Theory AOT_syntax

(*<*)
theory AOT_syntax
  imports AOT_commands
  keywords "AOT_register_variable_names" :: thy_decl
       and "AOT_register_metavariable_names" :: thy_decl
       and "AOT_register_premise_set_names" :: thy_decl
       and "AOT_register_type_constraints" :: thy_decl
     abbrevs "actually" = "𝒜"
         and "neccessarily" = "□"
         and "possibly" = "◇"
         and "the" = "ι"
         and "lambda" = "[λ]"
         and "being such that" = "[λ ]"
         and "forall" = "∀"
         and "exists" = "∃"
         and "equivalent" = "≡"
         and "not" = "¬"
         and "implies" = "→"
         and "equal" = "="
         and "by definition" = "df"
         and "df" = "df"
         and "denotes" = "↓"
begin
(*>*)

section‹Approximation of the Syntax of PLM›

locale AOT_meta_syntax
begin
notation AOT_model_valid_in ([_  _])
notation AOT_model_axiom ([_])
notation AOT_model_act_axiom (𝒜[_])
end
locale AOT_no_meta_syntax
begin
no_notation AOT_model_valid_in ([_  _])
no_notation AOT_model_axiom ([_])
no_notation AOT_model_act_axiom (𝒜[_])
end

consts AOT_denotes :: 'a::AOT_Term  𝗈
       AOT_imp :: [𝗈, 𝗈]  𝗈
       AOT_not :: 𝗈  𝗈
       AOT_box :: 𝗈  𝗈
       AOT_act :: 𝗈  𝗈
       AOT_forall :: ('a::AOT_Term  𝗈)  𝗈
       AOT_eq :: 'a::AOT_Term  'a::AOT_Term  𝗈
       AOT_desc :: ('a::AOT_UnaryIndividualTerm  𝗈)  'a
       AOT_exe :: <'a::AOT_IndividualTerm>  'a  𝗈
       AOT_lambda :: ('a::AOT_IndividualTerm  𝗈)  <'a>
       AOT_lambda0 :: 𝗈  𝗈
       AOT_concrete :: <'a::AOT_UnaryIndividualTerm> AOT_var

nonterminal κs and Π and Π0 and α and exe_arg and exe_args
        and lambda_args and desc and free_var and free_vars
        and AOT_props and AOT_premises and AOT_world_relative_prop

syntax "_AOT_process_frees" :: φ  φ' (‹_›)
       "_AOT_verbatim" :: any  φ («_»)
       "_AOT_verbatim" :: any  τ («_»)
       "_AOT_quoted" :: φ'  any («_»)
       "_AOT_quoted" :: τ'  any («_»)
       "" :: φ  φ ('(_'))
       "_AOT_process_frees" :: τ  τ' (‹_›)
       "" :: κs  τ (‹_›)
       "" :: Π  τ (‹_›)
       "" :: φ  τ ('(_'))
       "_AOT_term_var" :: id_position  τ (‹_›)
       "_AOT_term_var" :: id_position  φ (‹_›)
       "_AOT_exe_vars" :: id_position  exe_arg (‹_›)
       "_AOT_lambda_vars" :: id_position  lambda_args (‹_›)
       "_AOT_var" :: id_position  α (‹_›)
       "_AOT_vars" :: id_position  any
       "_AOT_verbatim" :: any  α («_»)
       "_AOT_valid" :: w  φ'  bool ([_  _])
       "_AOT_denotes" :: τ  φ (‹_)
       "_AOT_imp" :: [φ, φ]  φ (infixl  25)
       "_AOT_not" :: φ  φ (~_› [50] 50)
       "_AOT_not" :: φ  φ (¬_› [50] 50)
       "_AOT_box" :: φ  φ (_› [49] 54)
       "_AOT_act" :: φ  φ (𝒜_› [49] 54)
       "_AOT_all" :: α  φ  φ (_ _› [1,40])
syntax (input)
       "_AOT_all_ellipse"
            :: id_position  id_position  φ  φ (_...∀_ _› [1,40])
syntax (output)
       "_AOT_all_ellipse"
            :: id_position  id_position  φ  φ (_...∀_'(_') [1,40])
syntax
       "_AOT_eq" :: [τ, τ]  φ (infixl = 50)
       "_AOT_desc" :: α  φ  desc (ι__› [1,1000])
       "" :: desc  κs (‹_›)
       "_AOT_lambda" :: lambda_args  φ  Π (_ _])
       "_explicitRelation" :: τ  Π ([_])
       "" :: κs  exe_arg (‹_›)
       "" :: exe_arg  exe_args (‹_›)
       "_AOT_exe_args" :: exe_arg  exe_args  exe_args (‹__›)
       "_AOT_exe_arg_ellipse" :: id_position  id_position  exe_arg (‹_..._›)
       "_AOT_lambda_arg_ellipse"
            :: id_position  id_position  lambda_args (‹_..._›)
       "_AOT_term_ellipse" :: id_position  id_position  τ (‹_..._›)
       "_AOT_exe" :: Π  exe_args  φ (‹__›)
       "_AOT_enc" :: exe_args  Π  φ (‹__›)
       "_AOT_lambda0" :: φ  Π0 ( _])
       "" :: Π0  φ (‹_›)
       "" :: Π0  τ (‹_›)
       "_AOT_concrete" :: Π (E!)
       "" :: any  exe_arg («_»)
       "" :: desc  free_var (‹_›)
       "" :: Π  free_var (‹_›)
       "_AOT_appl" :: id_position  free_vars  φ (‹_'{_'})
       "_AOT_appl" :: id_position  free_vars  τ (‹_'{_'})
       "_AOT_appl" :: id_position  free_vars  free_vars (‹_'{_'})
       "_AOT_appl" :: id_position  free_vars  free_vars (‹_'{_'})
       "_AOT_term_var" :: id_position  free_var (‹_›)
       "" :: any  free_var («_»)
       "" :: free_var  free_vars (‹_›)
       "_AOT_args" :: free_var  free_vars  free_vars (‹_,_›)
       "_AOT_free_var_ellipse" :: id_position  id_position  free_var (‹_..._›)
syntax "_AOT_premises"
            :: AOT_world_relative_prop  AOT_premises  AOT_premises (infixr , 3)
       "_AOT_world_relative_prop" :: "φ  AOT_world_relative_prop" (‹_›)
       "" :: "AOT_world_relative_prop  AOT_premises" (‹_›)
       "_AOT_prop" :: AOT_world_relative_prop  AOT_prop (‹_›)
       "" :: AOT_prop  AOT_props (‹_›)
       "_AOT_derivable" :: "AOT_premises  φ'  AOT_prop" (infixl  2)
       "_AOT_nec_derivable" :: "AOT_premises  φ'  AOT_prop" (infixl  2)
       "_AOT_theorem" :: "φ'  AOT_prop" ( _›)
       "_AOT_nec_theorem" :: "φ'  AOT_prop" ( _›)
       "_AOT_equiv_def" :: φ  φ  AOT_prop (infixl df 3)
       "_AOT_axiom" :: "φ'  AOT_axiom" (‹_›)
       "_AOT_act_axiom" :: "φ'  AOT_act_axiom" (‹_›)
       "_AOT_axiom" :: "φ'  AOT_prop" (‹_  Λ)
       "_AOT_act_axiom" :: "φ'  AOT_prop" (‹_  Λ)
       "_AOT_id_def" :: τ  τ  AOT_prop (infixl =df 3)
       "_AOT_for_arbitrary"
            :: id_position  AOT_prop  AOT_prop (for arbitrary _: _› [1000,1] 1)
syntax (output) "_lambda_args" :: any  patterns  patterns (‹__›)

translations
  "[w  φ]" => "CONST AOT_model_valid_in w φ"

AOT_syntax_print_translations
  "[w  φ]" <= "CONST AOT_model_valid_in w φ"

ML_file AOT_syntax.ML

AOT_register_type_constraints
  Individual: _::AOT_UnaryIndividualTerm _::AOT_IndividualTerm and
  Proposition: 𝗈 and
  Relation: <_::AOT_IndividualTerm> and
  Term: _::AOT_Term

AOT_register_variable_names
  Individual: x y z ν μ a b c d and
  Proposition: p q r s and
  Relation: F G H P Q R S and
  Term: α β γ δ

AOT_register_metavariable_names
  Individual: κ and
  Proposition: φ ψ χ θ ζ ξ Θ and
  Relation: Π and
  Term: τ σ

AOT_register_premise_set_names Γ Δ Λ

parse_ast_translation[
  (syntax_const‹_AOT_var›, K AOT_check_var),
  (syntax_const‹_AOT_exe_vars›, K AOT_split_exe_vars),
  (syntax_const‹_AOT_lambda_vars›, K AOT_split_lambda_args)
]

translations
  "_AOT_denotes τ" => "CONST AOT_denotes τ"
  "_AOT_imp φ ψ" => "CONST AOT_imp φ ψ"
  "_AOT_not φ" => "CONST AOT_not φ"
  "_AOT_box φ" => "CONST AOT_box φ"
  "_AOT_act φ" => "CONST AOT_act φ"
  "_AOT_eq τ τ'" => "CONST AOT_eq τ τ'"
  "_AOT_lambda0 φ" => "CONST AOT_lambda0 φ"
  "_AOT_concrete" => "CONST AOT_term_of_var (CONST AOT_concrete)"
  "_AOT_lambda α φ" => "CONST AOT_lambda (_abs α φ)"
  "_explicitRelation Π" => "Π"

AOT_syntax_print_translations
  "_AOT_lambda (_lambda_args x y) φ" <= "CONST AOT_lambda (_abs (_pattern x y) φ)"
  "_AOT_lambda (_lambda_args x y) φ" <= "CONST AOT_lambda (_abs (_patterns x y) φ)"
  "_AOT_lambda x φ" <= "CONST AOT_lambda (_abs x φ)"
  "_lambda_args x (_lambda_args y z)" <= "_lambda_args x (_patterns y z)"
  "_lambda_args (x y z)" <= "_lambda_args (_tuple x (_tuple_arg (_tuple y z)))"


AOT_syntax_print_translations
  "_AOT_imp φ ψ" <= "CONST AOT_imp φ ψ"
  "_AOT_not φ" <= "CONST AOT_not φ"
  "_AOT_box φ" <= "CONST AOT_box φ"
  "_AOT_act φ" <= "CONST AOT_act φ"
  "_AOT_all α φ" <= "CONST AOT_forall (_abs α φ)"
  "_AOT_all α φ" <= "CONST AOT_forall (λα. φ)"
  "_AOT_eq τ τ'" <= "CONST AOT_eq τ τ'"
  "_AOT_desc x φ" <= "CONST AOT_desc (_abs x φ)"
  "_AOT_desc x φ" <= "CONST AOT_desc (λx. φ)"
  "_AOT_lambda0 φ" <= "CONST AOT_lambda0 φ"
  "_AOT_concrete" <= "CONST AOT_term_of_var (CONST AOT_concrete)"

translations
  "_AOT_appl φ (_AOT_args a b)" => "_AOT_appl (φ a) b"
  "_AOT_appl φ a" => "φ a"


parse_translation[
  (syntax_const‹_AOT_var›, parseVar true),
  (syntax_const‹_AOT_vars›, parseVar false),
  (syntax_const‹_AOT_valid›, fn ctxt => fn [w,x] =>
    constAOT_model_valid_in $ w $ x),
  (syntax_const‹_AOT_quoted›, fn ctxt => fn [x] => x),
  (syntax_const‹_AOT_process_frees›, fn ctxt => fn [x] => processFrees ctxt x),
  (syntax_const‹_AOT_world_relative_prop›, fn ctxt => fn [x] => let
    val (x, premises) = processFreesAndPremises ctxt x
    val (world::formulas) = Variable.variant_names (Variable.declare_names x ctxt)
        (("v", dummyT)::(map (fn _ => ("φ", dummyT)) premises))
    val term = HOLogic.mk_Trueprop
        (@{const AOT_model_valid_in} $ Free world $ processFrees ctxt x)
    val term = fold (fn (premise,form) => fn trm =>
         @{const "Pure.imp"} $
        HOLogic.mk_Trueprop
          (Const (const_nameSet.member, dummyT) $ Free form $ premise) $
          (Term.absfree (Term.dest_Free (dropConstraints premise)) trm $ Free form)
    ) (ListPair.zipEq (premises,formulas)) term
    val term = fold (fn (form) => fn trm =>
         Const (const_namePure.all, dummyT) $
        (Term.absfree form trm)
    ) formulas term
    val term = Term.absfree world term
    in term end),
  (syntax_const‹_AOT_prop›, fn ctxt => fn [x] => let
    val world = case (AOT_ProofData.get ctxt) of SOME w => w
        | _ => raise Fail "Expected world to be stored in the proof state."
    in x $ world end),
  (syntax_const‹_AOT_theorem›, fn ctxt => fn [x] =>
      HOLogic.mk_Trueprop (@{const AOT_model_valid_in} $ @{const w0} $ x)),
  (syntax_const‹_AOT_axiom›, fn ctxt => fn [x] =>
      HOLogic.mk_Trueprop (@{const AOT_model_axiom} $ x)),
  (syntax_const‹_AOT_act_axiom›, fn ctxt => fn [x] =>
      HOLogic.mk_Trueprop (@{const AOT_model_act_axiom} $ x)),
  (syntax_const‹_AOT_nec_theorem›, fn ctxt => fn [trm] => let
    val world = singleton (Variable.variant_names (Variable.declare_names trm ctxt)) ("v", @{typ w})
    val trm = HOLogic.mk_Trueprop (@{const AOT_model_valid_in} $ Free world $ trm)
    val trm = Term.absfree world trm
    val trm = Const (const_namePure.all, dummyT) $ trm
    in trm end),
  (syntax_const‹_AOT_derivable›, fn ctxt => fn [x,y] => let
    val world = case (AOT_ProofData.get ctxt) of SOME w => w
      | _ => raise Fail "Expected world to be stored in the proof state."
    in foldPremises world x y end),
  (syntax_const‹_AOT_nec_derivable›, fn ctxt => fn [x,y] => let
    in Const (const_namePure.all, dummyT) $
       Abs ("v", dummyT, foldPremises (Bound 0) x y) end),
  (syntax_const‹_AOT_for_arbitrary›, fn ctxt => fn [_ $ var $ pos,trm] => let
    val trm = Const (const_namePure.all, dummyT) $
        (Const ("_constrainAbs", dummyT) $ Term.absfree (Term.dest_Free var) trm $ pos)
    in trm end),
  (syntax_const‹_AOT_equiv_def›, parseEquivDef),
  (syntax_const‹_AOT_exe›, parseExe),
  (syntax_const‹_AOT_enc›, parseEnc)
]

parse_ast_translation[
  (syntax_const‹_AOT_exe_arg_ellipse›, parseEllipseList "_AOT_term_vars"),
  (syntax_const‹_AOT_lambda_arg_ellipse›, parseEllipseList "_AOT_vars"),
  (syntax_const‹_AOT_free_var_ellipse›, parseEllipseList "_AOT_term_vars"),
  (syntax_const‹_AOT_term_ellipse›, parseEllipseList "_AOT_term_vars"),
  (syntax_const‹_AOT_all_ellipse›, fn ctx => fn [a,b,c] =>
      Ast.mk_appl (Ast.Constant const_nameAOT_forall) [
        Ast.mk_appl (Ast.Constant "_abs") [parseEllipseList "_AOT_vars" ctx [a,b],c]
      ])
]

syntax (output)
  "_AOT_individual_term" :: 'a  tuple_args (‹_›)
  "_AOT_individual_terms" :: tuple_args  tuple_args  tuple_args (‹__›)
  "_AOT_relation_term" :: 'a  Π
  "_AOT_any_term" :: 'a  τ


print_ast_translationAOT_syntax_print_ast_translations[
 (syntax_const‹_AOT_individual_term›, AOT_print_individual_term),
 (syntax_const‹_AOT_relation_term›, AOT_print_relation_term),
 (syntax_const‹_AOT_any_term›, AOT_print_generic_term)
]

AOT_syntax_print_translations
  "_AOT_individual_terms (_AOT_individual_term x) (_AOT_individual_terms (_tuple y z))"
  <= "_AOT_individual_terms (_tuple x (_tuple_args y z))"
  "_AOT_individual_terms (_AOT_individual_term x) (_AOT_individual_term y)"
  <= "_AOT_individual_terms (_tuple x (_tuple_arg y))"
  "_AOT_individual_terms (_tuple x y)" <= "_AOT_individual_term (_tuple x y)"
  "_AOT_exe (_AOT_relation_term Π) (_AOT_individual_term κ)" <= "CONST AOT_exe Π κ"
  "_AOT_denotes (_AOT_any_term κ)" <= "CONST AOT_denotes κ"

AOT_define AOT_conj :: [φ, φ]  φ (infixl & 35) φ & ψ df ¬(φ  ¬ψ)
declare "AOT_conj"[AOT del, AOT_defs del]
AOT_define AOT_disj :: [φ, φ]  φ (infixl  35) φ  ψ df ¬φ  ψ
declare "AOT_disj"[AOT del, AOT_defs del]
AOT_define AOT_equiv :: [φ, φ]  φ (infix  20) φ  ψ df (φ  ψ) & (ψ  φ)
declare "AOT_equiv"[AOT del, AOT_defs del]
AOT_define AOT_dia :: φ  φ (_› [49] 54) φ df ¬¬φ
declare "AOT_dia"[AOT del, AOT_defs del]

context AOT_meta_syntax
begin
notation AOT_dia (_› [49] 54)
notation AOT_conj (infixl & 35)
notation AOT_disj (infixl  35)
notation AOT_equiv (infixl  20)
end
context AOT_no_meta_syntax
begin
no_notation AOT_dia (_› [49] 54)
no_notation AOT_conj (infixl & 35)
no_notation AOT_disj (infixl  35)
no_notation AOT_equiv (infixl  20)
end


print_translation AOT_syntax_print_translations
 [
  AOT_preserve_binder_abs_tr'
    const_syntaxAOT_forall
    syntax_const‹_AOT_all›
    (syntax_const‹_AOT_all_ellipse›, true)
    const_nameAOT_imp,
  AOT_binder_trans @{theory} @{binding "AOT_forall_binder"} syntax_const‹_AOT_all›,
  (const_syntaxAOT_desc, K (Syntax_Trans.preserve_binder_abs_tr' syntax_const‹_AOT_desc› dummyT)),
  AOT_binder_trans @{theory} @{binding "AOT_desc_binder"} syntax_const‹_AOT_desc›,
  AOT_preserve_binder_abs_tr'
    const_syntaxAOT_lambda
    syntax_const‹_AOT_lambda›
    (syntax_const‹_AOT_lambda_arg_ellipse›, false)
    const_nameundefined,
  AOT_binder_trans
    @{theory}
    @{binding "AOT_lambda_binder"}
    syntax_const‹_AOT_lambda›
 ]

parse_translation[(syntax_const‹_AOT_id_def›, parseIdDef)]

parse_ast_translation[
 (syntax_const‹_AOT_all›,
  AOT_restricted_binder const_nameAOT_forall const_nameAOT_imp),
 (syntax_const‹_AOT_desc›,
  AOT_restricted_binder const_nameAOT_desc const_nameAOT_conj)
]

AOT_define AOT_exists :: α  φ  φ «AOT_exists φ» df ¬α ¬φ{α}
declare AOT_exists[AOT del, AOT_defs del]
syntax "_AOT_exists" :: α  φ  φ (_ _› [1,40])

AOT_syntax_print_translations
  "_AOT_exists α φ" <= "CONST AOT_exists (_abs α φ)"
  "_AOT_exists α φ" <= "CONST AOT_exists (λα. φ)"

parse_ast_translation[(syntax_const‹_AOT_exists›,
  AOT_restricted_binder const_nameAOT_exists const_nameAOT_conj)]

context AOT_meta_syntax
begin
notation AOT_exists (binder  8)
end
context AOT_no_meta_syntax
begin
no_notation AOT_exists (binder  8)
end


syntax (input)
   "_AOT_exists_ellipse" :: id_position  id_position  φ  φ (_...∃_ _› [1,40])
syntax (output)
   "_AOT_exists_ellipse" :: id_position  id_position  φ  φ (_...∃_ '(_') [1,40])
parse_ast_translation[(syntax_const‹_AOT_exists_ellipse›, fn ctx => fn [a,b,c] =>
  Ast.mk_appl (Ast.Constant "AOT_exists")
    [Ast.mk_appl (Ast.Constant "_abs") [parseEllipseList "_AOT_vars" ctx [a,b],c]])]
print_translationAOT_syntax_print_translations [
  AOT_preserve_binder_abs_tr'
    const_syntaxAOT_exists
    syntax_const‹_AOT_exists›
    (syntax_const‹_AOT_exists_ellipse›,true) const_nameAOT_conj,
  AOT_binder_trans
    @{theory}
    @{binding "AOT_exists_binder"}
    syntax_const‹_AOT_exists›
]



syntax "_AOT_DDDOT" :: "φ" (...)
syntax "_AOT_DDDOT" :: "φ" ()
parse_translation[(syntax_const‹_AOT_DDDOT›, parseDDOT)]

print_translationAOT_syntax_print_translations
[(const_syntaxPure.all, fn ctxt => fn [Abs (_, _,
  Const (const_syntaxHOL.Trueprop, _) $
  (Const (const_syntaxAOT_model_valid_in, _) $ Bound 0 $ y))] => let
    val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)
    in (Const (syntax_const‹_AOT_nec_theorem›, dummyT) $ y) end
| [p as Abs (name, _,
  Const (const_syntaxHOL.Trueprop, _) $
  (Const (const_syntaxAOT_model_valid_in, _) $ w $ y))]
=> (Const (syntax_const‹_AOT_for_arbitrary›, dummyT) $
    (Const ("_bound", dummyT) $ Free (name, dummyT)) $
    (Term.betapply (p, (Const ("_bound", dummyT) $ Free (name, dummyT)))))
),

 (const_syntaxAOT_model_valid_in, fn ctxt =>
  fn [w as (Const ("_free", _) $ Free (v, _)), y] => let
    val is_world = (case (AOT_ProofData.get ctxt)
        of SOME (Free (w, _)) => Name.clean w = Name.clean v | _ => false)
    val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)
    in if is_world then y else Const (syntax_const‹_AOT_valid›, dummyT) $ w $ y end
  | [Const (const_syntaxw0, _), y] => let
    val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)
    in case (AOT_ProofData.get ctxt) of SOME (Const (const_namew0, _)) => y |
            _ => Const (syntax_const‹_AOT_theorem›, dummyT) $ y end
  | [Const ("_var", _) $ _, y] => let
    val y = (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)
    in Const (syntax_const‹_AOT_nec_theorem›, dummyT) $ y end
  ),
 (const_syntaxAOT_model_axiom, fn ctxt => fn [trm] =>
    Const (syntax_const‹_AOT_axiom›, dummyT) $
    (Const (syntax_const‹_AOT_process_frees›, dummyT) $ trm)),
 (const_syntaxAOT_model_act_axiom, fn ctxt => fn [trm] =>
    Const (syntax_const‹_AOT_axiom›, dummyT) $
    (Const (syntax_const‹_AOT_process_frees›, dummyT) $ trm)),
(syntax_const‹_AOT_process_frees›, fn _ =>  fn [t] => let
  fun mapAppls (x as Const ("_free", _) $
                     Free (_, Type ("_ignore_type", [Type ("fun", _)])))
        = (Const ("_AOT_raw_appl", dummyT) $ x)
    | mapAppls (x as Const ("_free", _) $ Free (_, Type ("fun", _)))
        = (Const ("_AOT_raw_appl", dummyT) $ x)
    | mapAppls (x as Const ("_var", _) $
                     Var (_, Type ("_ignore_type", [Type ("fun", _)])))
        = (Const ("_AOT_raw_appl", dummyT) $ x)
    | mapAppls (x as Const ("_var", _) $ Var (_, Type ("fun", _)))
        = (Const ("_AOT_raw_appl", dummyT) $ x)
    | mapAppls (x $ y) = mapAppls x $ mapAppls y
    | mapAppls (Abs (x,y,z)) = Abs (x,y, mapAppls z)
    | mapAppls x = x
  in mapAppls t end
)
]

print_ast_translationAOT_syntax_print_ast_translations
let
fun handleTermOfVar x kind name = (
let
val _ = case kind of "_free" => () | "_var" => () | "_bound" => () | _ => raise Match
in
  case printVarKind name
    of (SingleVariable name) => Ast.Appl [Ast.Constant kind, Ast.Variable name]
    | (Ellipses (s, e)) =>  Ast.Appl [Ast.Constant "_AOT_free_var_ellipse",
    Ast.Appl [Ast.Constant kind, Ast.Variable s],
    Ast.Appl [Ast.Constant kind, Ast.Variable e]
      ]
  | Verbatim name => Ast.mk_appl (Ast.Constant "_AOT_quoted")
                        [Ast.mk_appl (Ast.Constant "_AOT_term_of_var") [x]]
end
)
fun termOfVar ctxt (Ast.Appl [Ast.Constant "_constrain",
      x as Ast.Appl [Ast.Constant kind, Ast.Variable name], _]) = termOfVar ctxt x
  | termOfVar ctxt (x as Ast.Appl [Ast.Constant kind, Ast.Variable name])
      = handleTermOfVar x kind name
  | termOfVar ctxt (x as Ast.Appl [Ast.Constant rep, y]) = (
let
val (restr,_) = Local_Theory.raw_theory_result (fn thy => (
let
val restrs = Symtab.dest (AOT_Restriction.get thy)
val restr = List.find (fn (n,(_,Const (c,t))) => (
  c = rep orelse c = Lexicon.unmark_const rep) | _ => false) restrs
in
(restr,thy)
end
)) ctxt
in
  case restr of SOME r => Ast.Appl [Ast.Constant (const_syntaxAOT_term_of_var), y]
  | _ => raise Match
end)

in
[(const_syntaxAOT_term_of_var, fn ctxt => fn [x] => termOfVar ctxt x),
("_AOT_raw_appl", fn ctxt => fn t::a::args => let
fun applyTermOfVar (t as Ast.Appl (Ast.Constant const_syntaxAOT_term_of_var::[x]))
    = (case try (termOfVar ctxt) x of SOME y => y | _ => t)
  | applyTermOfVar y = (case try (termOfVar ctxt) y of SOME x => x | _ => y)
val ts = fold (fn a => fn b => Ast.mk_appl (Ast.Constant syntax_const‹_AOT_args›)
              [b,applyTermOfVar a]) args (applyTermOfVar a)
in Ast.mk_appl (Ast.Constant syntax_const‹_AOT_appl›) [t,ts] end)]
end

context AOT_meta_syntax
begin
notation AOT_denotes (‹_)
notation AOT_imp (infixl  25)
notation AOT_not (¬_› [50] 50)
notation AOT_box (_› [49] 54)
notation AOT_act (𝒜_› [49] 54)
notation AOT_forall (binder  8)
notation AOT_eq (infixl = 50)
notation AOT_desc (binder ι 100)
notation AOT_lambda (binder λ 100)
notation AOT_lambda0 ([λ _])
notation AOT_exe (_,_)
notation AOT_model_equiv_def (infixl df 10)
notation AOT_model_id_def (infixl =df 10)
notation AOT_term_of_var (_)
notation AOT_concrete (E!)
end
context AOT_no_meta_syntax
begin
no_notation AOT_denotes (‹_)
no_notation AOT_imp (infixl  25)
no_notation AOT_not (¬_› [50] 50)
no_notation AOT_box (_› [49] 54)
no_notation AOT_act (𝒜_› [49] 54)
no_notation AOT_forall (binder  8)
no_notation AOT_eq (infixl = 50)
no_notation AOT_desc (binder ι 100)
no_notation AOT_lambda (binder λ 100)
no_notation AOT_lambda0 ([λ _])
no_notation AOT_exe (_,_)
no_notation AOT_model_equiv_def (infixl df 10)
no_notation AOT_model_id_def (infixl =df 10)
no_notation AOT_term_of_var (_)
no_notation AOT_concrete (E!)
end

bundle AOT_syntax
begin
declare[[show_AOT_syntax=true, show_question_marks=false, eta_contract=false]]
end

bundle AOT_no_syntax
begin
declare[[show_AOT_syntax=false, show_question_marks=true]]
end

parse_translation[("_AOT_restriction", fn ctxt => fn [Const (name,_)] =>
let
val (restr, ctxt) = ctxt |> Local_Theory.raw_theory_result
  (fn thy => (Option.map fst (Symtab.lookup (AOT_Restriction.get thy) name), thy))
val restr = case restr of SOME x => x
  | _ => raise Fail ("Unknown restricted type: " ^ name)
in restr end
)]

print_translationAOT_syntax_print_translations
[
  (const_syntaxAOT_model_equiv_def, fn ctxt => fn [x,y] =>
    Const (syntax_const‹_AOT_equiv_def›, dummyT) $
    (Const (syntax_const‹_AOT_process_frees›, dummyT) $ x) $
    (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y))
]

print_translationAOT_syntax_print_translations [
(const_syntaxAOT_model_id_def, fn ctxt =>
  fn [lhs as Abs (lhsName, lhsTy, lhsTrm), rhs as Abs (rhsName, rhsTy, rhsTrm)] =>
    let
      val (name,_) = Name.variant lhsName
        (Term.declare_term_names rhsTrm (Name.build_context (Term.declare_term_names lhsTrm)));
      val lhs = Term.betapply (lhs, Const ("_bound", dummyT) $ Free (name, lhsTy))
      val rhs = Term.betapply (rhs, Const ("_bound", dummyT) $ Free (name, rhsTy))
    in
      Const (const_syntaxAOT_model_id_def, dummyT) $ lhs $ rhs
    end
  | [Const (const_syntaxcase_prod, _) $ lhs,
     Const (const_syntaxcase_prod, _) $ rhs] =>
    Const (const_syntaxAOT_model_id_def, dummyT) $ lhs $ rhs
  | [Const (const_syntaxcase_unit, _) $ lhs,
      Const (const_syntaxcase_unit, _) $ rhs] =>
    Const (const_syntaxAOT_model_id_def, dummyT) $ lhs $ rhs
  | [x, y] =>
       Const (syntax_const‹_AOT_id_def›, dummyT) $
         (Const (syntax_const‹_AOT_process_frees›, dummyT) $ x) $
         (Const (syntax_const‹_AOT_process_frees›, dummyT) $ y)
)]

text‹Special marker for printing propositions as theorems
     and for pretty-printing AOT terms.›
definition print_as_theorem :: 𝗈  bool where
  print_as_theorem  λ φ . v . [v  φ]
lemma print_as_theoremI:
  assumes  v . [v  φ]
  shows print_as_theorem φ
  using assms by (simp add: print_as_theorem_def)
attribute_setup print_as_theorem =
  Scan.succeed (Thm.rule_attribute []
      (K (fn thm => thm RS @{thm print_as_theoremI})))
  "Print as theorem."
print_translationAOT_syntax_print_translations [
  (const_syntaxprint_as_theorem, fn ctxt => fn [x] => 
   (Const (syntax_const‹_AOT_process_frees›, dummyT) $ x))
]

definition print_term :: 'a  'a where print_term  λ x . x
syntax "_AOT_print_term" :: τ  'a (AOT'_TERM[_])
translations
  "_AOT_print_term φ" => "CONST print_term (_AOT_process_frees φ)"
print_translationAOT_syntax_print_translations [
  (const_syntaxprint_term, fn ctxt => fn [x] => 
    (Const (syntax_const‹_AOT_process_frees›, dummyT) $ x))
]


(* To enable meta syntax: *)
(* interpretation AOT_meta_syntax. *)
(* To disable meta syntax: *)
interpretation AOT_no_meta_syntax.

(* To enable AOT syntax (takes precedence over meta syntax;
                         can be done locally using "including" or "include"): *)
unbundle AOT_syntax
(* To disable AOT syntax (restoring meta syntax or no syntax;
                          can be done locally using "including" or "include"): *)
(* unbundle AOT_no_syntax *)

(*<*)
end
(*>*)