Theory Nonpos_Ints

(*  Title:    HOL/Library/Nonpos_Ints.thy
    Author:   Manuel Eberl, TU München
*)

section ‹Non-negative, non-positive integers and reals›

theory Nonpos_Ints
imports Complex_Main
begin

subsection‹Non-positive integers›
text ‹
  The set of non-positive integers on a ring. (in analogy to the set of non-negative
  integers term) This is useful e.g. for the Gamma function.
›

definition nonpos_Ints (0) where "0 = {of_int n |n. n  0}"

lemma zero_in_nonpos_Ints [simp,intro]: "0  0"
  unfolding nonpos_Ints_def by (auto intro!: exI[of _ "0::int"])

lemma neg_one_in_nonpos_Ints [simp,intro]: "-1  0"
  unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-1::int"])

lemma neg_numeral_in_nonpos_Ints [simp,intro]: "-numeral n  0"
  unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-numeral n::int"])

lemma one_notin_nonpos_Ints [simp]: "(1 :: 'a :: ring_char_0)  0"
  by (auto simp: nonpos_Ints_def)

lemma numeral_notin_nonpos_Ints [simp]: "(numeral n :: 'a :: ring_char_0)  0"
  by (auto simp: nonpos_Ints_def)

lemma minus_of_nat_in_nonpos_Ints [simp, intro]: "- of_nat n  0"
proof -
  have "- of_nat n = of_int (-int n)" by simp
  also have "-int n  0" by simp
  hence "of_int (-int n)  0" unfolding nonpos_Ints_def by blast
  finally show ?thesis .
qed

lemma of_nat_in_nonpos_Ints_iff: "(of_nat n :: 'a :: {ring_1,ring_char_0})  0  n = 0"
proof
  assume "(of_nat n :: 'a)  0"
  then obtain m where "of_nat n = (of_int m :: 'a)" "m  0" by (auto simp: nonpos_Ints_def)
  hence "(of_int m :: 'a) = of_nat n" by simp
  also have "... = of_int (int n)" by simp
  finally have "m = int n" by (subst (asm) of_int_eq_iff)
  with m  0 show "n = 0" by auto
qed simp

lemma nonpos_Ints_of_int: "n  0  of_int n  0"
  unfolding nonpos_Ints_def by blast

lemma nonpos_IntsI: 
  "x    x  0  (x :: 'a :: linordered_idom)  0"
  unfolding nonpos_Ints_def Ints_def by auto

lemma nonpos_Ints_subset_Ints: "0  "
  unfolding nonpos_Ints_def Ints_def by blast

lemma nonpos_Ints_nonpos [dest]: "x  0  x  (0 :: 'a :: linordered_idom)"
  unfolding nonpos_Ints_def by auto

lemma nonpos_Ints_Int [dest]: "x  0  x  "
  unfolding nonpos_Ints_def Ints_def by blast

lemma nonpos_Ints_cases:
  assumes "x  0"
  obtains n where "x = of_int n" "n  0"
  using assms unfolding nonpos_Ints_def by (auto elim!: Ints_cases)

lemma nonpos_Ints_cases':
  assumes "x  0"
  obtains n where "x = -of_nat n"
proof -
  from assms obtain m where "x = of_int m" and m: "m  0" by (auto elim!: nonpos_Ints_cases)
  hence "x = - of_int (-m)" by auto
  also from m have "(of_int (-m) :: 'a) = of_nat (nat (-m))" by simp_all
  finally show ?thesis by (rule that)
qed

lemma of_real_in_nonpos_Ints_iff: "(of_real x :: 'a :: real_algebra_1)  0  x  0"
proof
  assume "of_real x  (0 :: 'a set)"
  then obtain n where "(of_real x :: 'a) = of_int n" "n  0" by (erule nonpos_Ints_cases)
  note of_real x = of_int n
  also have "of_int n = of_real (of_int n)" by (rule of_real_of_int_eq [symmetric])
  finally have "x = of_int n" by (subst (asm) of_real_eq_iff)
  with n  0 show "x  0" by (simp add: nonpos_Ints_of_int)
qed (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int)

lemma nonpos_Ints_altdef: "0 = {n  . (n :: 'a :: linordered_idom)  0}"
  by (auto intro!: nonpos_IntsI elim!: nonpos_Ints_cases)

lemma uminus_in_Nats_iff: "-x    x  0"
proof
  assume "-x  "
  then obtain n where "n  0" "-x = of_int n" by (auto simp: Nats_altdef1)
  hence "-n  0" "x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x])
  thus "x  0" unfolding nonpos_Ints_def by blast
next
  assume "x  0"
  then obtain n where "n  0" "x = of_int n" by (auto simp: nonpos_Ints_def)
  hence "-n  0" "-x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x])
  thus "-x  " unfolding Nats_altdef1 by blast
qed

lemma uminus_in_nonpos_Ints_iff: "-x  0  x  "
  using uminus_in_Nats_iff[of "-x"] by simp

lemma nonpos_Ints_mult: "x  0  y  0  x * y  "
  using Nats_mult[of "-x" "-y"] by (simp add: uminus_in_Nats_iff)

lemma Nats_mult_nonpos_Ints: "x    y  0  x * y  0"
  using Nats_mult[of x "-y"] by (simp add: uminus_in_Nats_iff)

lemma nonpos_Ints_mult_Nats:
  "x  0  y    x * y  0"
  using Nats_mult[of "-x" y] by (simp add: uminus_in_Nats_iff)

lemma nonpos_Ints_add:
  "x  0  y  0  x + y  0"
  using Nats_add[of "-x" "-y"] uminus_in_Nats_iff[of "y+x", simplified minus_add] 
  by (simp add: uminus_in_Nats_iff add.commute)

lemma nonpos_Ints_diff_Nats:
  "x  0  y    x - y  0"
  using Nats_add[of "-x" "y"] uminus_in_Nats_iff[of "x-y", simplified minus_add] 
  by (simp add: uminus_in_Nats_iff add.commute)

lemma Nats_diff_nonpos_Ints:
  "x    y  0  x - y  "
  using Nats_add[of "x" "-y"] by (simp add: uminus_in_Nats_iff add.commute)

lemma plus_of_nat_eq_0_imp: "z + of_nat n = 0  z  0"
proof -
  assume "z + of_nat n = 0"
  hence A: "z = - of_nat n" by (simp add: eq_neg_iff_add_eq_0)
  show "z  0" by (subst A) simp
qed


subsection‹Non-negative reals›

definition nonneg_Reals :: "'a::real_algebra_1 set"  (0)
  where "0 = {of_real r | r. r  0}"

lemma nonneg_Reals_of_real_iff [simp]: "of_real r  0  r  0"
  by (force simp add: nonneg_Reals_def)

lemma nonneg_Reals_subset_Reals: "0  "
  unfolding nonneg_Reals_def Reals_def by blast

lemma nonneg_Reals_Real [dest]: "x  0  x  "
  unfolding nonneg_Reals_def Reals_def by blast

lemma nonneg_Reals_of_nat_I [simp]: "of_nat n  0"
  by (metis nonneg_Reals_of_real_iff of_nat_0_le_iff of_real_of_nat_eq)

lemma nonneg_Reals_cases:
  assumes "x  0"
  obtains r where "x = of_real r" "r  0"
  using assms unfolding nonneg_Reals_def by (auto elim!: Reals_cases)

lemma nonneg_Reals_zero_I [simp]: "0  0"
  unfolding nonneg_Reals_def by auto

lemma nonneg_Reals_one_I [simp]: "1  0"
  by (metis (mono_tags, lifting) nonneg_Reals_of_nat_I of_nat_1)

lemma nonneg_Reals_minus_one_I [simp]: "-1  0"
  by (metis nonneg_Reals_of_real_iff le_minus_one_simps(3) of_real_1 of_real_def real_vector.scale_minus_left)

lemma nonneg_Reals_numeral_I [simp]: "numeral w  0"
  by (metis (no_types) nonneg_Reals_of_nat_I of_nat_numeral)

lemma nonneg_Reals_minus_numeral_I [simp]: "- numeral w  0"
  using nonneg_Reals_of_real_iff not_zero_le_neg_numeral by fastforce

lemma nonneg_Reals_add_I [simp]: "a  0; b  0  a + b  0"
apply (simp add: nonneg_Reals_def)
apply clarify
apply (rename_tac r s)
apply (rule_tac x="r+s" in exI, auto)
done

lemma nonneg_Reals_mult_I [simp]: "a  0; b  0  a * b  0"
  unfolding nonneg_Reals_def  by (auto simp: of_real_def)

lemma nonneg_Reals_inverse_I [simp]:
  fixes a :: "'a::real_div_algebra"
  shows "a  0  inverse a  0"
  by (simp add: nonneg_Reals_def image_iff) (metis inverse_nonnegative_iff_nonnegative of_real_inverse)

lemma nonneg_Reals_divide_I [simp]:
  fixes a :: "'a::real_div_algebra"
  shows "a  0; b  0  a / b  0"
  by (simp add: divide_inverse)

lemma nonneg_Reals_pow_I [simp]: "a  0  a^n  0"
  by (induction n) auto

lemma complex_nonneg_Reals_iff: "z  0  Re z  0  Im z = 0"
  by (auto simp: nonneg_Reals_def) (metis complex_of_real_def complex_surj)

lemma ii_not_nonneg_Reals [iff]: "𝗂  0"
  by (simp add: complex_nonneg_Reals_iff)


subsection‹Non-positive reals›

definition nonpos_Reals :: "'a::real_algebra_1 set"  (0)
  where "0 = {of_real r | r. r  0}"

lemma nonpos_Reals_of_real_iff [simp]: "of_real r  0  r  0"
  by (force simp add: nonpos_Reals_def)

lemma nonpos_Reals_subset_Reals: "0  "
  unfolding nonpos_Reals_def Reals_def by blast

lemma nonpos_Ints_subset_nonpos_Reals: "0  0"
  by (metis nonpos_Ints_cases nonpos_Ints_nonpos nonpos_Ints_of_int 
    nonpos_Reals_of_real_iff of_real_of_int_eq subsetI)

lemma nonpos_Reals_of_nat_iff [simp]: "of_nat n  0  n=0"
  by (metis nonpos_Reals_of_real_iff of_nat_le_0_iff of_real_of_nat_eq)

lemma nonpos_Reals_Real [dest]: "x  0  x  "
  unfolding nonpos_Reals_def Reals_def by blast

lemma nonpos_Reals_cases:
  assumes "x  0"
  obtains r where "x = of_real r" "r  0"
  using assms unfolding nonpos_Reals_def by (auto elim!: Reals_cases)

lemma uminus_nonneg_Reals_iff [simp]: "-x  0  x  0"
  apply (auto simp: nonpos_Reals_def nonneg_Reals_def)
  apply (metis nonpos_Reals_of_real_iff minus_minus neg_le_0_iff_le of_real_minus)
  done

lemma uminus_nonpos_Reals_iff [simp]: "-x  0  x  0"
  by (metis (no_types) minus_minus uminus_nonneg_Reals_iff)

lemma nonpos_Reals_zero_I [simp]: "0  0"
  unfolding nonpos_Reals_def by force

lemma nonpos_Reals_one_I [simp]: "1  0"
  using nonneg_Reals_minus_one_I uminus_nonneg_Reals_iff by blast

lemma nonpos_Reals_numeral_I [simp]: "numeral w  0"
  using nonneg_Reals_minus_numeral_I uminus_nonneg_Reals_iff by blast

lemma nonpos_Reals_add_I [simp]: "a  0; b  0  a + b  0"
  by (metis nonneg_Reals_add_I add_uminus_conv_diff minus_diff_eq minus_minus uminus_nonpos_Reals_iff)

lemma nonpos_Reals_mult_I1: "a  0; b  0  a * b  0"
  by (metis nonneg_Reals_mult_I mult_minus_right uminus_nonneg_Reals_iff)

lemma nonpos_Reals_mult_I2: "a  0; b  0  a * b  0"
  by (metis nonneg_Reals_mult_I mult_minus_left uminus_nonneg_Reals_iff)

lemma nonpos_Reals_mult_of_nat_iff:
  fixes a:: "'a :: real_div_algebra" shows "a * of_nat n  0  a  0  n=0"
  apply (auto intro: nonpos_Reals_mult_I2)
  apply (auto simp: nonpos_Reals_def)
  apply (rule_tac x="r/n" in exI)
  apply (auto simp: field_split_simps)
  done

lemma nonpos_Reals_inverse_I:
    fixes a :: "'a::real_div_algebra"
    shows "a  0  inverse a  0"
  using nonneg_Reals_inverse_I uminus_nonneg_Reals_iff by fastforce

lemma nonpos_Reals_divide_I1:
    fixes a :: "'a::real_div_algebra"
    shows "a  0; b  0  a / b  0"
  by (simp add: nonpos_Reals_inverse_I nonpos_Reals_mult_I1 divide_inverse)

lemma nonpos_Reals_divide_I2:
    fixes a :: "'a::real_div_algebra"
    shows "a  0; b  0  a / b  0"
  by (metis nonneg_Reals_divide_I minus_divide_left uminus_nonneg_Reals_iff)

lemma nonpos_Reals_divide_of_nat_iff:
  fixes a:: "'a :: real_div_algebra" shows "a / of_nat n  0  a  0  n=0"
  apply (auto intro: nonpos_Reals_divide_I2)
  apply (auto simp: nonpos_Reals_def)
  apply (rule_tac x="r*n" in exI)
  apply (auto simp: field_split_simps mult_le_0_iff)
  done

lemma nonpos_Reals_inverse_iff [simp]:
  fixes a :: "'a::real_div_algebra"
  shows "inverse a  0  a  0"
  using nonpos_Reals_inverse_I by fastforce

lemma nonpos_Reals_pow_I: "a  0; odd n  a^n  0"
  by (metis nonneg_Reals_pow_I power_minus_odd uminus_nonneg_Reals_iff)

lemma complex_nonpos_Reals_iff: "z  0  Re z  0  Im z = 0"
   using complex_is_Real_iff by (force simp add: nonpos_Reals_def)

lemma ii_not_nonpos_Reals [iff]: "𝗂  0"
  by (simp add: complex_nonpos_Reals_iff)

end