Vector Spaces

Holden Lee 📧

August 29, 2014

This is a development version of this entry. It might change over time and is not stable. Please refer to release versions for citations.

Abstract

This formalisation of basic linear algebra is based completely on locales, building off HOL-Algebra. It includes basic definitions: linear combinations, span, linear independence; linear transformations; interpretation of function spaces as vector spaces; the direct sum of vector spaces, sum of subspaces; the replacement theorem; existence of bases in finite-dimensional; vector spaces, definition of dimension; the rank-nullity theorem. Some concepts are actually defined and proved for modules as they also apply there. Infinite-dimensional vector spaces are supported, but dimension is only supported for finite-dimensional vector spaces. The proofs are standard; the proofs of the replacement theorem and rank-nullity theorem roughly follow the presentation in Linear Algebra by Friedberg, Insel, and Spence. The rank-nullity theorem generalises the existing development in the Archive of Formal Proof (originally using type classes, now using a mix of type classes and locales).

License

BSD License

Topics

Session VectorSpace