Abstract
This formalization provides differential game logic (dGL), a logic for
proving properties of hybrid game. In addition to the syntax and
semantics, it formalizes a uniform substitution calculus for dGL.
Church's uniform substitutions substitute a term or formula for a
function or predicate symbol everywhere. The uniform substitutions for
dGL also substitute hybrid games for a game symbol everywhere. We
prove soundness of one-pass uniform substitutions and the axioms of
differential game logic with respect to their denotational semantics.
One-pass uniform substitutions are faster by postponing
soundness-critical admissibility checks with a linear pass homomorphic
application and regain soundness by a variable condition at the
replacements. The formalization is based on prior non-mechanized
soundness proofs for dGL.
License
Topics
Session Differential_Game_Logic
- Lib
- Identifiers
- Syntax
- Denotational_Semantics
- Static_Semantics
- Coincidence
- USubst
- Ids
- Axioms
- Differential_Game_Logic