**This is a development version of this entry. It might change over time and is not stable. Please refer to release versions for citations.**

### Abstract

Bertrand's postulate is an early result on the distribution of prime numbers: For every positive integer n, there exists a prime number that lies strictly between n and 2n. The proof is ported from John Harrison's formalisation in HOL Light. It proceeds by first showing that the property is true for all n greater than or equal to 600 and then showing that it also holds for all n below 600 by case distinction.