‹[v ⊨ «(κ,κ⇩1'κ⇩n')»↓] ∧ (∀ φ . [v ⊨ [λz⇩1...z⇩n φ{z⇩1...z⇩n}]↓] ⟶
[v ⊨ «AOT_proj_enc (κ,κ⇩1'κ⇩n') φ»])›
using a_prop b_prop
by (auto simp: AOT_sem_denotes AOT_enc_κ_meta AOT_model_enc_κ_def
AOT_model_denotes_κ_def AOT_enc_prod_def AOT_proj_enc_prod_def
AOT_sem_conj AOT_model_denotes_prod_def)
show ‹∃κ⇩1κ⇩n::'a×'b. [v ⊨ κ⇩1...κ⇩n↓] ∧ (∀ Π . [v ⊨ Π↓] ⟶ [v ⊨ κ⇩1...κ⇩n[Π]]) ∧
(∀ φ . [v ⊨ [λz⇩1...z⇩n «φ z⇩1z⇩n»]↓] ⟶
[v ⊨ «AOT_proj_enc κ⇩1κ⇩n φ»])›
apply (rule exI[where x=‹(κ,κ⇩1'κ⇩n')›]) using 1 2 3 by blast
qed
end
text‹Sanity-check to verify that n-ary encoding follows.›
lemma ‹[v ⊨ κ⇩1κ⇩2[Π]] = [v ⊨ Π↓ & κ⇩1[λν [Π]νκ⇩2] & κ⇩2[λν [Π]κ⇩1ν]]›
for κ⇩1 :: "'a::AOT_UnaryEnc" and κ⇩2 :: "'b::AOT_UnaryEnc"
by (simp add: AOT_sem_conj AOT_enc_prod_def AOT_proj_enc_prod_def
AOT_sem_unary_proj_enc)
lemma ‹[v ⊨ κ⇩1κ⇩2κ⇩3[Π]] =
[v ⊨ Π↓ & κ⇩1[λν [Π]νκ⇩2κ⇩3] & κ⇩2[λν [Π]κ⇩1νκ⇩3] & κ⇩3[λν [Π]κ⇩1κ⇩2ν]]›
for κ⇩1 κ⇩2 κ⇩3 :: "'a::AOT_UnaryEnc"
by (simp add: AOT_sem_conj AOT_enc_prod_def AOT_proj_enc_prod_def
AOT_sem_unary_proj_enc)
lemma AOT_sem_vars_denote: ‹[v ⊨ α⇩1...α⇩n↓]›
by induct simp
text‹Combine the introduced type classes and register them as
type constraints for individual terms.›
class AOT_κs = AOT_IndividualTerm + AOT_RelationProjection + AOT_Enc
class AOT_κ = AOT_κs + AOT_UnaryIndividualTerm +
AOT_UnaryRelationProjection + AOT_UnaryEnc
instance κ :: AOT_κ by standard
instance prod :: (AOT_κ, AOT_κs) AOT_κs by standard
AOT_register_type_constraints
Individual: ‹_::AOT_κ› ‹_::AOT_κs› and
Relation: ‹<_::AOT_κs>›
text‹We define semantic predicates to capture the conditions of cqt.2 (i.e.
the base cases of denoting terms) on matrices of @{text λ}-expressions.›
definition AOT_instance_of_cqt_2 :: ‹('a::AOT_κs ⇒ 𝗈) ⇒ bool› where
‹AOT_instance_of_cqt_2 ≡ λ φ . ∀ x y . AOT_model_denotes x ∧ AOT_model_denotes y ∧
AOT_model_term_equiv x y ⟶ φ x = φ y›
definition AOT_instance_of_cqt_2_exe_arg :: ‹('a::AOT_κs ⇒ 'b::AOT_κs) ⇒ bool› where
‹AOT_instance_of_cqt_2_exe_arg ≡ λ φ . ∀ x y .
AOT_model_denotes x ∧ AOT_model_denotes y ∧ AOT_model_term_equiv x y ⟶
AOT_model_term_equiv (φ x) (φ y)›
text‹@{text λ}-expressions with a matrix that satisfies our predicate denote.›
lemma AOT_sem_cqt_2:
assumes ‹AOT_instance_of_cqt_2 φ›
shows ‹[v ⊨ [λν⇩1...ν⇩n φ{ν⇩1...ν⇩n}]↓]›
using assms
by (metis AOT_instance_of_cqt_2_def AOT_model_lambda_denotes AOT_sem_denotes)
syntax AOT_instance_of_cqt_2 :: ‹id_position ⇒ AOT_prop›
(‹INSTANCE'_OF'_CQT'_2'(_')›)
text‹Prove introduction rules for the predicates that match the natural language
restrictions of the axiom.›
named_theorems AOT_instance_of_cqt_2_intro
lemma AOT_instance_of_cqt_2_intros_const[AOT_instance_of_cqt_2_intro]:
‹AOT_instance_of_cqt_2 (λα. φ)›
by (simp add: AOT_instance_of_cqt_2_def AOT_sem_denotes AOT_model_lambda_denotes)
lemma AOT_instance_of_cqt_2_intros_not[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ›
shows ‹AOT_instance_of_cqt_2 (λτ. «¬φ{τ}»)›
using assms
by (metis (no_types, lifting) AOT_instance_of_cqt_2_def)
lemma AOT_instance_of_cqt_2_intros_imp[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ› and ‹AOT_instance_of_cqt_2 ψ›
shows ‹AOT_instance_of_cqt_2 (λτ. «φ{τ} → ψ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_imp)
lemma AOT_instance_of_cqt_2_intros_box[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ›
shows ‹AOT_instance_of_cqt_2 (λτ. «□φ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_box)
lemma AOT_instance_of_cqt_2_intros_act[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ›
shows ‹AOT_instance_of_cqt_2 (λτ. «❙𝒜φ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_act)
lemma AOT_instance_of_cqt_2_intros_diamond[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ›
shows ‹AOT_instance_of_cqt_2 (λτ. «◇φ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_dia)
lemma AOT_instance_of_cqt_2_intros_conj[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ› and ‹AOT_instance_of_cqt_2 ψ›
shows ‹AOT_instance_of_cqt_2 (λτ. «φ{τ} & ψ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_conj)
lemma AOT_instance_of_cqt_2_intros_disj[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ› and ‹AOT_instance_of_cqt_2 ψ›
shows ‹AOT_instance_of_cqt_2 (λτ. «φ{τ} ∨ ψ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_disj)
lemma AOT_instance_of_cqt_2_intros_equib[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2 φ› and ‹AOT_instance_of_cqt_2 ψ›
shows ‹AOT_instance_of_cqt_2 (λτ. «φ{τ} ≡ ψ{τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_equiv)
lemma AOT_instance_of_cqt_2_intros_forall[AOT_instance_of_cqt_2_intro]:
assumes ‹⋀ α . AOT_instance_of_cqt_2 (Φ α)›
shows ‹AOT_instance_of_cqt_2 (λτ. «∀α Φ{α,τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_forall)
lemma AOT_instance_of_cqt_2_intros_exists[AOT_instance_of_cqt_2_intro]:
assumes ‹⋀ α . AOT_instance_of_cqt_2 (Φ α)›
shows ‹AOT_instance_of_cqt_2 (λτ. «∃α Φ{α,τ}»)›
using assms
by (auto simp: AOT_instance_of_cqt_2_def AOT_sem_denotes
AOT_model_lambda_denotes AOT_sem_exists)
lemma AOT_instance_of_cqt_2_intros_exe_arg_self[AOT_instance_of_cqt_2_intro]:
‹AOT_instance_of_cqt_2_exe_arg (λx. x)›
unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def
AOT_sem_lambda_denotes
by (auto simp: AOT_model_term_equiv_part_equivp equivp_reflp AOT_sem_denotes)
lemma AOT_instance_of_cqt_2_intros_exe_arg_const[AOT_instance_of_cqt_2_intro]:
‹AOT_instance_of_cqt_2_exe_arg (λx. κ)›
unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def
by (auto simp: AOT_model_term_equiv_part_equivp equivp_reflp
AOT_sem_denotes AOT_sem_lambda_denotes)
lemma AOT_instance_of_cqt_2_intros_exe_arg_fst[AOT_instance_of_cqt_2_intro]:
‹AOT_instance_of_cqt_2_exe_arg fst›
unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def
by (simp add: AOT_model_term_equiv_prod_def case_prod_beta)
lemma AOT_instance_of_cqt_2_intros_exe_arg_snd[AOT_instance_of_cqt_2_intro]:
‹AOT_instance_of_cqt_2_exe_arg snd›
unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def
by (simp add: AOT_model_term_equiv_prod_def AOT_sem_denotes AOT_sem_lambda_denotes)
lemma AOT_instance_of_cqt_2_intros_exe_arg_Pair[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2_exe_arg φ› and ‹AOT_instance_of_cqt_2_exe_arg ψ›
shows ‹AOT_instance_of_cqt_2_exe_arg (λτ. Pair (φ τ) (ψ τ))›
using assms
unfolding AOT_instance_of_cqt_2_exe_arg_def AOT_instance_of_cqt_2_def
AOT_sem_denotes AOT_sem_lambda_denotes AOT_model_term_equiv_prod_def
AOT_model_denotes_prod_def
by auto
lemma AOT_instance_of_cqt_2_intros_desc[AOT_instance_of_cqt_2_intro]:
assumes ‹⋀z :: 'a::AOT_κ. AOT_instance_of_cqt_2 (Φ z)›
shows ‹AOT_instance_of_cqt_2_exe_arg (λ κ :: 'b::AOT_κ . «❙ιz(Φ{z,κ})»)›
proof -
have 0: ‹⋀ κ κ'. AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧
AOT_model_term_equiv κ κ' ⟹
Φ z κ = Φ z κ'› for z
using assms
unfolding AOT_instance_of_cqt_2_def
AOT_sem_denotes AOT_model_lambda_denotes by force
{
fix κ κ'
have ‹«❙ιz(Φ{z,κ})» = «❙ιz(Φ{z,κ'})»›
if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧ AOT_model_term_equiv κ κ'›
using 0[OF that]
by auto
moreover have ‹AOT_model_term_equiv x x› for x :: ‹'a::AOT_κ›
by (metis AOT_instance_of_cqt_2_exe_arg_def
AOT_instance_of_cqt_2_intros_exe_arg_const
AOT_model_A_objects AOT_model_term_equiv_denotes
AOT_model_term_equiv_eps(1))
ultimately have ‹AOT_model_term_equiv «❙ιz(Φ{z,κ})» «❙ιz(Φ{z,κ'})»›
if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧ AOT_model_term_equiv κ κ'›
using that by simp
}
thus ?thesis using 0
unfolding AOT_instance_of_cqt_2_exe_arg_def
by simp
qed
lemma AOT_instance_of_cqt_2_intros_exe_const[AOT_instance_of_cqt_2_intro]:
assumes ‹AOT_instance_of_cqt_2_exe_arg κs›
shows ‹AOT_instance_of_cqt_2 (λx :: 'b::AOT_κs. AOT_exe Π (κs x))›
using assms
unfolding AOT_instance_of_cqt_2_def AOT_sem_denotes AOT_model_lambda_denotes
AOT_sem_disj AOT_sem_conj
AOT_sem_not AOT_sem_box AOT_sem_act AOT_instance_of_cqt_2_exe_arg_def
AOT_sem_equiv AOT_sem_imp AOT_sem_forall AOT_sem_exists AOT_sem_dia
by (auto intro!: AOT_sem_exe_equiv)
lemma AOT_instance_of_cqt_2_intros_exe_lam[AOT_instance_of_cqt_2_intro]:
assumes ‹⋀ y . AOT_instance_of_cqt_2 (λx. φ x y)›
and ‹AOT_instance_of_cqt_2_exe_arg κs›
shows ‹AOT_instance_of_cqt_2 (λκ⇩1κ⇩n :: 'b::AOT_κs.
«[λν⇩1...ν⇩n φ{κ⇩1...κ⇩n,ν⇩1...ν⇩n}]«κs κ⇩1κ⇩n»»)›
proof -
{
fix x y :: 'b
assume ‹AOT_model_denotes x›
moreover assume ‹AOT_model_denotes y›
moreover assume ‹AOT_model_term_equiv x y›
moreover have 1: ‹φ x = φ y›
using assms calculation unfolding AOT_instance_of_cqt_2_def by blast
ultimately have ‹AOT_exe (AOT_lambda (φ x)) (κs x) =
AOT_exe (AOT_lambda (φ y)) (κs y)›
unfolding 1
apply (safe intro!: AOT_sem_exe_equiv)
by (metis AOT_instance_of_cqt_2_exe_arg_def assms(2))
}
thus ?thesis
unfolding AOT_instance_of_cqt_2_def
AOT_instance_of_cqt_2_exe_arg_def
by blast
qed
lemma AOT_instance_of_cqt_2_intro_prod[AOT_instance_of_cqt_2_intro]:
assumes ‹⋀ x . AOT_instance_of_cqt_2 (φ x)›
and ‹⋀ x . AOT_instance_of_cqt_2 (λ z . φ z x)›
shows ‹AOT_instance_of_cqt_2 (λ(x,y) . φ x y)›
using assms unfolding AOT_instance_of_cqt_2_def
by (auto simp add: AOT_model_lambda_denotes AOT_sem_denotes
AOT_model_denotes_prod_def
AOT_model_term_equiv_prod_def)
text‹The following are already derivable semantically, but not yet added
to @{attribute AOT_instance_of_cqt_2_intro}. They will be added with the
next planned extension of axiom cqt:2.›
named_theorems AOT_instance_of_cqt_2_intro_next
definition AOT_instance_of_cqt_2_enc_arg :: ‹('a::AOT_κs ⇒ 'b::AOT_κs) ⇒ bool› where
‹AOT_instance_of_cqt_2_enc_arg ≡ λ φ . ∀ x y z .
AOT_model_denotes x ∧ AOT_model_denotes y ∧ AOT_model_term_equiv x y ⟶
AOT_enc (φ x) z = AOT_enc (φ y) z›
definition AOT_instance_of_cqt_2_enc_rel :: ‹('a::AOT_κs ⇒ <'b::AOT_κs>) ⇒ bool› where
‹AOT_instance_of_cqt_2_enc_rel ≡ λ φ . ∀ x y z .
AOT_model_denotes x ∧ AOT_model_denotes y ∧ AOT_model_term_equiv x y ⟶
AOT_enc z (φ x) = AOT_enc z (φ y)›
lemma AOT_instance_of_cqt_2_intros_enc[AOT_instance_of_cqt_2_intro_next]:
assumes ‹AOT_instance_of_cqt_2_enc_rel Π› and ‹AOT_instance_of_cqt_2_enc_arg κs›
shows ‹AOT_instance_of_cqt_2 (λx . AOT_enc (κs x) «[«Π x»]»)›
using assms
unfolding AOT_instance_of_cqt_2_def AOT_sem_denotes AOT_model_lambda_denotes
AOT_instance_of_cqt_2_enc_rel_def AOT_sem_not AOT_sem_box AOT_sem_act
AOT_sem_dia AOT_sem_conj AOT_sem_disj AOT_sem_equiv AOT_sem_imp
AOT_sem_forall AOT_sem_exists AOT_instance_of_cqt_2_enc_arg_def
by fastforce+
lemma AOT_instance_of_cqt_2_enc_arg_intro_const[AOT_instance_of_cqt_2_intro_next]:
‹AOT_instance_of_cqt_2_enc_arg (λx. c)›
unfolding AOT_instance_of_cqt_2_enc_arg_def by simp
lemma AOT_instance_of_cqt_2_enc_arg_intro_desc[AOT_instance_of_cqt_2_intro_next]:
assumes ‹⋀z :: 'a::AOT_κ. AOT_instance_of_cqt_2 (Φ z)›
shows ‹AOT_instance_of_cqt_2_enc_arg (λ κ :: 'b::AOT_κ . «❙ιz(Φ{z,κ})»)›
proof -
have 0: ‹⋀ κ κ'. AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧
AOT_model_term_equiv κ κ' ⟹
Φ z κ = Φ z κ'› for z
using assms
unfolding AOT_instance_of_cqt_2_def
AOT_sem_denotes AOT_model_lambda_denotes by force
{
fix κ κ'
have ‹«❙ιz(Φ{z,κ})» = «❙ιz(Φ{z,κ'})»›
if ‹AOT_model_denotes κ ∧ AOT_model_denotes κ' ∧ AOT_model_term_equiv κ κ'›
using 0[OF that]
by auto
}
thus ?thesis using 0
unfolding AOT_instance_of_cqt_2_enc_arg_def by meson
qed
lemma AOT_instance_of_cqt_2_enc_rel_intro[AOT_instance_of_cqt_2_intro_next]:
assumes ‹⋀ κ . AOT_instance_of_cqt_2 (λκ' :: 'b::AOT_κs . φ κ κ')›
assumes ‹⋀ κ' . AOT_instance_of_cqt_2 (λκ :: 'a::AOT_κs . φ κ κ')›
shows ‹AOT_instance_of_cqt_2_enc_rel (λκ :: 'a::AOT_κs. AOT_lambda (λκ'. φ κ κ'))›
proof -
{
fix x y :: 'a and z ::'b
assume ‹AOT_model_term_equiv x y›
moreover assume ‹AOT_model_denotes x›
moreover assume ‹AOT_model_denotes y›
ultimately have ‹φ x = φ y›
using assms unfolding AOT_instance_of_cqt_2_def by blast
hence ‹AOT_enc z (AOT_lambda (φ x)) = AOT_enc z (AOT_lambda (φ y))›
by simp
}
thus ?thesis
unfolding AOT_instance_of_cqt_2_enc_rel_def by auto
qed
text‹Further restrict unary individual variables to type @{typ κ} (rather
than class @{class AOT_κ} only) and define being ordinary and being abstract.›
AOT_register_type_constraints
Individual: ‹κ› ‹_::AOT_κs›
AOT_define AOT_ordinary :: ‹Π› (‹O!›) ‹O! =⇩d⇩f [λx ◇E!x]›
declare AOT_ordinary[AOT del, AOT_defs del]
AOT_define AOT_abstract :: ‹Π› (‹A!›) ‹A! =⇩d⇩f [λx ¬◇E!x]›
declare AOT_abstract[AOT del, AOT_defs del]
context AOT_meta_syntax
begin
notation AOT_ordinary (‹❙O❙!›)
notation AOT_abstract (‹❙A❙!›)
end
context AOT_no_meta_syntax
begin
no_notation AOT_ordinary (‹❙O❙!›)
no_notation AOT_abstract (‹❙A❙!›)
end
no_translations
"_AOT_concrete" => "CONST AOT_term_of_var (CONST AOT_concrete)"
parse_translation‹
[(\<^syntax_const>‹_AOT_concrete›, fn _ => fn [] =>
Const (\<^const_name>‹AOT_term_of_var›, dummyT)
$ Const (\<^const_name>‹AOT_concrete›, \<^typ>‹<κ> AOT_var›))]
›
text‹Auxiliary lemmata.›
lemma AOT_sem_ordinary: "«O!» = «[λx ◇E!x]»"
using AOT_ordinary[THEN AOT_sem_id_def0E1] AOT_sem_ordinary_def_denotes
by (auto simp: AOT_sem_eq)
lemma AOT_sem_abstract: "«A!» = «[λx ¬◇E!x]»"
using AOT_abstract[THEN AOT_sem_id_def0E1] AOT_sem_abstract_def_denotes
by (auto simp: AOT_sem_eq)
lemma AOT_sem_ordinary_denotes: ‹[w ⊨ O!↓]›
by (simp add: AOT_sem_ordinary AOT_sem_ordinary_def_denotes)
lemma AOT_meta_abstract_denotes: ‹[w ⊨ A!↓]›
by (simp add: AOT_sem_abstract AOT_sem_abstract_def_denotes)
lemma AOT_model_abstract_ακ: ‹∃ a . κ = ακ a› if ‹[v ⊨ A!κ]›
using that[unfolded AOT_sem_abstract, simplified
AOT_meta_abstract_denotes[unfolded AOT_sem_abstract, THEN AOT_sem_lambda_beta,
OF that[simplified AOT_sem_exe, THEN conjunct2, THEN conjunct1]]]
apply (simp add: AOT_sem_not AOT_sem_dia AOT_sem_concrete)
by (metis AOT_model_ω_concrete_in_some_world AOT_model_concrete_κ.simps(1)
AOT_model_denotes_κ_def AOT_sem_denotes AOT_sem_exe κ.exhaust_disc
is_ακ_def is_ωκ_def that)
lemma AOT_model_ordinary_ωκ: ‹∃ a . κ = ωκ a› if ‹[v ⊨ O!κ]›
using that[unfolded AOT_sem_ordinary, simplified
AOT_sem_ordinary_denotes[unfolded AOT_sem_ordinary, THEN AOT_sem_lambda_beta,
OF that[simplified AOT_sem_exe, THEN conjunct2, THEN conjunct1]]]
apply (simp add: AOT_sem_dia AOT_sem_concrete)
by (metis AOT_model_concrete_κ.simps(2) AOT_model_concrete_κ.simps(3)
κ.exhaust_disc is_ακ_def is_ωκ_def is_nullκ_def)
lemma AOT_model_ωκ_ordinary: ‹[v ⊨ O!«ωκ x»]›
by (metis AOT_model_abstract_ακ AOT_model_denotes_κ_def AOT_sem_abstract
AOT_sem_denotes AOT_sem_ind_eq AOT_sem_ordinary κ.disc(7) κ.distinct(1))
lemma AOT_model_ακ_ordinary: ‹[v ⊨ A!«ακ x»]›
by (metis AOT_model_denotes_κ_def AOT_model_ordinary_ωκ AOT_sem_abstract
AOT_sem_denotes AOT_sem_ind_eq AOT_sem_ordinary κ.disc(8) κ.distinct(1))
AOT_theorem prod_denotesE: assumes ‹«(κ⇩1,κ⇩2)»↓› shows ‹κ⇩1↓ & κ⇩2↓›
using assms by (simp add: AOT_sem_denotes AOT_sem_conj AOT_model_denotes_prod_def)
declare prod_denotesE[AOT del]
AOT_theorem prod_denotesI: assumes ‹κ⇩1↓ & κ⇩2↓› shows ‹«(κ⇩1,κ⇩2)»↓›
using assms by (simp add: AOT_sem_denotes AOT_sem_conj AOT_model_denotes_prod_def)
declare prod_denotesI[AOT del]
text‹Prepare the derivation of the additional axioms that are validated by
our extended models.›
locale AOT_ExtendedModel =
assumes AOT_ExtendedModel: ‹AOT_ExtendedModel›
begin
lemma AOT_sem_indistinguishable_ord_enc_all:
assumes Π_den: ‹[v ⊨ Π↓]›
assumes Ax: ‹[v ⊨ A!x]›
assumes Ay: ‹[v ⊨ A!y]›
assumes indist: ‹[v ⊨ ∀F □([F]x ≡ [F]y)]›
shows
‹[v ⊨ ∀G(∀z(O!z → □([G]z ≡ [Π]z)) → x[G])] =
[v ⊨ ∀G(∀z(O!z → □([G]z ≡ [Π]z)) → y[G])]›
proof -
have 0: ‹[v ⊨ [λx ¬◇[E!]x]x]›
using Ax by (simp add: AOT_sem_abstract)
have 1: ‹[v ⊨ [λx ¬◇[E!]x]y]›
using Ay by (simp add: AOT_sem_abstract)
{
assume ‹[v ⊨ ∀G(∀z (O!z → □([G]z ≡ [Π]z)) → x[G])]›
hence 3: ‹[v ⊨ ∀G(∀z([λx ◇[E!]x]z → □([G]z ≡ [Π]z)) → x[G])]›
by (simp add: AOT_sem_ordinary)
{
fix Π' :: ‹<κ>›
assume 1: ‹[v ⊨ Π'↓]›
assume 2: ‹[v ⊨ [λx ◇[E!]x]z → □([Π']z ≡ [Π]z)]› for z
have ‹[v ⊨ x[Π']]›
using 3
by (auto simp: AOT_sem_forall AOT_sem_imp AOT_sem_box AOT_sem_denotes)
(metis (no_types, lifting) 1 2 AOT_term_of_var_cases AOT_sem_box
AOT_sem_denotes AOT_sem_imp)
} note 3 = this
fix Π' :: ‹<κ>›
assume Π_den: ‹[v ⊨ Π'↓]›
assume 4: ‹[v ⊨ ∀z (O!z → □([Π']z ≡ [Π]z))]›
{
fix κ⇩0
assume ‹[v ⊨ [λx ◇[E!]x]κ⇩0]›
hence ‹[v ⊨ O!κ⇩0]›
using AOT_sem_ordinary by metis
moreover have ‹[v ⊨ κ⇩0↓]›
using calculation by (simp add: AOT_sem_exe)
ultimately have ‹[v ⊨ □([Π']κ⇩0 ≡ [Π]κ⇩0)]›
using 4 by (auto simp: AOT_sem_forall AOT_sem_imp)
} note 4 = this
{
fix Π'' :: ‹<κ>›
assume ‹[v ⊨ Π''↓]›
moreover assume ‹[w ⊨ [Π'']κ⇩0] = [w ⊨ [Π']κ⇩0]› if ‹[v ⊨ [λx ◇E!x]κ⇩0]› for κ⇩0 w
ultimately have 5: ‹[v ⊨ x[Π'']]›
using 4 3
by (auto simp: AOT_sem_imp AOT_sem_equiv AOT_sem_box)
} note 5 = this
have ‹[v ⊨ y[Π']]›
apply (rule AOT_sem_enc_indistinguishable_all[OF AOT_ExtendedModel])
apply (fact 0)
by (auto simp: 5 0 1 Π_den indist[simplified AOT_sem_forall
AOT_sem_box AOT_sem_equiv])
}
moreover {
{
assume ‹[v ⊨ ∀G(∀z (O!z → □([G]z ≡ [Π]z)) → y[G])]›
hence 3: ‹[v ⊨ ∀G(∀z ([λx ◇[E!]x]z → □([G]z ≡ [Π]z)) → y[G])]›
by (simp add: AOT_sem_ordinary)
{
fix Π' :: ‹<κ>›
assume 1: ‹[v ⊨ Π'↓]›
assume 2: ‹[v ⊨ [λx ◇[E!]x]z → □([Π']z ≡ [Π]z)]› for z
have ‹[v ⊨ y[Π']]›
using 3
apply (simp add: AOT_sem_forall AOT_sem_imp AOT_sem_box AOT_sem_denotes)
by (metis (no_types, lifting) 1 2 AOT_model.AOT_term_of_var_cases
AOT_sem_box AOT_sem_denotes AOT_sem_imp)
} note 3 = this
fix Π' :: ‹<κ>›
assume Π_den: ‹[v ⊨ Π'↓]›
assume 4: ‹[v ⊨ ∀z (O!z → □([Π']z ≡ [Π]z))]›
{
fix κ⇩0
assume ‹[v ⊨ [λx ◇[E!]x]κ⇩0]›
hence ‹[v ⊨ O!κ⇩0]›
using AOT_sem_ordinary by metis
moreover have ‹[v ⊨ κ⇩0↓]›
using calculation by (simp add: AOT_sem_exe)
ultimately have ‹[v ⊨ □([Π']κ⇩0 ≡ [Π]κ⇩0)]›
using 4 by (auto simp: AOT_sem_forall AOT_sem_imp)
} note 4 = this
{
fix Π'' :: ‹<κ>›
assume ‹[v ⊨ Π''↓]›
moreover assume ‹[w ⊨ [Π'']κ⇩0] = [w ⊨ [Π']κ⇩0]› if ‹[v ⊨ [λx ◇E!x]κ⇩0]› for w κ⇩0
ultimately have ‹[v ⊨ y[Π'']]›
using 3 4 by (auto simp: AOT_sem_imp AOT_sem_equiv AOT_sem_box)
} note 5 = this
have ‹[v ⊨ x[Π']]›
apply (rule AOT_sem_enc_indistinguishable_all[OF AOT_ExtendedModel])
apply (fact 1)
by (auto simp: 5 0 1 Π_den indist[simplified AOT_sem_forall
AOT_sem_box AOT_sem_equiv])
}
}
ultimately show ‹[v ⊨ ∀G (∀z (O!z → □([G]z ≡ [Π]z)) → x[G])] =
[v ⊨ ∀G (∀z (O!z → □([G]z ≡ [Π]z)) → y[G])]›
by (auto simp: AOT_sem_forall AOT_sem_imp)
qed
lemma AOT_sem_indistinguishable_ord_enc_ex:
assumes Π_den: ‹[v ⊨ Π↓]›
assumes Ax: ‹[v ⊨ A!x]›
assumes Ay: ‹[v ⊨ A!y]›
assumes indist: ‹[v ⊨ ∀F □([F]x ≡ [F]y)]›
shows ‹[v ⊨ ∃G(∀z (O!z → □([G]z ≡ [Π]z)) & x[G])] =
[v ⊨ ∃G(∀z(O!z → □([G]z ≡ [Π]z)) & y[G])]›
proof -
have Aux: ‹[v ⊨ [λx ◇[E!]x]κ] = ([v ⊨ [λx ◇[E!]x]κ] ∧ [v ⊨ κ↓])› for v κ
using AOT_sem_exe by blast
AOT_modally_strict {
fix x y
AOT_assume Π_den: ‹[Π]↓›
AOT_assume 2: ‹∀F □([F]x ≡ [F]y)›
AOT_assume ‹A!x›
AOT_hence 0: ‹[λx ¬◇[E!]x]x›
by (simp add: AOT_sem_abstract)
AOT_assume ‹A!y›
AOT_hence 1: ‹[λx ¬◇[E!]x]y›
by (simp add: AOT_sem_abstract)
{
AOT_assume ‹∃G(∀z (O!z → □([G]z ≡ [Π]z)) & x[G])›
then AOT_obtain Π'
where Π'_den: ‹Π'↓›
and Π'_indist: ‹∀z (O!z → □([Π']z ≡ [Π]z))›
and x_enc_Π': ‹x[Π']›
by (meson AOT_sem_conj AOT_sem_exists)
{
fix κ⇩0
AOT_assume ‹[λx ◇[E!]x]κ⇩0›
AOT_hence ‹□([Π']κ⇩0 ≡ [Π]κ⇩0)›
using Π'_indist
by (auto simp: AOT_sem_exe AOT_sem_imp AOT_sem_exists AOT_sem_conj
AOT_sem_ordinary AOT_sem_forall)
} note 3 = this
AOT_have ‹∀z ([λx ◇[E!]x]z → □([Π']z ≡ [Π]z))›
using Π'_indist by (simp add: AOT_sem_ordinary)
AOT_obtain Π'' where
Π''_den: ‹Π''↓› and
Π''_indist: ‹[λx ◇[E!]x]κ⇩0 → □([Π'']κ⇩0 ≡ [Π]κ⇩0)› and
y_enc_Π'': ‹y[Π'']› for κ⇩0
using AOT_sem_enc_indistinguishable_ex[OF AOT_ExtendedModel,
OF 0, OF 1, rotated, OF Π_den,
OF exI[where x=Π'], OF conjI, OF Π'_den, OF conjI,
OF x_enc_Π', OF allI, OF impI,
OF 3[simplified AOT_sem_box AOT_sem_equiv], simplified, OF
2[simplified AOT_sem_forall AOT_sem_equiv AOT_sem_box,
THEN spec, THEN mp, THEN spec], simplified]
unfolding AOT_sem_imp AOT_sem_box AOT_sem_equiv by blast
{
AOT_have ‹Π''↓›
and ‹∀x ([λx ◇[E!]x]x → □([Π'']x ≡ [Π]x))›
and ‹y[Π'']›
apply (simp add: Π''_den)
apply (simp add: AOT_sem_forall Π''_indist)
by (simp add: y_enc_Π'')
} note 2 = this
AOT_have ‹∃G(∀z (O!z → □([G]z ≡ [Π]z)) & y[G])›
apply (simp add: AOT_sem_exists AOT_sem_ordinary
AOT_sem_imp AOT_sem_box AOT_sem_forall AOT_sem_equiv AOT_sem_conj)
using 2[simplified AOT_sem_box AOT_sem_equiv AOT_sem_imp AOT_sem_forall]
by blast
}
} note 0 = this
AOT_modally_strict {
{
fix x y
AOT_assume Π_den: ‹[Π]↓›
moreover AOT_assume ‹∀F □([F]x ≡ [F]y)›
moreover AOT_have ‹∀F □([F]y ≡ [F]x)›
using calculation(2)
by (auto simp: AOT_sem_forall AOT_sem_box AOT_sem_equiv)
moreover AOT_assume ‹A!x›
moreover AOT_assume ‹A!y›
ultimately AOT_have ‹∃G (∀z (O!z → □([G]z ≡ [Π]z)) & x[G]) ≡
∃G (∀z (O!z → □([G]z ≡ [Π]z)) & y[G])›
using 0 by (auto simp: AOT_sem_equiv)
}
have 1: ‹[v ⊨ ∀F □([F]y ≡ [F]x)]›
using indist
by (auto simp: AOT_sem_forall AOT_sem_box AOT_sem_equiv)
thus ‹[v ⊨ ∃G (∀z (O!z → □([G]z ≡ [Π]z)) & x[G])] =
[v ⊨ ∃G (∀z (O!z → □([G]z ≡ [Π]z)) & y[G])]›
using assms
by (auto simp: AOT_sem_imp AOT_sem_conj AOT_sem_equiv 0)
}
qed
end
setup‹setup_AOT_no_atp›
bundle AOT_no_atp begin declare AOT_no_atp[no_atp] end
end