Theory Comparator

(*  Title:      HOL/Library/Comparator.thy
    Author:     Florian Haftmann, TU Muenchen
*)

theory Comparator
  imports Main
begin

section ‹Comparators on linear quasi-orders›

subsection ‹Basic properties›

datatype comp = Less | Equiv | Greater

locale comparator =
  fixes cmp :: 'a  'a  comp
  assumes refl [simp]: a. cmp a a = Equiv
    and trans_equiv: a b c. cmp a b = Equiv  cmp b c = Equiv  cmp a c = Equiv
  assumes trans_less: cmp a b = Less  cmp b c = Less  cmp a c = Less
    and greater_iff_sym_less: b a. cmp b a = Greater  cmp a b = Less
begin

text ‹Dual properties›

lemma trans_greater:
  cmp a c = Greater if cmp a b = Greater cmp b c = Greater
  using that greater_iff_sym_less trans_less by blast

lemma less_iff_sym_greater:
  cmp b a = Less  cmp a b = Greater
  by (simp add: greater_iff_sym_less)

text ‹The equivalence part›

lemma sym:
  cmp b a = Equiv  cmp a b = Equiv
  by (metis (full_types) comp.exhaust greater_iff_sym_less)

lemma reflp:
  reflp (λa b. cmp a b = Equiv)
  by (rule reflpI) simp

lemma symp:
  symp (λa b. cmp a b = Equiv)
  by (rule sympI) (simp add: sym)

lemma transp:
  transp (λa b. cmp a b = Equiv)
  by (rule transpI) (fact trans_equiv)

lemma equivp:
  equivp (λa b. cmp a b = Equiv)
  using reflp symp transp by (rule equivpI)

text ‹The strict part›

lemma irreflp_less:
  irreflp (λa b. cmp a b = Less)
  by (rule irreflpI) simp

lemma irreflp_greater:
  irreflp (λa b. cmp a b = Greater)
  by (rule irreflpI) simp

lemma asym_less:
  cmp b a  Less if cmp a b = Less
  using that greater_iff_sym_less by force

lemma asym_greater:
  cmp b a  Greater if cmp a b = Greater
  using that greater_iff_sym_less by force

lemma asymp_less:
  asymp (λa b. cmp a b = Less)
  using irreflp_less by (auto dest: asym_less)

lemma asymp_greater:
  asymp (λa b. cmp a b = Greater)
  using irreflp_greater by (auto dest: asym_greater)

lemma trans_equiv_less:
  cmp a c = Less if cmp a b = Equiv and cmp b c = Less
  using that
  by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)

lemma trans_less_equiv:
  cmp a c = Less if cmp a b = Less and cmp b c = Equiv
  using that
  by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)

lemma trans_equiv_greater:
  cmp a c = Greater if cmp a b = Equiv and cmp b c = Greater
  using that by (simp add: sym [of a b] greater_iff_sym_less trans_less_equiv)

lemma trans_greater_equiv:
  cmp a c = Greater if cmp a b = Greater and cmp b c = Equiv
  using that by (simp add: sym [of b c] greater_iff_sym_less trans_equiv_less)

lemma transp_less:
  transp (λa b. cmp a b = Less)
  by (rule transpI) (fact trans_less)

lemma transp_greater:
  transp (λa b. cmp a b = Greater)
  by (rule transpI) (fact trans_greater)

text ‹The reflexive part›

lemma reflp_not_less:
  reflp (λa b. cmp a b  Less)
  by (rule reflpI) simp

lemma reflp_not_greater:
  reflp (λa b. cmp a b  Greater)
  by (rule reflpI) simp

lemma quasisym_not_less:
  cmp a b = Equiv if cmp a b  Less and cmp b a  Less
  using that comp.exhaust greater_iff_sym_less by auto

lemma quasisym_not_greater:
  cmp a b = Equiv if cmp a b  Greater and cmp b a  Greater
  using that comp.exhaust greater_iff_sym_less by auto

lemma trans_not_less:
  cmp a c  Less if cmp a b  Less cmp b c  Less
  using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less)

lemma trans_not_greater:
  cmp a c  Greater if cmp a b  Greater cmp b c  Greater
  using that greater_iff_sym_less trans_not_less by blast

lemma transp_not_less:
  transp (λa b. cmp a b  Less)
  by (rule transpI) (fact trans_not_less)

lemma transp_not_greater:
  transp (λa b. cmp a b  Greater)
  by (rule transpI) (fact trans_not_greater)

text ‹Substitution under equivalences›

lemma equiv_subst_left:
  cmp z y = comp  cmp x y = comp if cmp z x = Equiv for comp
proof -
  from that have cmp x z = Equiv
    by (simp add: sym)
  with that show ?thesis
    by (cases comp) (auto intro: trans_equiv trans_equiv_less trans_equiv_greater)
qed

lemma equiv_subst_right:
  cmp x z = comp  cmp x y = comp if cmp z y = Equiv for comp
proof -
  from that have cmp y z = Equiv
    by (simp add: sym)
  with that show ?thesis
    by (cases comp) (auto intro: trans_equiv trans_less_equiv trans_greater_equiv)
qed

end

typedef 'a comparator = {cmp :: 'a  'a  comp. comparator cmp}
  morphisms compare Abs_comparator
proof -
  have comparator (λ_ _. Equiv)
    by standard simp_all
  then show ?thesis
    by auto
qed

setup_lifting type_definition_comparator

global_interpretation compare: comparator compare cmp
  using compare [of cmp] by simp

lift_definition flat :: 'a comparator
  is λ_ _. Equiv by standard simp_all

instantiation comparator :: (linorder) default
begin

lift_definition default_comparator :: 'a comparator
  is λx y. if x < y then Less else if x > y then Greater else Equiv
  by standard (auto split: if_splits)

instance ..

end

lemma compare_default_eq_Less_iff [simp]:
  compare default x y = Less  x < y
  by transfer simp

lemma compare_default_eq_Equiv_iff [simp]:
  compare default x y = Equiv  x = y
  by transfer auto

lemma compare_default_eq_Greater_iff [simp]:
  compare default x y = Greater  x > y
  by transfer auto

text ‹A rudimentary quickcheck setup›

instantiation comparator :: (enum) equal
begin

lift_definition equal_comparator :: 'a comparator  'a comparator  bool
  is λf g. x  set Enum.enum. f x = g x .

instance
  by (standard; transfer) (auto simp add: enum_UNIV)

end

lemma [code nbe]:
  HOL.equal (cmp :: 'a::enum comparator) cmp  True
  by (fact equal_refl)

lemma [code]:
  HOL.equal cmp1 cmp2  Enum.enum_all (λx. compare cmp1 x = compare cmp2 x)
  by transfer (simp add: enum_UNIV)

instantiation comparator :: ("{linorder, typerep}") full_exhaustive
begin

definition full_exhaustive_comparator ::
  ('a comparator × (unit  term)  (bool × term list) option)
     natural  (bool × term list) option
  where full_exhaustive_comparator f s =
    Quickcheck_Exhaustive.orelse
      (f (flat, (λu. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator))))
      (f (default, (λu. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))

instance ..

end


subsection ‹Fundamental comparator combinators›

lift_definition reversed :: 'a comparator  'a comparator
  is λcmp a b. cmp b a
proof -
  fix cmp :: 'a  'a  comp
  assume comparator cmp
  then interpret comparator cmp .
  show comparator (λa b. cmp b a)
    by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed

lemma compare_reversed_apply [simp]:
  compare (reversed cmp) x y = compare cmp y x
  by transfer simp

lift_definition key :: ('b  'a)  'a comparator  'b comparator
  is λf cmp a b. cmp (f a) (f b)
proof -
  fix cmp :: 'a  'a  comp and f :: 'b  'a
  assume comparator cmp
  then interpret comparator cmp .
  show comparator (λa b. cmp (f a) (f b))
    by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed

lemma compare_key_apply [simp]:
  compare (key f cmp) x y = compare cmp (f x) (f y)
  by transfer simp

lift_definition prod_lex :: 'a comparator  'b comparator  ('a × 'b) comparator
  is λf g (a, c) (b, d). case f a b of Less  Less | Equiv  g c d | Greater  Greater
proof -
  fix f :: 'a  'a  comp and g :: 'b  'b  comp
  assume comparator f
  then interpret f: comparator f .
  assume comparator g
  then interpret g: comparator g .
  define h where h = (λ(a, c) (b, d). case f a b of Less  Less | Equiv  g c d | Greater  Greater)
  then have h_apply [simp]: h (a, c) (b, d) = (case f a b of Less  Less | Equiv  g c d | Greater  Greater) for a b c d
    by simp
  have h_equiv: h p q = Equiv  f (fst p) (fst q) = Equiv  g (snd p) (snd q) = Equiv for p q
    by (cases p; cases q) (simp split: comp.split)
  have h_less: h p q = Less  f (fst p) (fst q) = Less  f (fst p) (fst q) = Equiv  g (snd p) (snd q) = Less for p q
    by (cases p; cases q) (simp split: comp.split)
  have h_greater: h p q = Greater  f (fst p) (fst q) = Greater  f (fst p) (fst q) = Equiv  g (snd p) (snd q) = Greater for p q
    by (cases p; cases q) (simp split: comp.split)
  have comparator h
    apply standard
       apply (simp_all add: h_equiv h_less h_greater f.greater_iff_sym_less g.greater_iff_sym_less f.sym g.sym)
      apply (auto intro: f.trans_equiv g.trans_equiv f.trans_less g.trans_less f.trans_less_equiv f.trans_equiv_less)
    done
  then show comparator (λ(a, c) (b, d). case f a b of Less  Less
    | Equiv  g c d
    | Greater  Greater)
    by (simp add: h_def)
qed

lemma compare_prod_lex_apply:
  compare (prod_lex cmp1 cmp2) p q =
    (case compare (key fst cmp1) p q of Less  Less | Equiv  compare (key snd cmp2) p q | Greater  Greater)
  by transfer (simp add: split_def)


subsection ‹Direct implementations for linear orders on selected types›

definition comparator_bool :: bool comparator
  where [simp, code_abbrev]: comparator_bool = default

lemma compare_comparator_bool [code abstract]:
  compare comparator_bool = (λp q.
    if p then if q then Equiv else Greater
    else if q then Less else Equiv)
  by (auto simp add: fun_eq_iff)

definition raw_comparator_nat :: nat  nat  comp
  where [simp]: raw_comparator_nat = compare default

lemma default_comparator_nat [simp, code]:
  raw_comparator_nat (0::nat) 0 = Equiv
  raw_comparator_nat (Suc m) 0 = Greater
  raw_comparator_nat 0 (Suc n) = Less
  raw_comparator_nat (Suc m) (Suc n) = raw_comparator_nat m n
  by (transfer; simp)+

definition comparator_nat :: nat comparator
  where [simp, code_abbrev]: comparator_nat = default

lemma compare_comparator_nat [code abstract]:
  compare comparator_nat = raw_comparator_nat
  by simp

definition comparator_linordered_group :: 'a::linordered_ab_group_add comparator
  where [simp, code_abbrev]: comparator_linordered_group = default

lemma comparator_linordered_group [code abstract]:
  compare comparator_linordered_group = (λa b.
    let c = a - b in if c < 0 then Less
    else if c = 0 then Equiv else Greater)
proof (rule ext)+
  fix a b :: 'a
  show compare comparator_linordered_group a b =
    (let c = a - b in if c < 0 then Less
       else if c = 0 then Equiv else Greater)
    by (simp add: Let_def not_less) (transfer; auto)
qed

end