
Bertrand’s postulate

Julian Biendarra, Manuel Eberl

March 11, 2024

Abstract

Bertrand’s postulate is an early result on the distribution of prime
numbers: For every positive integer n, there exists a prime number
that lies strictly between n and 2n.

The proof is ported from John Harrison’s formalisation in HOL
Light [1]. It proceeds by first showing that the property is true for all
n greater than or equal to 600 and then showing that it also holds for
all n below 600 by case distinction.
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theory Bertrand
imports

Complex-Main
HOL−Number-Theory.Number-Theory
HOL−Library.Discrete
HOL−Decision-Procs.Approximation-Bounds
HOL−Library.Code-Target-Numeral
Pratt-Certificate.Pratt-Certificate

begin

0.1 Auxiliary facts
lemma ln-2-le: ln 2 ≤ 355 / (512 :: real)
proof −

have ln 2 ≤ real-of-float (ub-ln2 12 ) by (rule ub-ln2 )
also have ub-ln2 12 = Float 5680 (− 13 ) by code-simp
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finally show ?thesis by simp
qed

lemma ln-2-ge: ln 2 ≥ (5677 / 8192 :: real)
proof −

have ln 2 ≥ real-of-float (lb-ln2 12 ) by (rule lb-ln2 )
also have lb-ln2 12 = Float 5677 (−13 ) by code-simp
finally show ?thesis by simp

qed

lemma ln-2-ge ′: ln (2 :: real) ≥ 2/3 and ln-2-le ′: ln (2 :: real) ≤ 16/23
using ln-2-le ln-2-ge by simp-all

lemma of-nat-ge-1-iff : (of-nat x :: ′a :: linordered-semidom) ≥ 1 ←→ x ≥ 1
using of-nat-le-iff [of 1 x] by (subst (asm) of-nat-1 )

lemma floor-conv-div-nat:
of-int (floor (real m / real n)) = real (m div n)
by (subst floor-divide-of-nat-eq) simp

lemma frac-conv-mod-nat:
frac (real m / real n) = real (m mod n) / real n
by (cases n = 0 )

(simp-all add: frac-def floor-conv-div-nat field-simps of-nat-mult
[symmetric] of-nat-add [symmetric] del: of-nat-mult of-nat-add)

lemma of-nat-prod-mset: prod-mset (image-mset of-nat A) = of-nat (prod-mset A)
by (induction A) simp-all

lemma prod-mset-pos: (
∧

x :: ′a :: linordered-semidom. x ∈# A =⇒ x > 0 ) =⇒
prod-mset A > 0

by (induction A) simp-all

lemma ln-msetprod:
assumes

∧
x. x ∈#I =⇒ x > 0

shows (
∑

p::nat∈#I . ln p) = ln (
∏

p∈#I . p)
using assms by (induction I ) (simp-all add: of-nat-prod-mset ln-mult prod-mset-pos)

lemma ln-fact: ln (fact n) = (
∑

d=1 ..n. ln d)
by (induction n) (simp-all add: ln-mult)

lemma overpower-lemma:
fixes f g :: real ⇒ real
assumes f a ≤ g a
assumes

∧
x. a ≤ x =⇒ ((λx. g x − f x) has-real-derivative (d x)) (at x)

assumes
∧

x. a ≤ x =⇒ d x ≥ 0
assumes a ≤ x
shows f x ≤ g x

proof (cases a < x)
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case True
with assms have ∃ z. z > a ∧ z < x ∧ g x − f x − (g a − f a) = (x − a) ∗ d z

by (intro MVT2 ) auto
then obtain z where z: z > a z < x g x − f x − (g a − f a) = (x − a) ∗ d z

by blast
hence f x = g x + (f a − g a) + (a − x) ∗ d z by (simp add: algebra-simps)
also from assms have f a − g a ≤ 0 by (simp add: algebra-simps)
also from assms z have (a − x) ∗ d z ≤ 0 ∗ d z

by (intro mult-right-mono) simp-all
finally show ?thesis by simp

qed (insert assms, auto)

0.2 Preliminary definitions
definition primepow-even :: nat ⇒ bool where

primepow-even q ←→ (∃ p k. 1 ≤ k ∧ prime p ∧ q = p^(2∗k))

definition primepow-odd :: nat ⇒ bool where
primepow-odd q ←→ (∃ p k. 1 ≤ k ∧ prime p ∧ q = p^(2∗k+1 ))

abbreviation (input) isprimedivisor :: nat ⇒ nat ⇒ bool where
isprimedivisor q p ≡ prime p ∧ p dvd q

definition pre-mangoldt :: nat ⇒ nat where
pre-mangoldt d = (if primepow d then aprimedivisor d else 1 )

definition mangoldt-even :: nat ⇒ real where
mangoldt-even d = (if primepow-even d then ln (real (aprimedivisor d)) else 0 )

definition mangoldt-odd :: nat ⇒ real where
mangoldt-odd d = (if primepow-odd d then ln (real (aprimedivisor d)) else 0 )

definition mangoldt-1 :: nat ⇒ real where
mangoldt-1 d = (if prime d then ln d else 0 )

definition psi :: nat ⇒ real where
psi n = (

∑
d=1 ..n. mangoldt d)

definition psi-even :: nat ⇒ real where
psi-even n = (

∑
d=1 ..n. mangoldt-even d)

definition psi-odd :: nat ⇒ real where
psi-odd n = (

∑
d=1 ..n. mangoldt-odd d)

abbreviation (input) psi-even-2 :: nat ⇒ real where
psi-even-2 n ≡ (

∑
d=2 ..n. mangoldt-even d)

abbreviation (input) psi-odd-2 :: nat ⇒ real where
psi-odd-2 n ≡ (

∑
d=2 ..n. mangoldt-odd d)
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definition theta :: nat ⇒ real where
theta n = (

∑
p=1 ..n. if prime p then ln (real p) else 0 )

0.3 Properties of prime powers
lemma primepow-even-imp-primepow:

assumes primepow-even n
shows primepow n

proof −
from assms obtain p k where 1 ≤ k prime p n = p ^ (2 ∗ k)

unfolding primepow-even-def by blast
moreover from ‹1 ≤ k› have 2 ∗ k > 0

by simp
ultimately show ?thesis unfolding primepow-def by blast

qed

lemma primepow-odd-imp-primepow:
assumes primepow-odd n
shows primepow n

proof −
from assms obtain p k where 1 ≤ k prime p n = p ^ (2 ∗ k + 1 )

unfolding primepow-odd-def by blast
moreover from ‹1 ≤ k› have Suc (2 ∗ k) > 0

by simp
ultimately show ?thesis unfolding primepow-def

by (auto simp del: power-Suc)
qed

lemma primepow-odd-altdef :
primepow-odd n ←→

primepow n ∧ odd (multiplicity (aprimedivisor n) n) ∧ multiplicity (aprimedivisor
n) n > 1
proof (intro iffI conjI ; (elim conjE)?)

assume primepow-odd n
then obtain p k where n: k ≥ 1 prime p n = p ^ (2 ∗ k + 1 )

by (auto simp: primepow-odd-def )
thus odd (multiplicity (aprimedivisor n) n) multiplicity (aprimedivisor n) n > 1

by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
next

assume A: primepow n and B: odd (multiplicity (aprimedivisor n) n)
and C : multiplicity (aprimedivisor n) n > 1

from A obtain p k where n: k ≥ 1 prime p n = p ^ k
by (auto simp: primepow-def Suc-le-eq)

with B C have odd k k > 1
by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)

then obtain j where j: k = 2 ∗ j + 1 j > 0 by (auto elim!: oddE)
with n show primepow-odd n by (auto simp: primepow-odd-def intro!: exI [of -

p, OF exI [of - j]])
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qed (auto dest: primepow-odd-imp-primepow)

lemma primepow-even-altdef :
primepow-even n ←→ primepow n ∧ even (multiplicity (aprimedivisor n) n)

proof (intro iffI conjI ; (elim conjE)?)
assume primepow-even n
then obtain p k where n: k ≥ 1 prime p n = p ^ (2 ∗ k)

by (auto simp: primepow-even-def )
thus even (multiplicity (aprimedivisor n) n)

by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
next

assume A: primepow n and B: even (multiplicity (aprimedivisor n) n)
from A obtain p k where n: k ≥ 1 prime p n = p ^ k

by (auto simp: primepow-def Suc-le-eq)
with B have even k

by (simp-all add: aprimedivisor-primepow prime-elem-multiplicity-mult-distrib)
then obtain j where j: k = 2 ∗ j by (auto elim!: evenE)
from j n have j 6= 0 by (intro notI ) simp-all
with j n show primepow-even n

by (auto simp: primepow-even-def intro!: exI [of - p, OF exI [of - j]])
qed (auto dest: primepow-even-imp-primepow)

lemma primepow-odd-mult:
assumes d > Suc 0
shows primepow-odd (aprimedivisor d ∗ d) ←→ primepow-even d

using assms
by (auto simp: primepow-odd-altdef primepow-even-altdef primepow-mult-aprimedivisorI

aprimedivisor-primepow prime-aprimedivisor ′ aprimedivisor-dvd ′

prime-elem-multiplicity-mult-distrib prime-elem-aprimedivisor-nat
dest!: primepow-multD)

lemma pre-mangoldt-primepow:
assumes primepow n aprimedivisor n = p
shows pre-mangoldt n = p
using assms by (simp add: pre-mangoldt-def )

lemma pre-mangoldt-notprimepow:
assumes ¬primepow n
shows pre-mangoldt n = 1
using assms by (simp add: pre-mangoldt-def )

lemma primepow-cases:
primepow d ←→

( primepow-even d ∧ ¬ primepow-odd d ∧ ¬ prime d) ∨
(¬ primepow-even d ∧ primepow-odd d ∧ ¬ prime d) ∨
(¬ primepow-even d ∧ ¬ primepow-odd d ∧ prime d)

by (auto simp: primepow-even-altdef primepow-odd-altdef multiplicity-aprimedivisor-Suc-0-iff
elim!: oddE intro!: Nat.gr0I )
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0.4 Deriving a recurrence for the psi function
lemma ln-fact-bounds:

assumes n > 0
shows abs(ln (fact n) − n ∗ ln n + n) ≤ 1 + ln n

proof −
have ∀n∈{0<..}. ∃ z>real n. z < real (n + 1 ) ∧ real (n + 1 ) ∗ ln (real (n +

1 )) −
real n ∗ ln (real n) = (real (n + 1 ) − real n) ∗ (ln z + 1 )

by (intro ballI MVT2 ) (auto intro!: derivative-eq-intros)
hence ∀n∈{0<..}. ∃ z>real n. z < real (n + 1 ) ∧ real (n + 1 ) ∗ ln (real (n +

1 )) −
real n ∗ ln (real n) = (ln z + 1 ) by (simp add: algebra-simps)

from bchoice[OF this] obtain k :: nat ⇒ real
where lb: real n < k n and ub: k n < real (n + 1 ) and

mvt: real (n+1 ) ∗ ln (real (n+1 )) − real n ∗ ln (real n) = ln (k n) + 1
if n > 0 for n::nat by blast

have ∗: (n + 1 ) ∗ ln (n + 1 ) = (
∑

i=1 ..n. ln(k i) + 1 ) for n::nat
proof (induction n)

case (Suc n)
have (

∑
i = 1 ..n+1 . ln (k i) + 1 ) = (

∑
i = 1 ..n. ln (k i) + 1 ) + ln (k

(n+1 )) + 1
by simp

also from Suc.IH have (
∑

i = 1 ..n. ln (k i) + 1 ) = real (n+1 ) ∗ ln (real
(n+1 )) ..

also from mvt[of n+1 ] have . . . = real (n+2 ) ∗ ln (real (n+2 )) − ln (k
(n+1 )) − 1

by simp
finally show ?case

by simp
qed simp
have ∗∗: abs((

∑
i=1 ..n+1 . ln i) − ((n+1 ) ∗ ln (n+1 ) − (n+1 ))) ≤ 1 +

ln(n+1 ) for n::nat
proof −

have (
∑

i=1 ..n+1 . ln i) ≤ (
∑

i=1 ..n. ln i) + ln (n+1 )
by simp

also have (
∑

i=1 ..n. ln i) ≤ (
∑

i=1 ..n. ln (k i))
by (intro sum-mono, subst ln-le-cancel-iff ) (auto simp: Suc-le-eq dest: lb ub)

also have . . . = (
∑

i=1 ..n. ln (k i) + 1 ) − n
by (simp add: sum.distrib)

also from ∗ have . . . = (n+1 ) ∗ ln (n+1 ) − n
by simp

finally have a-minus-b: (
∑

i=1 ..n+1 . ln i) − ((n+1 ) ∗ ln (n+1 ) − (n+1 ))
≤ 1 + ln (n+1 )

by simp

from ∗ have (n+1 ) ∗ ln (n+1 ) − n = (
∑

i=1 ..n. ln (k i) + 1 ) − n
by simp

also have . . . = (
∑

i=1 ..n. ln (k i))
by (simp add: sum.distrib)
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also have . . . ≤ (
∑

i=1 ..n. ln (i+1 ))
by (intro sum-mono, subst ln-le-cancel-iff ) (auto simp: Suc-le-eq dest: lb ub)

also from sum.shift-bounds-cl-nat-ivl[of ln 1 1 n] have . . . = (
∑

i=1+1 ..n+1 .
ln i) ..

also have . . . = (
∑

i=1 ..n+1 . ln i)
by (rule sum.mono-neutral-left) auto

finally have b-minus-a: ((n+1 ) ∗ ln (n+1 ) − (n+1 )) − (
∑

i=1 ..n+1 . ln i)
≤ 1

by simp
have 0 ≤ ln (n+1 )

by simp
with b-minus-a have ((n+1 ) ∗ ln (n+1 ) − (n+1 )) − (

∑
i=1 ..n+1 . ln i) ≤

1 + ln (n+1 )
by linarith

with a-minus-b show ?thesis
by linarith

qed
from ‹n > 0 › have n ≥ 1 by simp
thus ?thesis
proof (induction n rule: dec-induct)

case base
then show ?case by simp

next
case (step n)
from ln-fact[of n+1 ] ∗∗[of n] show ?case by simp

qed
qed

lemma ln-fact-diff-bounds:
abs(ln (fact n) − 2 ∗ ln (fact (n div 2 )) − n ∗ ln 2 ) ≤ 4 ∗ ln (if n = 0 then 1

else n) + 3
proof (cases n div 2 = 0 )

case True
hence n ≤ 1 by simp
with ln-le-minus-one[of 2 ::real] show ?thesis by (cases n) simp-all

next
case False
then have n > 1 by simp
let ?a = real n ∗ ln 2
let ?b = 4 ∗ ln (real n) + 3
let ?l1 = ln (fact (n div 2 ))
let ?a1 = real (n div 2 ) ∗ ln (real (n div 2 )) − real (n div 2 )
let ?b1 = 1 + ln (real (n div 2 ))
let ?l2 = ln (fact n)
let ?a2 = real n ∗ ln (real n) − real n
let ?b2 = 1 + ln (real n)
have abs-a: abs(?a − (?a2 − 2 ∗ ?a1 )) ≤ ?b − 2 ∗ ?b1 − ?b2
proof (cases even n)

case True
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then have real (2 ∗ (n div 2 )) = real n
by simp

then have n-div-2 : real (n div 2 ) = real n / 2
by simp

from ‹n > 1 › have ∗: abs(?a − (?a2 − 2 ∗ ?a1 )) = 0
by (simp add: n-div-2 ln-div algebra-simps)

from ‹even n› and ‹n > 1 › have 0 ≤ ln (real n) − ln (real (n div 2 ))
by (auto elim: evenE)

also have 2 ∗ . . . ≤ 3 ∗ ln (real n) − 2 ∗ ln (real (n div 2 ))
using ‹n > 1 › by (auto intro!: ln-ge-zero)

also have . . . = ?b − 2 ∗ ?b1 − ?b2 by simp
finally show ?thesis using ∗ by simp

next
case False
then have real (2 ∗ (n div 2 )) = real (n − 1 )

by simp
with ‹n > 1 › have n-div-2 : real (n div 2 ) = (real n − 1 ) / 2

by simp
from ‹odd n› ‹n div 2 6= 0 › have n ≥ 3

by presburger

have ?a − (?a2 − 2 ∗ ?a1 ) = real n ∗ ln 2 − real n ∗ ln (real n) + real n +
2 ∗ real (n div 2 ) ∗ ln (real (n div 2 )) − 2∗ real (n div 2 )

by (simp add: algebra-simps)
also from n-div-2 have 2 ∗ real (n div 2 ) = real n − 1

by simp
also have real n ∗ ln 2 − real n ∗ ln (real n) + real n +

(real n − 1 ) ∗ ln (real (n div 2 )) − (real n − 1 )
= real n ∗ (ln (real n − 1 ) − ln (real n)) − ln (real (n div 2 )) + 1

using ‹n > 1 › by (simp add: algebra-simps n-div-2 ln-div)
finally have lhs: abs(?a − (?a2 − 2 ∗ ?a1 )) =

abs(real n ∗ (ln (real n − 1 ) − ln (real n)) − ln (real (n div 2 )) + 1 )
by simp

from ‹n > 1 › have real n ∗ (ln (real n − 1 ) − ln (real n)) ≤ 0
by (simp add: algebra-simps mult-left-mono)

moreover from ‹n > 1 › have ln (real (n div 2 )) ≤ ln (real n) by simp
moreover {

have exp 1 ≤ (3 ::real) by (rule exp-le)
also from ‹n ≥ 3 › have . . . ≤ exp (ln (real n)) by simp
finally have ln (real n) ≥ 1 by simp

}
ultimately have ub: real n ∗ (ln (real n − 1 ) − ln (real n)) − ln(real (n div

2 )) + 1 ≤
3 ∗ ln (real n) − 2 ∗ ln(real (n div 2 )) by simp

have mon: real n ′ ∗ (ln (real n ′) − ln (real n ′ − 1 )) ≤
real n ∗ (ln (real n) − ln (real n − 1 ))

if n ≥ 3 n ′ ≥ n for n n ′::nat
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proof (rule DERIV-nonpos-imp-nonincreasing[where f = λx. x ∗ (ln x − ln
(x − 1 ))])

fix t assume t: real n ≤ t t ≤ real n ′

with that have 1 / (t − 1 ) ≥ ln (1 + 1/(t − 1 ))
by (intro ln-add-one-self-le-self ) simp-all

also from t that have ln (1 + 1/(t − 1 )) = ln t− ln (t − 1 )
by (simp add: ln-div [symmetric] field-simps)

finally have ln t − ln (t − 1 ) ≤ 1 / (t − 1 ) .
with that t
show ∃ y. ((λx. x ∗ (ln x − ln (x − 1 ))) has-field-derivative y) (at t) ∧ y ≤ 0

by (intro exI [of - 1 / (1 − t) + ln t − ln (t − 1 )])
(force intro!: derivative-eq-intros simp: field-simps)+

qed (use that in simp-all)

from ‹n > 1 › have ln 2 = ln (real n) − ln (real n / 2 )
by (simp add: ln-div)

also from ‹n > 1 › have . . . ≤ ln (real n) − ln (real (n div 2 ))
by simp

finally have ∗: 3∗ln 2 + ln(real (n div 2 )) ≤ 3∗ ln(real n) − 2∗ ln(real (n
div 2 ))

by simp

have − real n ∗ (ln (real n − 1 ) − ln (real n)) + ln(real (n div 2 )) − 1 =
real n ∗ (ln (real n) − ln (real n − 1 )) − 1 + ln(real (n div 2 ))

by (simp add: algebra-simps)
also have real n ∗ (ln (real n) − ln (real n − 1 )) ≤ 3 ∗ (ln 3 − ln (3 − 1 ))

using mon[OF - ‹n ≥ 3 ›] by simp
also {

have Some (Float 3 (−1 )) = ub-ln 1 3 by code-simp
from ub-ln(1 )[OF this] have ln 3 ≤ (1 .6 :: real) by simp
also have 1 .6 − 1 / 3 ≤ 2 ∗ (2/3 :: real) by simp
also have 2/3 ≤ ln (2 :: real) by (rule ln-2-ge ′)
finally have ln 3 − 1 / 3 ≤ 2 ∗ ln (2 :: real) by simp

}
hence 3 ∗ (ln 3 − ln (3 − 1 )) − 1 ≤ 3 ∗ ln (2 :: real) by simp
also note ∗
finally have − real n ∗ (ln (real n − 1 ) − ln (real n)) + ln(real (n div 2 )) −

1 ≤
3 ∗ ln (real n) − 2 ∗ ln (real (n div 2 )) by simp

hence lhs ′: abs(real n ∗ (ln (real n − 1 ) − ln (real n)) − ln(real (n div 2 )) +
1 ) ≤

3 ∗ ln (real n) − 2 ∗ ln (real (n div 2 ))
using ub by simp

have rhs: ?b − 2 ∗ ?b1 − ?b2 = 3∗ ln (real n) − 2 ∗ ln (real (n div 2 ))
by simp

from ‹n > 1 › have ln (real (n div 2 )) ≤ 3∗ ln (real n) − 2∗ ln (real (n div
2 ))

by simp
with rhs lhs lhs ′ show ?thesis
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by simp
qed
then have minus-a: −?a ≤ ?b − 2 ∗ ?b1 − ?b2 − (?a2 − 2 ∗ ?a1 )

by simp
from abs-a have a: ?a ≤ ?b − 2 ∗ ?b1 − ?b2 + ?a2 − 2 ∗ ?a1

by (simp)
from ln-fact-bounds[of n div 2 ] False have abs-l1 : abs(?l1 − ?a1 ) ≤ ?b1

by (simp add: algebra-simps)
then have minus-l1 : ?a1 − ?l1 ≤ ?b1

by linarith
from abs-l1 have l1 : ?l1 − ?a1 ≤ ?b1

by linarith
from ln-fact-bounds[of n] False have abs-l2 : abs(?l2 − ?a2 ) ≤ ?b2

by (simp add: algebra-simps)
then have l2 : ?l2 − ?a2 ≤ ?b2

by simp
from abs-l2 have minus-l2 : ?a2 − ?l2 ≤ ?b2

by simp
from minus-a minus-l1 l2 have ?l2 − 2 ∗ ?l1 − ?a ≤ ?b

by simp
moreover from a l1 minus-l2 have − ?l2 + 2 ∗ ?l1 + ?a ≤ ?b

by simp
ultimately have abs((?l2 − 2∗?l1 ) − ?a) ≤ ?b

by simp
then show ?thesis

by simp
qed

lemma ln-primefact:
assumes n 6= (0 ::nat)
shows ln n = (

∑
d=1 ..n. if primepow d ∧ d dvd n then ln (aprimedivisor d)

else 0 )
(is ?lhs = ?rhs)

proof −
have ?rhs = (

∑
d∈{x ∈ {1 ..n}. primepow x ∧ x dvd n}. ln (real (aprimedivisor

d)))
unfolding primepow-factors-def by (subst sum.inter-filter [symmetric]) simp-all

also have {x ∈ {1 ..n}. primepow x ∧ x dvd n} = primepow-factors n
using assms by (auto simp: primepow-factors-def dest: dvd-imp-le prime-

pow-gt-Suc-0 )
finally have ∗: (

∑
d∈primepow-factors n. ln (real (aprimedivisor d))) = ?rhs ..

from in-prime-factors-imp-prime prime-gt-0-nat
have pf-pos:

∧
p. p∈#prime-factorization n =⇒ p > 0

by blast
from ln-msetprod[of prime-factorization n, OF pf-pos] assms

have ln n = (
∑

p∈#prime-factorization n. ln p)
by (simp add: of-nat-prod-mset)

also from ∗ sum-prime-factorization-conv-sum-primepow-factors[of n ln, OF
assms(1 )]
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have . . . = ?rhs by simp
finally show ?thesis .

qed

context
begin

private lemma divisors:
fixes x d::nat
assumes x ∈ {1 ..n}
assumes d dvd x
shows ∃ k∈{1 ..n div d}. x = d ∗ k

proof −
from assms have x ≤ n

by simp
then have ub: x div d ≤ n div d

by (simp add: div-le-mono ‹x ≤ n›)
from assms have 1 ≤ x div d by (auto elim!: dvdE)
with ub have x div d ∈ {1 ..n div d}

by simp
with ‹d dvd x› show ?thesis by (auto intro!: bexI [of - x div d])

qed

lemma ln-fact-conv-mangoldt: ln (fact n) = (
∑

d=1 ..n. mangoldt d ∗ floor (n /
d))
proof −

have ∗: (
∑

da=1 ..n. if primepow da ∧ da dvd d then ln (aprimedivisor da) else
0 ) =

(
∑

(da::nat)=1 ..d. if primepow da ∧ da dvd d then ln (aprimedivisor
da) else 0 )

if d: d ∈ {1 ..n} for d
by (rule sum.mono-neutral-right, insert d) (auto dest: dvd-imp-le)

have (
∑

d=1 ..n.
∑

da=1 ..d. if primepow da ∧
da dvd d then ln (aprimedivisor da) else 0 ) =
(
∑

d=1 ..n.
∑

da=1 ..n. if primepow da ∧
da dvd d then ln (aprimedivisor da) else 0 )

by (rule sum.cong) (insert ∗, simp-all)
also have . . . = (

∑
da=1 ..n.

∑
d=1 ..n. if primepow da ∧

da dvd d then ln (aprimedivisor da) else 0 )
by (rule sum.swap)

also have . . . = sum (λd. mangoldt d ∗ floor (n/d)) {1 ..n}
proof (rule sum.cong)

fix d assume d: d ∈ {1 ..n}
have (

∑
da = 1 ..n. if primepow d ∧ d dvd da then ln (real (aprimedivisor d))

else 0 ) =
(
∑

da = 1 ..n. if d dvd da then mangoldt d else 0 )
by (intro sum.cong) (simp-all add: mangoldt-def )

also have . . . = mangoldt d ∗ real (card {x. x ∈ {1 ..n} ∧ d dvd x})
by (subst sum.inter-filter [symmetric]) (simp-all add: algebra-simps)
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also {
have {x. x ∈ {1 ..n} ∧ d dvd x} = {x. ∃ k ∈{1 ..n div d}. x=k∗d}
proof safe

fix x assume x ∈ {1 ..n} d dvd x
thus ∃ k∈{1 ..n div d}. x = k ∗ d using divisors[of x n d] by auto

next
fix x k assume k: k ∈ {1 ..n div d}
from k have k ∗ d ≤ n div d ∗ d by (intro mult-right-mono) simp-all
also have n div d ∗ d ≤ n div d ∗ d + n mod d by (rule le-add1 )
also have . . . = n by simp
finally have k ∗ d ≤ n .
thus k ∗ d ∈ {1 ..n} using d k by auto

qed auto
also have . . . = (λk. k∗d) ‘ {1 ..n div d}

by fast
also have card . . . = card {1 ..n div d}

by (rule card-image) (simp add: inj-on-def )
also have . . . = n div d

by simp
also have ... = bn / dc

by (simp add: floor-divide-of-nat-eq)
finally have real (card {x. x ∈ {1 ..n} ∧ d dvd x}) = real-of-int bn / dc

by force
}

finally show (
∑

da = 1 ..n. if primepow d ∧ d dvd da then ln (real (aprimedivisor
d)) else 0 ) =

mangoldt d ∗ real-of-int breal n / real dc .
qed simp-all
finally have (

∑
d=1 ..n.

∑
da=1 ..d. if primepow da ∧

da dvd d then ln (aprimedivisor da) else 0 ) =
sum (λd. mangoldt d ∗ floor (n/d)) {1 ..n} .

with ln-primefact have (
∑

d=1 ..n. ln d) =
(
∑

d=1 ..n. mangoldt d ∗ floor (n/d))
by simp

with ln-fact show ?thesis
by simp

qed

end

context
begin

private lemma div-2-mult-2-bds:
fixes n d :: nat
assumes d > 0
shows 0 ≤ bn / dc − 2 ∗ b(n div 2 ) / dc bn / dc − 2 ∗ b(n div 2 ) / dc ≤ 1

proof −
have b2 ::realc ∗ b(n div 2 ) / dc ≤ b2 ∗ ((n div 2 ) / d)c

12



by (rule le-mult-floor) simp-all
also from assms have . . . ≤ bn / dc by (intro floor-mono) (simp-all add:

field-simps)
finally show 0 ≤ bn / dc − 2 ∗ b(n div 2 ) / dc by (simp add: algebra-simps)

next
have real (n div d) ≤ real (2 ∗ ((n div 2 ) div d) + 1 )
by (subst div-mult2-eq [symmetric], simp only: mult.commute, subst div-mult2-eq)

simp
thus bn / dc − 2 ∗ b(n div 2 ) / dc ≤ 1

unfolding of-nat-add of-nat-mult floor-conv-div-nat [symmetric] by simp-all
qed

private lemma n-div-d-eq-1 : d ∈ {n div 2 + 1 ..n} =⇒ breal n / real dc = 1
by (cases n = d) (auto simp: field-simps intro: floor-eq)

lemma psi-bounds-ln-fact:
shows ln (fact n) − 2 ∗ ln (fact (n div 2 )) ≤ psi n

psi n − psi (n div 2 ) ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 ))
proof −

fix n::nat
let ?k = n div 2 and ?d = n mod 2
have ∗: b?k / dc = 0 if d > ?k for d
proof −

from that div-less have 0 = ?k div d by simp
also have . . . = b?k / dc by (rule floor-divide-of-nat-eq [symmetric])
finally show b?k / dc = 0 by simp

qed
have sum-eq: (

∑
d=1 ..2∗?k+?d. mangoldt d ∗ b?k / dc) = (

∑
d=1 ..?k. man-

goldt d ∗ b?k / dc)
by (intro sum.mono-neutral-right) (auto simp: ∗)

from ln-fact-conv-mangoldt have ln (fact n) = (
∑

d=1 ..n. mangoldt d ∗ bn /
dc) .

also have . . . = (
∑

d=1 ..n. mangoldt d ∗ b(2 ∗ (n div 2 ) + n mod 2 ) / dc)
by simp

also have . . . ≤ (
∑

d=1 ..n. mangoldt d ∗ (2 ∗ b?k / dc + 1 ))
using div-2-mult-2-bds(2 )[of - n]
by (intro sum-mono mult-left-mono, subst of-int-le-iff )

(auto simp: algebra-simps mangoldt-nonneg)
also have . . . = 2 ∗ (

∑
d=1 ..n. mangoldt d ∗ b(n div 2 ) / dc) + (

∑
d=1 ..n.

mangoldt d)
by (simp add: algebra-simps sum.distrib sum-distrib-left)

also have . . . = 2 ∗ (
∑

d=1 ..2∗?k+?d. mangoldt d ∗ b(n div 2 ) / dc) +
(
∑

d=1 ..n. mangoldt d)
by presburger

also from sum-eq have . . . = 2 ∗ (
∑

d=1 ..?k. mangoldt d ∗ b(n div 2 ) / dc)
+ (

∑
d=1 ..n. mangoldt d)

by presburger
also from ln-fact-conv-mangoldt psi-def have . . . = 2 ∗ ln (fact ?k) + psi n

by presburger
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finally show ln (fact n) − 2 ∗ ln (fact (n div 2 )) ≤ psi n
by simp

next
fix n::nat
let ?k = n div 2 and ?d = n mod 2
from psi-def have psi n − psi ?k = (

∑
d=1 ..2∗?k+?d. mangoldt d) − (

∑
d=1 ..?k.

mangoldt d)
by presburger

also have . . . = sum mangoldt ({1 ..2 ∗ (n div 2 ) + n mod 2} − {1 ..n div 2})
by (subst sum-diff ) simp-all

also have . . . = (
∑

d∈({1 ..2 ∗ (n div 2 ) + n mod 2} − {1 ..n div 2}).
(if d ≤ ?k then 0 else mangoldt d))

by (intro sum.cong) simp-all
also have . . . = (

∑
d=1 ..2∗?k+?d. (if d ≤ ?k then 0 else mangoldt d))

by (intro sum.mono-neutral-left) auto
also have . . . = (

∑
d=1 ..n. (if d ≤ ?k then 0 else mangoldt d))

by presburger
also have . . . = (

∑
d=1 ..n. (if d ≤ ?k then mangoldt d ∗ 0 else mangoldt d))

by (intro sum.cong) simp-all
also from div-2-mult-2-bds(1 ) have . . . ≤ (

∑
d=1 ..n. (if d ≤ ?k then mangoldt

d ∗ (bn/dc − 2 ∗ b?k/dc) else mangoldt d))
by (intro sum-mono)

(auto simp: algebra-simps mangoldt-nonneg intro!: mult-left-mono simp del:
of-int-mult)

also from n-div-d-eq-1 have . . . = (
∑

d=1 ..n. (if d ≤ ?k then mangoldt d ∗
(bn/dc − 2 ∗ b?k/dc) else mangoldt d ∗ bn/dc))

by (intro sum.cong refl) auto
also have . . . = (

∑
d=1 ..n. mangoldt d ∗ real-of-int (breal n / real dc) −

(if d ≤ ?k then 2 ∗ mangoldt d ∗ real-of-int breal ?k / real dc else
0 ))

by (intro sum.cong refl) (auto simp: algebra-simps)
also have . . . = (

∑
d=1 ..n. mangoldt d ∗ real-of-int (breal n / real dc)) −

(
∑

d=1 ..n. (if d ≤ ?k then 2 ∗ mangoldt d ∗ real-of-int breal ?k /
real dc else 0 ))

by (rule sum-subtractf )
also have (

∑
d=1 ..n. (if d ≤ ?k then 2 ∗ mangoldt d ∗ real-of-int breal ?k /

real dc else 0 )) =
(
∑

d=1 ..?k. (if d ≤ ?k then 2 ∗ mangoldt d ∗ real-of-int breal ?k /
real dc else 0 ))

by (intro sum.mono-neutral-right) auto
also have . . . = (

∑
d=1 ..?k. 2 ∗ mangoldt d ∗ real-of-int breal ?k / real dc)

by (intro sum.cong) simp-all
also have . . . = 2 ∗ (

∑
d=1 ..?k. mangoldt d ∗ real-of-int breal ?k / real dc)

by (simp add: sum-distrib-left mult-ac)
also have (

∑
d = 1 ..n. mangoldt d ∗ real-of-int breal n / real dc) − . . . =

ln (fact n) − 2 ∗ ln (fact (n div 2 ))
by (simp add: ln-fact-conv-mangoldt)

finally show psi n − psi (n div 2 ) ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 )) .
qed

14



end

lemma psi-bounds-induct:
real n ∗ ln 2 − (4 ∗ ln (real (if n = 0 then 1 else n)) + 3 ) ≤ psi n
psi n − psi (n div 2 ) ≤ real n ∗ ln 2 + (4 ∗ ln (real (if n = 0 then 1 else n)) +

3 )
proof −

from le-imp-neg-le[OF ln-fact-diff-bounds]
have n ∗ ln 2 − (4 ∗ ln (if n = 0 then 1 else n) + 3 )
≤ n ∗ ln 2 − abs(ln (fact n) − 2 ∗ ln (fact (n div 2 )) − n ∗ ln 2 )

by simp
also have . . . ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 ))

by simp
also from psi-bounds-ln-fact (1 ) have . . . ≤ psi n

by simp
finally show real n ∗ ln 2 − (4 ∗ ln (real (if n = 0 then 1 else n)) + 3 ) ≤ psi

n .
next

from psi-bounds-ln-fact (2 ) have psi n − psi (n div 2 ) ≤ ln (fact n) − 2 ∗ ln
(fact (n div 2 )) .

also have . . . ≤ n ∗ ln 2 + abs(ln (fact n) − 2 ∗ ln (fact (n div 2 )) − n ∗ ln 2 )
by simp

also from ln-fact-diff-bounds [of n]
have abs(ln (fact n) − 2 ∗ ln (fact (n div 2 )) − n ∗ ln 2 )

≤ (4 ∗ ln (real (if n = 0 then 1 else n)) + 3 ) by simp
finally show psi n − psi (n div 2 ) ≤ real n ∗ ln 2 + (4 ∗ ln (real (if n = 0 then

1 else n)) + 3 )
by simp

qed

0.5 Bounding the psi function

In this section, we will first prove the relatively tight estimate psi n ≤ 3 / 2
+ ln 2 ∗ real n for n ≤ (128 :: ′a) and then use the recurrence we have just
derived to extend it to psi n ≤ 551 / 256 for n ≤ (1024 :: ′a), at which point
applying the recurrence can be used to prove the same bound for arbitrarily
big numbers.
First of all, we will prove the bound for n ≤ (128 :: ′a) using reflection and
approximation.
context
begin

private lemma Ball-insertD:
assumes ∀ x∈insert y A. P x
shows P y ∀ x∈A. P x
using assms by auto
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private lemma meta-eq-TrueE : PROP A ≡ Trueprop True =⇒ PROP A
by simp

private lemma pre-mangoldt-pos: pre-mangoldt n > 0
unfolding pre-mangoldt-def by (auto simp: primepow-gt-Suc-0 )

private lemma psi-conv-pre-mangoldt: psi n = ln (real (prod pre-mangoldt {1 ..n}))
by (auto simp: psi-def mangoldt-def pre-mangoldt-def ln-prod primepow-gt-Suc-0

intro!: sum.cong)

private lemma eval-psi-aux1 : psi 0 = ln (real (numeral Num.One))
by (simp add: psi-def )

private lemma eval-psi-aux2 :
assumes psi m = ln (real (numeral x)) pre-mangoldt n = y m + 1 = n numeral

x ∗ y = z
shows psi n = ln (real z)

proof −
from assms(2 ) [symmetric] have [simp]: y > 0 by (simp add: pre-mangoldt-pos)
have psi n = psi (Suc m) by (simp add: assms(3 ) [symmetric])
also have . . . = ln (real y ∗ (

∏
x = Suc 0 ..m. real (pre-mangoldt x)))

using assms(2 ,3 ) [symmetric] by (simp add: psi-conv-pre-mangoldt prod.nat-ivl-Suc ′

mult-ac)
also have . . . = ln (real y) + psi m
by (subst ln-mult) (simp-all add: pre-mangoldt-pos prod-pos psi-conv-pre-mangoldt)

also have psi m = ln (real (numeral x)) by fact
also have ln (real y) + . . . = ln (real (numeral x ∗ y)) by (simp add: ln-mult)
finally show ?thesis by (simp add: assms(4 ) [symmetric])

qed

private lemma Ball-atLeast0AtMost-doubleton:
assumes psi 0 ≤ 3 / 2 ∗ ln 2 ∗ real 0
assumes psi 1 ≤ 3 / 2 ∗ ln 2 ∗ real 1
shows (∀ x∈{0 ..1}. psi x ≤ 3 / 2 ∗ ln 2 ∗ real x)
using assms unfolding One-nat-def atLeast0-atMost-Suc ball-simps by auto

private lemma Ball-atLeast0AtMost-insert:
assumes (∀ x∈{0 ..m}. psi x ≤ 3 / 2 ∗ ln 2 ∗ real x)
assumes psi (numeral n) ≤ 3 / 2 ∗ ln 2 ∗ real (numeral n) m = pred-numeral

n
shows (∀ x∈{0 ..numeral n}. psi x ≤ 3 / 2 ∗ ln 2 ∗ real x)
using assms
by (subst numeral-eq-Suc[of n], subst atLeast0-atMost-Suc,

subst ball-simps, simp only: numeral-eq-Suc [symmetric])

private lemma eval-psi-ineq-aux:
assumes psi n = x x ≤ 3 / 2 ∗ ln 2 ∗ n
shows psi n ≤ 3 / 2 ∗ ln 2 ∗ n
using assms by simp-all
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private lemma eval-psi-ineq-aux2 :
assumes numeral m ^ 2 ≤ (2 ::nat) ^ (3 ∗ n)
shows ln (real (numeral m)) ≤ 3 / 2 ∗ ln 2 ∗ real n

proof −
have ln (real (numeral m)) ≤ 3 / 2 ∗ ln 2 ∗ real n ←→

2 ∗ log 2 (real (numeral m)) ≤ 3 ∗ real n
by (simp add: field-simps log-def )

also have 2 ∗ log 2 (real (numeral m)) = log 2 (real (numeral m ^ 2 ))
by (subst of-nat-power , subst log-nat-power) simp-all

also have . . . ≤ 3 ∗ real n ←→ real ((numeral m) ^ 2 ) ≤ 2 powr real (3 ∗ n)
by (subst Transcendental.log-le-iff ) simp-all

also have 2 powr (3 ∗ n) = real (2 ^ (3 ∗ n))
by (simp add: powr-realpow [symmetric])

also have real ((numeral m) ^ 2 ) ≤ . . . ←→ numeral m ^ 2 ≤ (2 ::nat) ^ (3 ∗
n)

by (rule of-nat-le-iff )
finally show ?thesis using assms by blast

qed

private lemma eval-psi-ineq-aux-mono:
assumes psi n = x psi m = x psi n ≤ 3 / 2 ∗ ln 2 ∗ n n ≤ m
shows psi m ≤ 3 / 2 ∗ ln 2 ∗ m

proof −
from assms have psi m = psi n by simp
also have . . . ≤ 3 / 2 ∗ ln 2 ∗ n by fact
also from ‹n ≤ m› have . . . ≤ 3 / 2 ∗ ln 2 ∗ m by simp
finally show ?thesis .

qed

lemma not-primepow-1-nat: ¬primepow (1 :: nat) by auto

ML-file ‹bertrand.ML›

local-setup ‹fn lthy =>
let

fun tac ctxt =
let

val psi-cache = Bertrand.prove-psi ctxt 129
fun prove-psi-ineqs ctxt =

let
fun tac goal-ctxt =

HEADGOAL (resolve-tac goal-ctxt @{thms eval-psi-ineq-aux2} THEN ′

Simplifier .simp-tac goal-ctxt)
fun prove-by-approx n thm =

let
val thm = thm RS @{thm eval-psi-ineq-aux}
val [prem] = Thm.prems-of thm
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val prem = Goal.prove ctxt [] [] prem (tac o #context)
in

prem RS thm
end

fun prove-by-mono last-thm last-thm ′ thm =
let
val thm = @{thm eval-psi-ineq-aux-mono} OF [last-thm, thm, last-thm ′]
val [prem] = Thm.prems-of thm
val prem =

Goal.prove ctxt [] [] prem (fn {context = goal-ctxt, ...} =>
HEADGOAL (Simplifier .simp-tac goal-ctxt))

in
prem RS thm

end
fun go - acc [] = acc
| go last acc ((n, x, thm) :: xs) =

let
val thm ′ =

case last of
NONE => prove-by-approx n thm
| SOME (last-x, last-thm, last-thm ′) =>

if last-x = x then
prove-by-mono last-thm last-thm ′ thm

else
prove-by-approx n thm

in
go (SOME (x, thm, thm ′)) (thm ′ :: acc) xs

end
in

rev o go NONE []
end

val psi-ineqs = prove-psi-ineqs ctxt psi-cache
fun prove-ball ctxt (thm1 :: thm2 :: thms) =

let
val thm = @{thm Ball-atLeast0AtMost-doubleton} OF [thm1 , thm2 ]
fun solve-prem thm =

let
val thm ′ =

Goal.prove ctxt [] [] (Thm.cprem-of thm 1 |> Thm.term-of )
(fn {context = goal-ctxt, ...} =>

HEADGOAL (Simplifier .simp-tac goal-ctxt))
in

thm ′ RS thm
end
fun go thm thm ′ = (@{thm Ball-atLeast0AtMost-insert} OF [thm ′,

thm]) |> solve-prem
in

fold go thms thm
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end
| prove-ball - - = raise Match

in
HEADGOAL (resolve-tac ctxt [prove-ball ctxt psi-ineqs])

end
val thm = Goal.prove lthy [] [] @{prop ∀n∈{0 ..128}. psi n ≤ 3 / 2 ∗ ln 2 ∗ n}

(tac o #context)
in

Local-Theory.note ((@{binding psi-ubound-log-128}, []), [thm]) lthy |> snd
end
›

end

context
begin

private lemma psi-ubound-aux:
defines f ≡ λx::real. (4 ∗ ln x + 3 ) / (ln 2 ∗ x)
assumes x ≥ 2 x ≤ y
shows f x ≥ f y

using assms(3 )
proof (rule DERIV-nonpos-imp-nonincreasing, goal-cases)

case (1 t)
define f ′ where f ′ = (λx. (1 − 4 ∗ ln x) / x^2 / ln 2 :: real)
from 1 assms(2 ) have (f has-real-derivative f ′ t) (at t) unfolding f-def f ′-def

by (auto intro!: derivative-eq-intros simp: field-simps power2-eq-square)
moreover {

from ln-2-ge have 1/4 ≤ ln (2 ::real) by simp
also from assms(2 ) 1 have . . . ≤ ln t by simp
finally have ln t ≥ 1/4 .

}
with 1 assms(2 ) have f ′ t ≤ 0 by (simp add: f ′-def field-simps)
ultimately show ?case by (intro exI [of - f ′ t]) simp-all

qed

These next rules are used in combination with real ?n ∗ ln 2 − (4 ∗ ln (real
(if ?n = 0 then 1 else ?n)) + 3 ) ≤ psi ?n
psi ?n − psi (?n div 2 ) ≤ real ?n ∗ ln 2 + (4 ∗ ln (real (if ?n = 0 then 1
else ?n)) + 3 ) and ∀n∈{0 ..128}. psi n ≤ 3 / 2 ∗ ln 2 ∗ real n to extend
the upper bound for psi from values no greater than 128 to values no greater
than 1024. The constant factor of the upper bound changes every time, but
once we have reached 1024, the recurrence is self-sustaining in the sense that
we do not have to adjust the constant factor anymore in order to double the
range.
lemma psi-ubound-log-double-cases ′:

assumes
∧

n. n ≤ m =⇒ psi n ≤ c ∗ ln 2 ∗ real n n ≤ m ′ m ′ = 2∗m
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c ≤ c ′ c ≥ 0 m ≥ 1 c ′ ≥ 1 + c/2 + (4 ∗ ln (m+1 ) + 3 ) / (ln 2 ∗ (m+1 ))
shows psi n ≤ c ′ ∗ ln 2 ∗ real n

proof (cases n > m)
case False
hence psi n ≤ c ∗ ln 2 ∗ real n by (intro assms) simp-all
also have c ≤ c ′ by fact
finally show ?thesis by − (simp-all add: mult-right-mono)

next
case True
hence n: n ≥ m+1 by simp
from psi-bounds-induct(2 )[of n] True

have psi n ≤ real n ∗ ln 2 + 4 ∗ ln (real n) + 3 + psi (n div 2 ) by simp
also from assms have psi (n div 2 ) ≤ c ∗ ln 2 ∗ real (n div 2 )

by (intro assms) simp-all
also have real (n div 2 ) ≤ real n / 2 by simp
also have c ∗ ln 2 ∗ . . . = c / 2 ∗ ln 2 ∗ real n by simp
also have real n ∗ ln 2 + 4 ∗ ln (real n) + 3 + . . . =

(1 + c/2 ) ∗ ln 2 ∗ real n + (4 ∗ ln (real n) + 3 ) by (simp add:
field-simps)

also {
have (4 ∗ ln (real n) + 3 ) / (ln 2 ∗ (real n)) ≤ (4 ∗ ln (m+1 ) + 3 ) / (ln 2

∗ (m+1 ))
using n assms by (intro psi-ubound-aux) simp-all

also from assms have (4 ∗ ln (m+1 ) + 3 ) / (ln 2 ∗ (m+1 )) ≤ c ′ − 1 − c/2

by (simp add: algebra-simps)
finally have 4 ∗ ln (real n) + 3 ≤ (c ′ − 1 − c/2 ) ∗ ln 2 ∗ real n

using n by (simp add: field-simps)
}
also have (1 + c / 2 ) ∗ ln 2 ∗ real n + (c ′ − 1 − c / 2 ) ∗ ln 2 ∗ real n = c ′

∗ ln 2 ∗ real n
by (simp add: field-simps)

finally show ?thesis using ‹c ≥ 0 › by (simp-all add: mult-left-mono)
qed

end

lemma psi-ubound-log-double-cases:
assumes ∀n≤m. psi n ≤ c ∗ ln 2 ∗ real n

c ′ ≥ 1 + c/2 + (4 ∗ ln (m+1 ) + 3 ) / (ln 2 ∗ (m+1 ))
m ′ = 2∗m c ≤ c ′ c ≥ 0 m ≥ 1

shows ∀n≤m ′. psi n ≤ c ′ ∗ ln 2 ∗ real n
using assms(1 ) by (intro allI impI assms psi-ubound-log-double-cases ′[of m c -

m ′ c ′]) auto

lemma psi-ubound-log-1024 :
∀n≤1024 . psi n ≤ 551 / 256 ∗ ln 2 ∗ real n

proof −
from psi-ubound-log-128 have ∀n≤128 . psi n ≤ 3 / 2 ∗ ln 2 ∗ real n by simp
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hence ∀n≤256 . psi n ≤ 1025 / 512 ∗ ln 2 ∗ real n
proof (rule psi-ubound-log-double-cases, goal-cases)

case 1
have Some (Float 624 (− 7 )) = ub-ln 9 129 by code-simp
from ub-ln(1 )[OF this] and ln-2-ge show ?case by (simp add: field-simps)

qed simp-all
hence ∀n≤512 . psi n ≤ 549 / 256 ∗ ln 2 ∗ real n
proof (rule psi-ubound-log-double-cases, goal-cases)

case 1
have Some (Float 180 (− 5 )) = ub-ln 7 257 by code-simp
from ub-ln(1 )[OF this] and ln-2-ge show ?case by (simp add: field-simps)

qed simp-all
thus ∀n≤1024 . psi n ≤ 551 / 256 ∗ ln 2 ∗ real n
proof (rule psi-ubound-log-double-cases, goal-cases)

case 1
have Some (Float 203 (− 5 )) = ub-ln 7 513 by code-simp
from ub-ln(1 )[OF this] and ln-2-ge show ?case by (simp add: field-simps)

qed simp-all
qed

lemma psi-bounds-sustained-induct:
assumes 4 ∗ ln (1 + 2 ^ j) + 3 ≤ d ∗ ln 2 ∗ (1 + 2^j)
assumes 4 / (1 + 2^j) ≤ d ∗ ln 2
assumes 0 ≤ c
assumes c / 2 + d + 1 ≤ c
assumes j ≤ k
assumes

∧
n. n ≤ 2^k =⇒ psi n ≤ c ∗ ln 2 ∗ n

assumes n ≤ 2^(Suc k)
shows psi n ≤ c ∗ ln 2 ∗ n

proof (cases n ≤ 2^k)
case True
with assms(6 ) show ?thesis .

next
case False
from psi-bounds-induct(2 )

have psi n − psi (n div 2 ) ≤ real n ∗ ln 2 + (4 ∗ ln (real (if n = 0 then 1 else
n)) + 3 ) .

also from False have (if n = 0 then 1 else n) = n
by simp

finally have psi n ≤ real n ∗ ln 2 + (4 ∗ ln (real n) + 3 ) + psi (n div 2 )
by simp

also from assms(6 ,7 ) have psi (n div 2 ) ≤ c ∗ ln 2 ∗ (n div 2 )
by simp

also have real (n div 2 ) ≤ real n / 2
by simp

also have real n ∗ ln 2 + (4 ∗ ln (real n) + 3 ) + c ∗ ln 2 ∗ (n / 2 ) ≤ c ∗ ln 2
∗ real n

proof (rule overpower-lemma[of
λx. x ∗ ln 2 + (4 ∗ ln x + 3 ) + c ∗ ln 2 ∗ (x / 2 ) 1+2^j
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λx. c ∗ ln 2 ∗ x λx. c ∗ ln 2 − ln 2 − 4 / x − c / 2 ∗ ln 2
real n])

from assms(1 ) have 4 ∗ ln (1 + 2^j) + 3 ≤ d ∗ ln 2 ∗ (1 + 2^j) .
also from assms(4 ) have d ≤ c − c/2 − 1

by simp
also have (. . . ) ∗ ln 2 ∗ (1 + 2 ^ j) = c ∗ ln 2 ∗ (1 + 2 ^ j) − c / 2 ∗ ln 2

∗ (1 + 2 ^ j)
− (1 + 2 ^ j) ∗ ln 2

by (simp add: left-diff-distrib)
finally have 4 ∗ ln (1 + 2^j) + 3 ≤ c ∗ ln 2 ∗ (1 + 2 ^ j) − c / 2 ∗ ln 2

∗ (1 + 2 ^ j)
− (1 + 2 ^ j) ∗ ln 2

by (simp add: add-pos-pos)
then show (1 + 2 ^ j) ∗ ln 2 + (4 ∗ ln (1 + 2 ^ j) + 3 )

+ c ∗ ln 2 ∗ ((1 + 2 ^ j) / 2 ) ≤ c ∗ ln 2 ∗ (1 + 2 ^ j)
by simp

next
fix x::real
assume x: 1 + 2^j ≤ x
moreover have 1 + 2 ^ j > (0 ::real) by (simp add: add-pos-pos)
ultimately have x-pos: x > 0 by linarith
show ((λx. c ∗ ln 2 ∗ x − (x ∗ ln 2 + (4 ∗ ln x + 3 ) + c ∗ ln 2 ∗ (x / 2 )))

has-real-derivative c ∗ ln 2 − ln 2 − 4 / x − c / 2 ∗ ln 2 ) (at x)
by (rule derivative-eq-intros refl | simp add: ‹0 < x›)+

from ‹0 < x› ‹0 < 1 + 2^j› have 0 < x ∗ (1 + 2^j)
by (rule mult-pos-pos)

have 4 / x ≤ 4 / (1 + 2^j)
by (intro divide-left-mono mult-pos-pos add-pos-pos x x-pos) simp-all

also from assms(2 ) have 4 / (1 + 2^j) ≤ d ∗ ln 2 .
also from assms(4 ) have d ≤ c − c/2 − 1 by simp

also have . . . ∗ ln 2 = c ∗ ln 2 − c/2 ∗ ln 2 − ln 2 by (simp add:
algebra-simps)

finally show 0 ≤ c ∗ ln 2 − ln 2 − 4 / x − c / 2 ∗ ln 2 by simp
next

have 1 + 2^j = real (1 + 2^j) by simp
also from assms(5 ) have . . . ≤ real (1 + 2^k) by simp
also from False have 2^k ≤ n − 1 by simp
finally show 1 + 2^j ≤ real n using False by simp

qed
finally show ?thesis using assms by − (simp-all add: mult-left-mono)

qed

lemma psi-bounds-sustained:
assumes

∧
n. n ≤ 2^k =⇒ psi n ≤ c ∗ ln 2 ∗ n

assumes 4 ∗ ln (1 + 2^k) + 3 ≤ (c/2 − 1 ) ∗ ln 2 ∗ (1 + 2^k)
assumes 4 / (1 + 2^k) ≤ (c/2 − 1 ) ∗ ln 2
assumes c ≥ 0
shows psi n ≤ c ∗ ln 2 ∗ n

proof −
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have psi n ≤ c ∗ ln 2 ∗ n if n ≤ 2^j for j n
using that
proof (induction j arbitrary: n)

case 0
with assms(4 ) 0 show ?case unfolding psi-def mangoldt-def by (cases n)

auto
next

case (Suc j)
show ?case

proof (cases k ≤ j)
case True
from assms(4 ) have c-div-2 : c/2 + (c/2 − 1 ) + 1 ≤ c

by simp
from psi-bounds-sustained-induct[of k c/2 −1 c j,

OF assms(2 ) assms(3 ) assms(4 ) c-div-2 True Suc.IH Suc.prems]
show ?thesis by simp

next
case False
then have j-lt-k: Suc j ≤ k by simp
from Suc.prems have n ≤ 2 ^ Suc j .
also have (2 ::nat) ^ Suc j ≤ 2 ^ k

using power-increasing[of Suc j k 2 ::nat, OF j-lt-k]
by simp

finally show ?thesis using assms(1 ) by simp
qed

qed
from less-exp this [of n n] show ?thesis by simp

qed

lemma psi-ubound-log: psi n ≤ 551 / 256 ∗ ln 2 ∗ n
proof (rule psi-bounds-sustained)

show 0 ≤ 551 / (256 :: real) by simp
next

fix n :: nat assume n ≤ 2 ^ 10
with psi-ubound-log-1024 show psi n ≤ 551 / 256 ∗ ln 2 ∗ real n by auto

next
have 4 / (1 + 2 ^ 10 ) ≤ (551 / 256 / 2 − 1 ) ∗ (2/3 :: real)

by simp
also have . . . ≤ (551 / 256 / 2 − 1 ) ∗ ln 2

by (intro mult-left-mono ln-2-ge ′) simp-all
finally show 4 / (1 + 2 ^ 10 ) ≤ (551 / 256 / 2 − 1 ) ∗ ln (2 :: real) .

next
have Some (Float 16 (−1 )) = ub-ln 3 1025 by code-simp
from ub-ln(1 )[OF this] and ln-2-ge

have 2048 ∗ ln 1025 + 1536 ≤ 39975 ∗ (ln 2 ::real) by simp
thus 4 ∗ ln (1 + 2 ^ 10 ) + 3 ≤ (551 / 256 / 2 − 1 ) ∗ ln 2 ∗ (1 + 2 ^ 10 ::

real)
by simp

qed
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lemma psi-ubound-3-2 : psi n ≤ 3/2 ∗ n
proof −

have (551 / 256 ) ∗ ln 2 ≤ (551 / 256 ) ∗ (16/23 :: real)
by (intro mult-left-mono ln-2-le ′) auto

also have . . . ≤ 3 / 2 by simp
finally have 551 / 256 ∗ ln 2 ≤ 3/(2 ::real) .
with of-nat-0-le-iff mult-right-mono have 551 / 256 ∗ ln 2 ∗ n ≤ 3/2 ∗ n

by blast
with psi-ubound-log[of n] show ?thesis

by linarith
qed

0.6 Doubling psi and theta
lemma psi-residues-compare-2 :

psi-odd-2 n ≤ psi-even-2 n
proof −

have psi-odd-2 n = (
∑

d∈{d. d ∈ {2 ..n} ∧ primepow-odd d}. mangoldt-odd d)
unfolding mangoldt-odd-def by (rule sum.mono-neutral-right) auto

also have . . . = (
∑

d∈{d. d ∈ {2 ..n} ∧ primepow-odd d}. ln (real (aprimedivisor
d)))

by (intro sum.cong refl) (simp add: mangoldt-odd-def )
also have . . . ≤ (

∑
d∈{d. d ∈ {2 ..n} ∧ primepow-even d}. ln (real (aprimedivisor

d)))
proof (rule sum-le-included [where i = λy. y ∗ aprimedivisor y]; clarify?)

fix d :: nat assume d ∈ {2 ..n} primepow-odd d
note d = this
then obtain p k where d ′: k ≥ 1 prime p d = p ^ (2∗k+1 )

by (auto simp: primepow-odd-def )
from d ′ have p ^ (2 ∗ k) ≤ p ^ (2 ∗ k + 1 )

by (subst power-increasing-iff ) (auto simp: prime-gt-Suc-0-nat)
also from d d ′ have . . . ≤ n by simp
finally have p ^ (2 ∗ k) ≤ n .
moreover from d ′ have p ^ (2 ∗ k) > 1

by (intro one-less-power) (simp-all add: prime-gt-Suc-0-nat)
ultimately have p ^ (2 ∗ k) ∈ {2 ..n} by simp
moreover from d ′ have primepow-even (p ^ (2 ∗ k))

by (auto simp: primepow-even-def )
ultimately show ∃ y∈{d ∈ {2 ..n}. primepow-even d}. y ∗ aprimedivisor y =

d ∧
ln (real (aprimedivisor d)) ≤ ln (real (aprimedivisor y)) using d ′

by (intro bexI [of - p ^ (2 ∗ k)])
(auto simp: aprimedivisor-prime-power aprimedivisor-primepow)

qed (simp-all add: of-nat-ge-1-iff Suc-le-eq)
also have . . . = (

∑
d∈{d. d ∈ {2 ..n} ∧ primepow-even d}. mangoldt-even d)

by (intro sum.cong refl) (simp add: mangoldt-even-def )
also have . . . = psi-even-2 n

unfolding mangoldt-even-def by (rule sum.mono-neutral-left) auto
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finally show ?thesis .
qed

lemma psi-residues-compare:
psi-odd n ≤ psi-even n

proof −
have ¬ primepow-odd 1 by (simp add: primepow-odd-def )
hence ∗: mangoldt-odd 1 = 0 by (simp add: mangoldt-odd-def )
have ¬ primepow-even 1

using primepow-gt-Suc-0 [OF primepow-even-imp-primepow, of 1 ] by auto
with mangoldt-even-def have ∗∗: mangoldt-even 1 = 0

by simp
from psi-odd-def have psi-odd n = (

∑
d=1 ..n. mangoldt-odd d)

by simp
also from ∗ have . . . = psi-odd-2 n

by (cases n ≥ 1 ) (simp-all add: eval-nat-numeral sum.atLeast-Suc-atMost)
also from psi-residues-compare-2 have . . . ≤ psi-even-2 n .
also from ∗∗ have . . . = psi-even n

by (cases n ≥ 1 ) (simp-all add: eval-nat-numeral sum.atLeast-Suc-atMost
psi-even-def )

finally show ?thesis .
qed

lemma primepow-iff-even-sqr :
primepow n ←→ primepow-even (n^2 )
by (cases n = 0 )
(auto simp: primepow-even-altdef aprimedivisor-primepow-power primepow-power-iff-nat

prime-elem-multiplicity-power-distrib prime-aprimedivisor ′ prime-imp-prime-elem
unit-factor-nat-def primepow-gt-0-nat dest: primepow-gt-Suc-0 )

lemma psi-sqrt: psi (Discrete.sqrt n) = psi-even n
proof (induction n)

case 0
with psi-def psi-even-def show ?case by simp

next
case (Suc n)
then show ?case

proof cases
assume asm: ∃ m. Suc n = m^2
with sqrt-Suc have sqrt-seq: Discrete.sqrt(Suc n) = Suc(Discrete.sqrt n)

by simp
from asm obtain m where Suc n = m^2

by blast
with sqrt-seq have Suc(Discrete.sqrt n) = m

by simp
with ‹Suc n = m^2 › have suc-sqrt-n-sqrt: (Suc(Discrete.sqrt n))^2 = Suc n

by simp
from sqrt-seq have psi (Discrete.sqrt (Suc n)) = psi (Suc (Discrete.sqrt n))

by simp
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also from psi-def have . . . = psi (Discrete.sqrt n) + mangoldt (Suc (Discrete.sqrt
n))

by simp
also from Suc.IH have psi (Discrete.sqrt n) = psi-even n .
also have mangoldt (Suc (Discrete.sqrt n)) = mangoldt-even (Suc n)
proof (cases primepow (Suc(Discrete.sqrt n)))

case True
with primepow-iff-even-sqr have True2 : primepow-even ((Suc(Discrete.sqrt

n))^2 )
by simp

from suc-sqrt-n-sqrt have mangoldt-even (Suc n) = mangoldt-even ((Suc(Discrete.sqrt
n))^2 )

by simp
also from mangoldt-even-def True2

have . . . = ln (aprimedivisor ((Suc (Discrete.sqrt n))^2 ))
by simp

also from True have aprimedivisor ((Suc (Discrete.sqrt n))^2 ) = aprime-
divisor (Suc (Discrete.sqrt n))

by (simp add: aprimedivisor-primepow-power)
also from True have ln (. . . ) = mangoldt (Suc (Discrete.sqrt n))

by (simp add: mangoldt-def )
finally show ?thesis ..

next
case False
with primepow-iff-even-sqr

have False2 : ¬ primepow-even ((Suc(Discrete.sqrt n))^2 )
by simp

from suc-sqrt-n-sqrt have mangoldt-even (Suc n) = mangoldt-even ((Suc(Discrete.sqrt
n))^2 )

by simp
also from mangoldt-even-def False2

have . . . = 0
by simp

also from False have . . . = mangoldt (Suc (Discrete.sqrt n))
by (simp add: mangoldt-def )

finally show ?thesis ..
qed
also from psi-even-def have psi-even n + mangoldt-even (Suc n) = psi-even

(Suc n)
by simp

finally show ?case .
next

assume asm: ¬(∃m. Suc n = m^2 )
with sqrt-Suc have sqrt-eq: Discrete.sqrt (Suc n) = Discrete.sqrt n

by simp
then have lhs: psi (Discrete.sqrt (Suc n)) = psi (Discrete.sqrt n)

by simp
have ¬ primepow-even (Suc n)

proof
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assume primepow-even (Suc n)
with primepow-even-def obtain p k

where 1 ≤ k ∧ prime p ∧ Suc n = p ^ (2 ∗ k)
by blast

with power-even-eq have Suc n = (p ^ k)^2
by simp

with asm show False by blast
qed

with psi-even-def mangoldt-even-def
have rhs: psi-even (Suc n) = psi-even n
by simp

from Suc.IH lhs rhs show ?case
by simp

qed
qed

lemma mangoldt-split:
mangoldt d = mangoldt-1 d + mangoldt-even d + mangoldt-odd d

proof (cases primepow d)
case False
thus ?thesis
by (auto simp: mangoldt-def mangoldt-1-def mangoldt-even-def mangoldt-odd-def

dest: primepow-even-imp-primepow primepow-odd-imp-primepow)
next

case True
thus ?thesis
by (auto simp: mangoldt-def mangoldt-1-def mangoldt-even-def mangoldt-odd-def

primepow-cases)
qed

lemma psi-split: psi n = theta n + psi-even n + psi-odd n
by (induction n)

(simp-all add: psi-def theta-def psi-even-def psi-odd-def mangoldt-1-def man-
goldt-split)

lemma psi-mono: m ≤ n =⇒ psi m ≤ psi n unfolding psi-def
by (intro sum-mono2 mangoldt-nonneg) auto

lemma psi-pos: 0 ≤ psi n
by (auto simp: psi-def intro!: sum-nonneg mangoldt-nonneg)

lemma mangoldt-odd-pos: 0 ≤ mangoldt-odd d
using aprimedivisor-gt-Suc-0 [of d]
by (auto simp: mangoldt-odd-def of-nat-le-iff [of 1 , unfolded of-nat-1 ] Suc-le-eq

intro!: ln-ge-zero dest!: primepow-odd-imp-primepow primepow-gt-Suc-0 )

lemma psi-odd-mono: m ≤ n =⇒ psi-odd m ≤ psi-odd n
using mangoldt-odd-pos sum-mono2 [of {1 ..n} {1 ..m} mangoldt-odd]
by (simp add: psi-odd-def )
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lemma psi-odd-pos: 0 ≤ psi-odd n
by (auto simp: psi-odd-def intro!: sum-nonneg mangoldt-odd-pos)

lemma psi-theta:
theta n + psi (Discrete.sqrt n) ≤ psi n psi n ≤ theta n + 2 ∗ psi (Discrete.sqrt

n)
using psi-odd-pos[of n] psi-residues-compare[of n] psi-sqrt[of n] psi-split[of n]
by simp-all

context
begin

private lemma sum-minus-one:
(
∑

x ∈ {1 ..y}. (− 1 :: real) ^ (x + 1 )) = (if odd y then 1 else 0 )
by (induction y) simp-all

private lemma div-invert:
fixes x y n :: nat
assumes x > 0 y > 0 y ≤ n div x
shows x ≤ n div y

proof −
from assms(1 ,3 ) have y ∗ x ≤ (n div x) ∗ x

by simp
also have . . . ≤ n

by (simp add: minus-mod-eq-div-mult[symmetric])
finally have y ∗ x ≤ n .
with assms(2 ) show ?thesis

using div-le-mono[of y∗x n y] by simp
qed

lemma sum-expand-lemma:
(
∑

d=1 ..n. (−1 ) ^ (d + 1 ) ∗ psi (n div d)) =
(
∑

d = 1 ..n. (if odd (n div d) then 1 else 0 ) ∗ mangoldt d)
proof −

have ∗∗: x ≤ n if x ≤ n div y for x y
using div-le-dividend order-trans that by blast

have (
∑

d=1 ..n. (−1 )^(d+1 ) ∗ psi (n div d)) =
(
∑

d=1 ..n. (−1 )^(d+1 ) ∗ (
∑

e=1 ..n div d. mangoldt e))
by (simp add: psi-def )

also have . . . = (
∑

d = 1 ..n.
∑

e = 1 ..n div d. (−1 )^(d+1 ) ∗ mangoldt e)
by (simp add: sum-distrib-left)

also from ∗∗ have . . . = (
∑

d = 1 ..n.
∑

e∈{y∈{1 ..n}. y ≤ n div d}. (−1 )^(d+1 )
∗ mangoldt e)

by (intro sum.cong) auto
also have . . . = (

∑
y = 1 ..n.

∑
x | x ∈ {1 ..n} ∧ y ≤ n div x. (− 1 ) ^ (x + 1 )

∗ mangoldt y)
by (rule sum.swap-restrict) simp-all

also have . . . = (
∑

y = 1 ..n.
∑

x | x ∈ {1 ..n} ∧ x ≤ n div y. (− 1 ) ^ (x + 1 )
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∗ mangoldt y)
by (intro sum.cong) (auto intro: div-invert)

also from ∗∗ have . . . = (
∑

y = 1 ..n.
∑

x ∈ {1 ..n div y}. (− 1 ) ^ (x + 1 ) ∗
mangoldt y)

by (intro sum.cong) auto
also have . . . = (

∑
y = 1 ..n. (

∑
x ∈ {1 ..n div y}. (− 1 ) ^ (x + 1 )) ∗ mangoldt

y)
by (intro sum.cong) (simp-all add: sum-distrib-right)

also have . . . = (
∑

y = 1 ..n. (if odd (n div y) then 1 else 0 ) ∗ mangoldt y)
by (intro sum.cong refl) (simp-all only: sum-minus-one)

finally show ?thesis .
qed

private lemma floor-half-interval:
fixes n d :: nat
assumes d 6= 0
shows real (n div d) − real (2 ∗ ((n div 2 ) div d)) = (if odd (n div d) then 1

else 0 )
proof −

have ((n div 2 ) div d) = (n div (2 ∗ d))
by (rule div-mult2-eq[symmetric])

also have . . . = ((n div d) div 2 )
by (simp add: mult-ac div-mult2-eq)

also have real (n div d) − real (2 ∗ . . . ) = (if odd (n div d) then 1 else 0 )
by (cases odd (n div d), cases n div d = 0 , simp-all)

finally show ?thesis by simp
qed

lemma fact-expand-psi:
ln (fact n) − 2 ∗ ln (fact (n div 2 )) = (

∑
d=1 ..n. (−1 )^(d+1 ) ∗ psi (n div d))

proof −
have ln (fact n) − 2 ∗ ln (fact (n div 2 )) =
(
∑

d=1 ..n. mangoldt d ∗ bn / dc) − 2 ∗ (
∑

d=1 ..n div 2 . mangoldt d ∗ b(n
div 2 ) / dc)

by (simp add: ln-fact-conv-mangoldt)
also have (

∑
d=1 ..n div 2 . mangoldt d ∗ breal (n div 2 ) / dc) =

(
∑

d=1 ..n. mangoldt d ∗ breal (n div 2 ) / dc)
by (rule sum.mono-neutral-left) (auto simp: floor-unique[of 0 ])

also have 2 ∗ . . . = (
∑

d=1 ..n. mangoldt d ∗ 2 ∗ breal (n div 2 ) / dc)
by (simp add: sum-distrib-left mult-ac)

also have (
∑

d=1 ..n. mangoldt d ∗ bn / dc) − . . . =
(
∑

d=1 ..n. (mangoldt d ∗ bn / dc − mangoldt d ∗ 2 ∗ breal (n div 2 )
/ dc))

by (simp add: sum-subtractf )
also have . . . = (

∑
d=1 ..n. mangoldt d ∗ (bn / dc − 2 ∗ breal (n div 2 ) / dc))

by (simp add: algebra-simps)
also have . . . = (

∑
d=1 ..n. mangoldt d ∗ (if odd(n div d) then 1 else 0 ))

by (intro sum.cong refl)
(simp-all add: floor-conv-div-nat [symmetric] floor-half-interval [symmetric])
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also have . . . = (
∑

d=1 ..n. (if odd(n div d) then 1 else 0 ) ∗ mangoldt d)
by (simp add: mult-ac)

also from sum-expand-lemma[symmetric] have . . . = (
∑

d=1 ..n. (−1 )^(d+1 )
∗ psi (n div d)) .

finally show ?thesis .
qed

end

lemma psi-expansion-cutoff :
assumes m ≤ p
shows (

∑
d=1 ..2∗m. (−1 )^(d+1 ) ∗ psi (n div d)) ≤ (

∑
d=1 ..2∗p. (−1 )^(d+1 )

∗ psi (n div d))
(
∑

d=1 ..2∗p+1 . (−1 )^(d+1 ) ∗ psi (n div d)) ≤ (
∑

d=1 ..2∗m+1 .
(−1 )^(d+1 ) ∗ psi (n div d))
using assms
proof (induction m rule: inc-induct)

case (step k)
have (

∑
d = 1 ..2 ∗ k. (−1 )^(d + 1 ) ∗ psi (n div d)) ≤

(
∑

d = 1 ..2 ∗ Suc k. (−1 )^(d + 1 ) ∗ psi (n div d))
by (simp add: psi-mono div-le-mono2 )

with step.IH (1 )
show (

∑
d = 1 ..2 ∗ k. (−1 )^(d + 1 ) ∗ psi (n div d))

≤ (
∑

d = 1 ..2 ∗ p. (−1 )^(d + 1 ) ∗ psi (n div d))
by simp

from step.IH (2 )
have (

∑
d = 1 ..2 ∗ p + 1 . (−1 )^(d + 1 ) ∗ psi (n div d))

≤ (
∑

d = 1 ..2 ∗ Suc k + 1 . (−1 )^(d + 1 ) ∗ psi (n div d)) .
also have . . . ≤ (

∑
d = 1 ..2 ∗ k + 1 . (−1 )^(d + 1 ) ∗ psi (n div d))

by (simp add: psi-mono div-le-mono2 )
finally show (

∑
d = 1 ..2 ∗ p + 1 . (−1 )^(d + 1 ) ∗ psi (n div d))

≤ (
∑

d = 1 ..2 ∗ k + 1 . (−1 )^(d + 1 ) ∗ psi (n div d)) .
qed simp-all

lemma fact-psi-bound-even:
assumes even k
shows (

∑
d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d)) ≤ ln (fact n) − 2 ∗ ln (fact

(n div 2 ))
proof −

have (
∑

d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d)) ≤ (
∑

d = 1 ..n. (− 1 ) ^ (d + 1 )
∗ psi (n div d))

proof (cases k ≤ n)
case True
with psi-expansion-cutoff (1 )[of k div 2 n div 2 n]

have (
∑

d=1 ..2∗(k div 2 ). (−1 )^(d+1 ) ∗ psi (n div d))
≤ (

∑
d = 1 ..2∗(n div 2 ). (− 1 ) ^ (d + 1 ) ∗ psi (n div d))

by simp
also from assms have 2∗(k div 2 ) = k

by simp
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also have (
∑

d = 1 ..2∗(n div 2 ). (− 1 ) ^ (d + 1 ) ∗ psi (n div d))
≤ (

∑
d = 1 ..n. (− 1 ) ^ (d + 1 ) ∗ psi (n div d))

proof (cases even n)
case True
then show ?thesis

by simp
next

case False
from psi-pos have (

∑
d = 1 ..2∗(n div 2 ). (− 1 ) ^ (d + 1 ) ∗ psi (n div d))

≤ (
∑

d = 1 ..2∗(n div 2 ) + 1 . (− 1 ) ^ (d + 1 ) ∗ psi (n div d))
by simp

with False show ?thesis
by simp

qed
finally show ?thesis .

next
case False
hence ∗: n div 2 ≤ (k−1 ) div 2

by simp
have (

∑
d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d)) ≤

(
∑

d=1 ..2∗((k−1 ) div 2 ) + 1 . (−1 )^(d+1 ) ∗ psi (n div d))
proof (cases k = 0 )

case True
with psi-pos show ?thesis by simp

next
case False
with sum.cl-ivl-Suc[of λd. (−1 )^(d+1 ) ∗ psi (n div d) 1 k−1 ]
have (

∑
d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d)) = (

∑
d=1 ..k−1 . (−1 )^(d+1 )

∗ psi (n div d))
+ (−1 )^(k+1 ) ∗ psi (n div k)

by simp
also from assms psi-pos have (−1 )^(k+1 ) ∗ psi (n div k) ≤ 0

by simp
also from assms False have k−1 = 2∗((k−1 ) div 2 ) + 1

by presburger
finally show ?thesis by simp

qed
also from ∗ psi-expansion-cutoff (2 )[of n div 2 (k−1 ) div 2 n]

have . . . ≤ (
∑

d=1 ..2∗(n div 2 ) + 1 . (−1 )^(d+1 ) ∗ psi (n div d)) by blast
also have . . . ≤ (

∑
d = 1 ..n. (− 1 ) ^ (d + 1 ) ∗ psi (n div d))

by (cases even n) (simp-all add: psi-def )
finally show ?thesis .

qed
also from fact-expand-psi have . . . = ln (fact n) − 2 ∗ ln (fact (n div 2 )) ..
finally show ?thesis .

qed

lemma fact-psi-bound-odd:
assumes odd k
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shows ln (fact n) − 2 ∗ ln (fact (n div 2 )) ≤ (
∑

d=1 ..k. (−1 )^(d+1 ) ∗ psi (n
div d))
proof −

from fact-expand-psi
have ln (fact n) − 2 ∗ ln (fact (n div 2 )) = (

∑
d = 1 ..n. (− 1 ) ^ (d + 1 ) ∗

psi (n div d)) .
also have . . . ≤ (

∑
d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d))

proof (cases k ≤ n)
case True
have (

∑
d=1 ..n. (−1 )^(d+1 ) ∗ psi (n div d)) ≤ (∑
d=1 ..2∗(n div 2 )+1 . (−1 )^(d+1 ) ∗ psi (n div d))

by (cases even n) (simp-all add: psi-pos)
also from True assms psi-expansion-cutoff (2 )[of k div 2 n div 2 n]

have . . . ≤ (
∑

d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d))
by simp

finally show ?thesis .
next

case False
have (

∑
d=1 ..n. (−1 )^(d+1 ) ∗ psi (n div d)) ≤ (

∑
d=1 ..2∗((n+1 ) div 2 ).

(−1 )^(d+1 ) ∗ psi (n div d))
by (cases even n) (simp-all add: psi-def )

also from False assms psi-expansion-cutoff (1 )[of (n+1 ) div 2 k div 2 n]
have (

∑
d=1 ..2∗((n+1 ) div 2 ). (−1 )^(d+1 ) ∗ psi (n div d)) ≤ (

∑
d=1 ..2∗(k

div 2 ). (−1 )^(d+1 ) ∗ psi (n div d))
by simp

also from assms have . . . ≤ (
∑

d=1 ..k. (−1 )^(d+1 ) ∗ psi (n div d))
by (auto elim: oddE simp: psi-pos)

finally show ?thesis .
qed
finally show ?thesis .

qed

lemma fact-psi-bound-2-3 :
psi n − psi (n div 2 ) ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 ))
ln (fact n) − 2 ∗ ln (fact (n div 2 )) ≤ psi n − psi (n div 2 ) + psi (n div 3 )

proof −
show psi n − psi (n div 2 ) ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 ))

by (rule psi-bounds-ln-fact (2 ))
next

from fact-psi-bound-odd[of 3 n] have ln (fact n) − 2 ∗ ln (fact (n div 2 ))
≤ (

∑
d = 1 ..3 . (− 1 ) ^ (d + 1 ) ∗ psi (n div d))

by simp
also have . . . = psi n − psi (n div 2 ) + psi (n div 3 )

by (simp add: sum.atLeast-Suc-atMost numeral-2-eq-2 )
finally show ln (fact n) − 2 ∗ ln (fact (n div 2 )) ≤ psi n − psi (n div 2 ) + psi

(n div 3 ) .
qed

lemma ub-ln-1200 : ln 1200 ≤ 57 / (8 :: real)
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proof −
have Some (Float 57 (−3 )) = ub-ln 8 1200 by code-simp
from ub-ln(1 )[OF this] show ?thesis by simp

qed

lemma psi-double-lemma:
assumes n ≥ 1200
shows real n / 6 ≤ psi n − psi (n div 2 )

proof −
from ln-fact-diff-bounds

have |ln (fact n) − 2 ∗ ln (fact (n div 2 )) − real n ∗ ln 2 |
≤ 4 ∗ ln (real (if n = 0 then 1 else n)) + 3 .

with assms have ln (fact n) − 2 ∗ ln (fact (n div 2 ))
≥ real n ∗ ln 2 − 4 ∗ ln (real n) − 3

by simp
moreover have real n ∗ ln 2 − 4 ∗ ln (real n) − 3 ≥ 2 / 3 ∗ n
proof (rule overpower-lemma[of λn. 2/3 ∗ n 1200 ])

show 2 / 3 ∗ 1200 ≤ 1200 ∗ ln 2 − 4 ∗ ln 1200 − (3 ::real)
using ub-ln-1200 ln-2-ge by linarith

next
fix x::real
assume 1200 ≤ x
then have 0 < x

by simp
show ((λx. x ∗ ln 2 − 4 ∗ ln x − 3 − 2 / 3 ∗ x)

has-real-derivative ln 2 − 4 / x − 2 / 3 ) (at x)
by (rule derivative-eq-intros refl | simp add: ‹0 < x›)+

next
fix x::real
assume 1200 ≤ x
then have 12 / x ≤ 12 / 1200 by simp
then have 0 ≤ 0 .67 − 4 / x − 2 / 3 by simp
also have 0 .67 ≤ ln (2 ::real) using ln-2-ge by simp
finally show 0 ≤ ln 2 − 4 / x − 2 / 3 by simp

next
from assms show 1200 ≤ real n

by simp
qed
ultimately have 2 / 3 ∗ real n ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 ))

by simp
with psi-ubound-3-2 [of n div 3 ]

have n/6 + psi (n div 3 ) ≤ ln (fact n) − 2 ∗ ln (fact (n div 2 ))
by simp

with fact-psi-bound-2-3 [of n] show ?thesis
by simp

qed

lemma theta-double-lemma:
assumes n ≥ 1200
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shows theta (n div 2 ) < theta n
proof −

from psi-theta[of n div 2 ] psi-pos[of Discrete.sqrt (n div 2 )]
have theta-le-psi-n-2 : theta (n div 2 ) ≤ psi (n div 2 )
by simp

have (Discrete.sqrt n ∗ 18 )^2 ≤ 324 ∗ n
by simp

from mult-less-cancel2 [of 324 n n] assms have 324 ∗ n < n^2
by (simp add: power2-eq-square)

with ‹(Discrete.sqrt n ∗ 18 )^2 ≤ 324 ∗ n› have (Discrete.sqrt n∗18 )^2 < n^2
by presburger

with power2-less-imp-less assms have Discrete.sqrt n ∗ 18 < n
by blast

with psi-ubound-3-2 [of Discrete.sqrt n] have 2 ∗ psi (Discrete.sqrt n) < n / 6
by simp

with psi-theta[of n] have psi-lt-theta-n: psi n − n / 6 < theta n
by simp

from psi-double-lemma[OF assms(1 )] have psi (n div 2 ) ≤ psi n − n / 6
by simp

with theta-le-psi-n-2 psi-lt-theta-n show ?thesis
by simp

qed

0.7 Proof of the main result
lemma theta-mono: mono theta

by (auto simp: theta-def [abs-def ] intro!: monoI sum-mono2 )

lemma theta-lessE :
assumes theta m < theta n m ≥ 1
obtains p where p ∈ {m<..n} prime p

proof −
from mono-invE [OF theta-mono assms(1 )] have m ≤ n by blast
hence theta n = theta m + (

∑
p∈{m<..n}. if prime p then ln (real p) else 0 )

unfolding theta-def using assms(2 )
by (subst sum.union-disjoint [symmetric]) (auto simp: ivl-disj-un)

also note assms(1 )
finally have (

∑
p∈{m<..n}. if prime p then ln (real p) else 0 ) 6= 0 by simp

then obtain p where p ∈ {m<..n} (if prime p then ln (real p) else 0 ) 6= 0
by (rule sum.not-neutral-contains-not-neutral)

thus ?thesis using that[of p] by (auto intro!: exI [of - p] split: if-splits)
qed

theorem bertrand:
fixes n :: nat
assumes n > 1
shows ∃ p∈{n<..<2∗n}. prime p

proof cases
assume n-less: n < 600
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define prime-constants
where prime-constants = {2 , 3 , 5 , 7 , 13 , 23 , 43 , 83 , 163 , 317 , 631 ::nat}

from ‹n > 1 › n-less have ∃ p ∈ prime-constants. n < p ∧ p < 2 ∗ n
unfolding bex-simps greaterThanLessThan-iff prime-constants-def by pres-

burger
moreover have ∀ p∈prime-constants. prime p

unfolding prime-constants-def ball-simps HOL.simp-thms
by (intro conjI ; pratt (silent))

ultimately show ?thesis
unfolding greaterThanLessThan-def greaterThan-def lessThan-def by blast

next
assume n: ¬(n < 600 )
from n have theta n < theta (2 ∗ n) using theta-double-lemma[of 2 ∗ n] by

simp
with assms obtain p where p ∈ {n<..2∗n} prime p by (auto elim!: theta-lessE)
moreover from assms have ¬prime (2∗n) by (auto dest!: prime-product)
with ‹prime p› have p 6= 2 ∗ n by auto
ultimately show ?thesis

by auto
qed

0.8 Proof of Mertens’ first theorem

The following proof of Mertens’ first theorem was ported from John Harri-
son’s HOL Light proof by Larry Paulson:
lemma sum-integral-ubound-decreasing ′:

fixes f :: real ⇒ real
assumes m ≤ n

and der :
∧

x. x ∈ {of-nat m − 1 ..of-nat n} =⇒ (g has-field-derivative f x)
(at x)

and le:
∧

x y. [[real m − 1 ≤ x; x ≤ y; y ≤ real n]] =⇒ f y ≤ f x
shows (

∑
k = m..n. f (of-nat k)) ≤ g (of-nat n) − g (of-nat m − 1 )

proof −
have (

∑
k = m..n. f (of-nat k)) ≤ (

∑
k = m..n. g (of-nat(Suc k) − 1 ) − g

(of-nat k − 1 ))
proof (rule sum-mono, clarsimp)

fix r
assume r : m ≤ r r ≤ n
hence ∃ z>real r − 1 . z < real r ∧ g (real r) − g (real r − 1 ) = (real r −

(real r − 1 )) ∗ f z
using assms by (intro MVT2 ) auto

hence ∃ z∈{of-nat r − 1 ..of-nat r}. g (real r) − g (real r − 1 ) = f z by auto
then obtain u::real where u: u ∈ {of-nat r − 1 ..of-nat r}

and eq: g r − g (of-nat r − 1 ) = f u by blast
have real m ≤ u + 1

using r u by auto
then have f (of-nat r) ≤ f u

using r(2 ) and u by (intro le) auto
then show f (of-nat r) ≤ g r − g (of-nat r − 1 )
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by (simp add: eq)
qed
also have . . . ≤ g (of-nat n) − g (of-nat m − 1 )

using ‹m ≤ n› by (subst sum-Suc-diff ) auto
finally show ?thesis .

qed

lemma Mertens-lemma:
assumes n 6= 0

shows |(
∑

d = 1 ..n. mangoldt d / real d) − ln n| ≤ 4
proof −

have ∗: [[abs(s ′ − nl + n) ≤ a; abs(s ′ − s) ≤ (k − 1 ) ∗ n − a]]
=⇒ abs(s − nl) ≤ n ∗ k for s ′ s k nl a::real

by (auto simp: algebra-simps abs-if split: if-split-asm)
have le: |(

∑
d=1 ..n. mangoldt d ∗ floor (n / d)) − n ∗ ln n + n| ≤ 1 + ln n

using ln-fact-bounds ln-fact-conv-mangoldt assms by simp
have |real n ∗ ((

∑
d = 1 ..n. mangoldt d / real d) − ln n)| =

|((
∑

d = 1 ..n. real n ∗ mangoldt d / real d) − n ∗ ln n)|
by (simp add: algebra-simps sum-distrib-left)

also have . . . ≤ real n ∗ 4
proof (rule ∗ [OF le])

have |(
∑

d = 1 ..n. mangoldt d ∗ bn / dc) − (
∑

d = 1 ..n. n ∗ mangoldt d /
d)|

= |
∑

d = 1 ..n. mangoldt d ∗ (bn / dc − n / d)|
by (simp add: sum-subtractf algebra-simps)

also have . . . ≤ psi n (is |?sm| ≤ ?rhs)
proof −

have −?sm = (
∑

d = 1 ..n. mangoldt d ∗ (n/d − bn/dc))
by (simp add: sum-subtractf algebra-simps)

also have . . . ≤ (
∑

d = 1 ..n. mangoldt d ∗ 1 )
by (intro sum-mono mult-left-mono mangoldt-nonneg) linarith+

finally have −?sm ≤ ?rhs by (simp add: psi-def )
moreover
have ?sm ≤ 0

using mangoldt-nonneg by (simp add: mult-le-0-iff sum-nonpos)
ultimately show ?thesis by (simp add: abs-if )

qed
also have . . . ≤ 3/2 ∗ real n

by (rule psi-ubound-3-2 )
also have . . .≤ (4 − 1 ) ∗ real n − (1 + ln n)

using ln-le-minus-one [of n] assms by (simp add: divide-simps)
finally
show |(

∑
d = 1 ..n. mangoldt d ∗ real-of-int breal n / real dc) −

(
∑

d = 1 ..n. real n ∗ mangoldt d / real d)|
≤ (4 − 1 ) ∗ real n − (1 + ln n) .

qed
finally have |real n ∗ ((

∑
d = 1 ..n. mangoldt d / real d) − ln n)| ≤ real n ∗ 4 .

then show ?thesis
using assms mult-le-cancel-left-pos by (simp add: abs-mult)
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qed

lemma Mertens-mangoldt-versus-ln:
assumes I ⊆ {1 ..n}
shows |(

∑
i∈I . mangoldt i / i) − (

∑
p | prime p ∧ p ∈ I . ln p / p)| ≤ 3

(is |?lhs| ≤ 3 )
proof (cases n = 0 )

case True
with assms show ?thesis by simp

next
case False

have finite I
using assms finite-subset by blast

have 0 ≤ (
∑

i∈I . mangoldt i / i − (if prime i then ln i / i else 0 ))
using mangoldt-nonneg by (intro sum-nonneg) simp-all

moreover have . . . ≤ (
∑

i = 1 ..n. mangoldt i / i − (if prime i then ln i / i
else 0 ))

using assms by (intro sum-mono2 ) (auto simp: mangoldt-nonneg)
ultimately have ∗: |

∑
i∈I . mangoldt i / i − (if prime i then ln i / i else 0 )|

≤ |
∑

i = 1 ..n. mangoldt i / i − (if prime i then ln i / i else 0 )|
by linarith

moreover have ?lhs = (
∑

i∈I . mangoldt i / i − (if prime i then ln i / i else
0 ))

(
∑

i = 1 ..n. mangoldt i / i − (if prime i then ln i / i else 0 ))
= (

∑
d = 1 ..n. mangoldt d / d) − (

∑
p | prime p ∧ p ∈ {1 ..n}.

ln p / p)
using sum.inter-restrict [of - λi. ln (real i) / i Collect prime, symmetric]
by (force simp: sum-subtractf ‹finite I › intro: sum.cong)+

ultimately have |?lhs| ≤ |(
∑

d = 1 ..n. mangoldt d / d) −
(
∑

p | prime p ∧ p ∈ {1 ..n}. ln p / p)| by linarith
also have . . . ≤ 3
proof −

have eq-sm: (
∑

i = 1 ..n. mangoldt i / i) =
(
∑

i ∈ {p^k |p k. prime p ∧ p^k ≤ n ∧ k ≥ 1}. mangoldt i / i)
proof (intro sum.mono-neutral-right ballI , goal-cases)

case (3 i)
hence ¬primepow i by (auto simp: primepow-def Suc-le-eq)
thus ?case by (simp add: mangoldt-def )

qed (auto simp: Suc-le-eq prime-gt-0-nat)
have (

∑
i = 1 ..n. mangoldt i / i) − (

∑
p | prime p ∧ p ∈ {1 ..n}. ln p / p)

=
(
∑

i ∈ {p^k |p k. prime p ∧ p^k ≤ n ∧ k ≥ 2}. mangoldt i / i)
proof −

have eq: {p ^ k |p k. prime p ∧ p ^ k ≤ n ∧ 1 ≤ k} =
{p ^ k |p k. prime p ∧ p ^ k ≤ n ∧ 2 ≤ k} ∪ {p. prime p ∧ p ∈

{1 ..n}}
(is ?A = ?B ∪ ?C )

proof (intro equalityI subsetI ; (elim UnE)?)
fix x assume x ∈ ?A
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then obtain p k where x = p ^ k prime p p ^ k ≤ n k ≥ 1 by auto
thus x ∈ ?B ∪ ?C

by (cases k ≥ 2 ) (auto simp: prime-power-iff Suc-le-eq)
next

fix x assume x ∈ ?B
then obtain p k where x = p ^ k prime p p ^ k ≤ n k ≥ 1 by auto
thus x ∈ ?A by (auto simp: prime-power-iff Suc-le-eq)

next
fix x assume x ∈ ?C
then obtain p where x = p ^ 1 1 ≥ (1 ::nat) prime p p ^ 1 ≤ n by auto
thus x ∈ ?A by blast

qed
have eqln: (

∑
p | prime p ∧ p ∈ {1 ..n}. ln p / p) =

(
∑

p | prime p ∧ p ∈ {1 ..n}. mangoldt p / p)
by (rule sum.cong) auto

have (
∑

i ∈ {p^k |p k. prime p ∧ p^k ≤ n ∧ k ≥ 1}. mangoldt i / i) =
(
∑

i ∈ {p ^ k |p k. prime p ∧ p ^ k ≤ n ∧ 2 ≤ k} ∪
{p. prime p ∧ p ∈ {1 ..n}}. mangoldt i / i) by (subst eq) simp-all

also have . . . = (
∑

i ∈ {p^k |p k. prime p ∧ p^k ≤ n ∧ k ≥ 2}. mangoldt
i / i)

+ (
∑

p | prime p ∧ p ∈ {1 ..n}. mangoldt p / p)
by (intro sum.union-disjoint) (auto simp: prime-power-iff finite-nat-set-iff-bounded-le)
also have . . . = (

∑
i ∈ {p^k |p k. prime p ∧ p^k ≤ n ∧ k ≥ 2}. mangoldt

i / i)
+ (

∑
p | prime p ∧ p ∈ {1 ..n}. ln p / p) by (simp only: eqln)

finally show ?thesis
using eq-sm by auto

qed
have (

∑
p | prime p ∧ p ∈ {1 ..n}. ln p / p) ≤ (

∑
p | prime p ∧ p ∈ {1 ..n}.

mangoldt p / p)
using mangoldt-nonneg by (auto intro: sum-mono)

also have . . . ≤ (
∑

i = Suc 0 ..n. mangoldt i / i)
by (intro sum-mono2 ) (auto simp: mangoldt-nonneg)
finally have 0 ≤ (

∑
i = 1 ..n. mangoldt i / i) − (

∑
p | prime p ∧ p ∈

{1 ..n}. ln p / p)
by simp

moreover have (
∑

i = 1 ..n. mangoldt i / i) − (
∑

p | prime p ∧ p ∈ {1 ..n}.
ln p / p) ≤ 3

(is ?M − ?L ≤ 3 )
proof −

have ∗: ∃ q. ∃ j∈{1 ..n}. prime q ∧ 1 ≤ q ∧ q ≤ n ∧
(q ^ j = p ^ k ∧ mangoldt (p ^ k) / real p ^ k ≤ ln (real q) / real q

^ j)
if prime p p ^ k ≤ n 1 ≤ k for p k

proof −
have mangoldt (p ^ k) / real p ^ k ≤ ln p / p ^ k

using that by (simp add: divide-simps)
moreover have p ≤ n

using that self-le-power [of p k] by (simp add: prime-ge-Suc-0-nat)
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moreover have k ≤ n
proof −

have k < 2^k
using of-nat-less-two-power of-nat-less-numeral-power-cancel-iff by

blast
also have . . . ≤ p^k

by (simp add: power-mono prime-ge-2-nat that)
also have . . . ≤ n

by (simp add: that)
finally show ?thesis by (simp add: that)

qed
ultimately show ?thesis

using prime-ge-1-nat that by auto (use atLeastAtMost-iff in blast)
qed
have finite: finite {p ^ k |p k. prime p ∧ p ^ k ≤ n ∧ 1 ≤ k}

by (rule finite-subset[of - {..n}]) auto
have ?M ≤ (

∑
(x, k)∈{p. prime p ∧ p ∈ {1 ..n}} × {1 ..n}. ln (real x) /

real x ^ k)
by (subst eq-sm, intro sum-le-included [where i = λ(p,k). p^k])

(insert ∗ finite, auto)
also have . . . = (

∑
p | prime p ∧ p ∈ {1 ..n}. (

∑
k = 1 ..n. ln p / p^k))

by (subst sum.Sigma) auto
also have . . . = ?L + (

∑
p | prime p ∧ p ∈ {1 ..n}. (

∑
k = 2 ..n. ln p /

p^k))
by (simp add: comm-monoid-add-class.sum.distrib sum.atLeast-Suc-atMost

numeral-2-eq-2 )
finally have ?M − ?L ≤ (

∑
p | prime p ∧ p ∈ {1 ..n}. (

∑
k = 2 ..n. ln p

/ p^k))
by (simp add: algebra-simps)

also have . . . = (
∑

p | prime p ∧ p ∈ {1 ..n}. ln p ∗ (
∑

k = 2 ..n. inverse
p ^ k))

by (simp add: field-simps sum-distrib-left)
also have . . . = (

∑
p | prime p ∧ p ∈ {1 ..n}.

ln p ∗ (((inverse p)2 − inverse p ^ Suc n) / (1 − inverse p)))
by (intro sum.cong refl) (simp add: sum-gp)

also have . . . ≤ (
∑

p | prime p ∧ p ∈ {1 ..n}. ln p ∗ inverse (real (p ∗ (p
− 1 ))))

by (intro sum-mono mult-left-mono)
(auto simp: divide-simps power2-eq-square of-nat-diff mult-less-0-iff )

also have . . . ≤ (
∑

p = 2 ..n. ln p ∗ inverse (real (p ∗ (p − 1 ))))
by (rule sum-mono2 ) (use prime-ge-2-nat in auto)

also have . . . ≤ (
∑

i = 2 ..n. ln i / (i − 1 )2)
unfolding divide-inverse power2-eq-square mult.assoc
by (auto intro: sum-mono mult-left-mono mult-right-mono)

also have . . . ≤ 3
proof (cases n ≥ 3 )

case False then show ?thesis
proof (cases n ≥ 2 )

case False then show ?thesis by simp
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next
case True
then have n = 2 using False by linarith
with ln-le-minus-one [of 2 ] show ?thesis by simp

qed
next

case True
have (

∑
i = 3 ..n. ln (real i) / (real (i − Suc 0 ))2)

≤ (ln (of-nat n − 1 )) − (ln (of-nat n)) − (ln (of-nat n) / (of-nat n
− 1 )) + 2 ∗ ln 2

proof −
have 1 : ((λz. ln (z − 1 ) − ln z − ln z / (z − 1 )) has-field-derivative ln

x / (x − 1 )2) (at x)
if x: x ∈ {2 ..real n} for x
by (rule derivative-eq-intros | rule refl |

(use x in ‹force simp: power2-eq-square divide-simps›))+
have 2 : ln y / (y − 1 )2 ≤ ln x / (x − 1 )2 if xy: 2 ≤ x x ≤ y y ≤ real

n for x y
proof (cases x = y)

case False
define f ′ :: real ⇒ real
where f ′ = (λu. ((u − 1 )2 / u − ln u ∗ (2 ∗ u − 2 )) / (u − 1 ) ^ 4 )
have f ′-altdef : f ′ u = inverse u ∗ inverse ((u − 1 )2) − 2 ∗ ln u / (u

− 1 ) ^ 3
if u: u ∈ {x..y} for u::real unfolding f ′-def using u

by (simp add: eval-nat-numeral divide-simps) (simp add: algebra-simps)?
have deriv: ((λz. ln z / (z − 1 )2) has-field-derivative f ′ u) (at u)

if u: u ∈ {x..y} for u::real unfolding f ′-def
by (rule derivative-eq-intros refl | (use u xy in ‹force simp: di-

vide-simps›))+
hence ∃ z>x. z < y ∧ ln y / (y − 1 )2 − ln x / (x − 1 )2 = (y − x) ∗

f ′ z
using xy and ‹x 6= y› by (intro MVT2 ) auto

then obtain ξ::real where x < ξ ξ < y
and ξ: ln y / (y − 1 )2 − ln x / (x − 1 )2 = (y − x) ∗ f ′ ξ by blast

have f ′ ξ ≤ 0
proof −

have 2/3 ≤ ln (2 ::real) by (fact ln-2-ge ′)
also have . . . ≤ ln ξ

using ‹x < ξ› xy by auto
finally have 1 ≤ 2 ∗ ln ξ by simp
then have ∗: ξ ≤ ξ ∗ (2 ∗ ln ξ)

using ‹x < ξ› xy by auto
hence ξ − 1 ≤ ln ξ ∗ 2 ∗ ξ by (simp add: algebra-simps)
hence 1 / (ξ ∗ (ξ − 1 )2) ≤ ln ξ ∗ 2 / (ξ − 1 ) ^ 3

using xy ‹x < ξ› by (simp add: divide-simps power-eq-if )
thus ?thesis using xy ‹x < ξ› ‹ξ < y› by (subst f ′-altdef ) (auto simp:

divide-simps)
qed
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then have (ln y / (y − 1 )2 − ln x / (x − 1 )2) ≤ 0
using ‹x ≤ y› by (simp add: mult-le-0-iff ξ)

then show ?thesis by simp
qed simp-all
show ?thesis

using sum-integral-ubound-decreasing ′

[OF ‹3 ≤ n›, of λz. ln(z−1 ) − ln z − ln z / (z − 1 ) λz. ln z /
(z−1 )2]

1 2 ‹3 ≤ n›
by (auto simp: in-Reals-norm of-nat-diff )

qed
also have . . . ≤ 2
proof −

have ln (real n − 1 ) − ln n ≤ 0 0 ≤ ln n / (real n − 1 )
using ‹3 ≤ n› by auto

then have ln (real n − 1 ) − ln n − ln n / (real n − 1 ) ≤ 0
by linarith

with ln-2-less-1 show ?thesis by linarith
qed
also have . . . ≤ 3 − ln 2

using ln-2-less-1 by (simp add: algebra-simps)
finally show ?thesis

using True by (simp add: algebra-simps sum.atLeast-Suc-atMost [of 2 n])
qed

finally show ?thesis .
qed
ultimately show ?thesis

by linarith
qed

finally show ?thesis .
qed

proposition Mertens:
assumes n 6= 0
shows |(

∑
p | prime p ∧ p ≤ n. ln p / of-nat p) − ln n| ≤ 7

proof −
have |(

∑
d = 1 ..n. mangoldt d / real d) − (

∑
p | prime p ∧ p ∈ {1 ..n}. ln (real

p) / real p)|
≤ 7 − 4 using Mertens-mangoldt-versus-ln [of {1 ..n} n] by simp-all

also have {p. prime p ∧ p ∈ {1 ..n}} = {p. prime p ∧ p ≤ n}
using atLeastAtMost-iff prime-ge-1-nat by blast

finally have |(
∑

d = 1 ..n. mangoldt d / real d) − (
∑

p∈. . . . ln (real p) / real
p)| ≤ 7 − 4 .

moreover from assms have |(
∑

d = 1 ..n. mangoldt d / real d) − ln n| ≤ 4
by (rule Mertens-lemma)

ultimately show ?thesis by linarith
qed

end
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